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1. Introduction

The eddy current model is commonly used in many problems in sciences and industry, for example, in induction heating,
electromagnetic braking, electric generation, etc. An overview of the mathematical analysis of the eddy current model and
its numerical solution in harmonic regime can be found in the recent book [ 1], which provides a large list of references on
this subject.

In this paper, we deal with the numerical solution of the time-dependent eddy current problem, which is naturally
formulated in the whole space, with adequate decay conditions at infinity. The literature on the numerical analysis of
time-dependent problems of this kind is more scarce. Among the few papers devoted to this subject, both in bounded
and unbounded domains, by using finite element (FEM), boundary element (BEM) or coupled FEM-BEM methods, we can
mention [2-8]. These articles differ from each other by the physical quantities chosen for the formulation (magnetic field,
electric field or different kind of potentials) and by the way of treating the decay condition to reduce the problem to a
bounded domain.

We consider a FEM-BEM method to compute the eddy currents generated in a three-dimensional conductor §2¢c by a
time-dependent source current. The problem is reformulated by expressing the magnetic and the electric fields in terms
of convenient new variables. We use FEM only on the conducting domain £2c, the integral conditions being imposed on its
boundary 0£2¢. Therefore, the domain where FEM is used results as small as possible, leading to a more efficient method
as compared, for instance, with [2,3], where similar formulations but involving FEM in part of the dielectric domain are
considered. Another important feature of this approach is that it preserves the coercivity of the original problem. The purpose
of this paper is to analyze the convergence of a fully discrete FEM-BEM scheme for this formulation and to investigate the
convergence order.

The paper is organized as follows. In Section 2 we give some basic definitions. In Section 3 we introduce the model
problem and the assumptions over the data. Then, we introduce a new variable, the time-primitive of the electric field,
which plays the role of a vector potential for the magnetic field. In Section 4 we introduce the integral operators and recall
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their properties. Then, we derive the FEM-BEM formulation and show the existence and uniqueness of the solution to
the problem. In Section 5, we introduce a space-discretization of the problem based on Nédélec edge elements in £2¢ and
piecewise linear continuous elements for the variable on 92 arising from the integral equations. Then, a backward Euler
method is employed for the time discretization. Finally, the results presented in Section 6 prove that the proposed fully
discrete scheme is convergent with optimal order.

2. Preliminaries

In the sequel we deal with real valued functions. Boldface letters will denote vectors (in R") or vector-valued functions,
as well as matrices. The symbol | - | will represent the Euclidean norm for n-dimensional vectors:

n
lv|? :v~v::Zvi2.
i=1

In all the paper the conductor 2 C R?isa bounded connected polyhedron, with a Lipschitz-continuous connected
boundary I" := 8£2¢, so that the insulator £2; := R> \ £2¢ is also connected.

We remark that, under the above conditions, £2¢ and £; have the same number of non-bounding cycles L; namely,
there exist L disjoint connected open “cutting” surfaces Ej‘m C $£2c¢ (respectively Ef’“ C £20),j = 1,...,L, such that
Qc = 2c\ U;:1 Ej““ (respectively 2 := £2; \ U;L] ) is simply connected. The boundary curves 82}‘“ and 3 X lie
onl.

We denote by
(8o, = fgdx
24
the inner product in L?(£2,) and || - ||, ¢, the corresponding norm with * € {C, I}. As usual, | - ||s o, stands for the norm of

the Hilbertian Sobolev spaces H*(§2¢) for all s € R. We recall that, for s € (0, 1), the space H*(I") has an intrinsic definition
(by localization) on the Lipschitz surface I" due to their invariance under Lipschitz coordinate transformations. We denote
by || - ||s,r the norm in H*(I"). Moreover, H~*(I") denotes the corresponding dual space.
In this paper, the spaces that are product of function spaces are endowed with the natural product norms and duality
pairings without changing the notations; it will be clear from the context when scalar or vector functions are used.
Finally, we introduce the functional spaces
H(curl; 2¢) == {v € (*(20))* : curlv € (I*(220))*}

H(div; 2¢) == {v € (1*(2¢))* : divv € [*(220)}
endowed with their natural norms ||v||f,(mﬂ;_qc) = |v§ o + llcurlv]§ , and ||V||ir(div;:zc) = VII§ g + IdivVI§ o,

respectively.

2.1. Basic spaces for time dependent problems

Since we will deal with a time-dependent problem, we will use spaces of functions defined on a bounded interval [0, T]
and with values in a separable Hilbert space V whose norm is denoted here by || - ||v. We use the notation €°([0, T]; V) for
the Banach space consisting of all continuous functions f : [0, T] — V. More generally, for any k € N, €*([0, T]; V) denotes
the subspace of €°([0, T]; V) of all functions f with (strong) derivatives d'f /dt/ in €°([0, T]; V) forallj = 1, ..., k. In the
sequel, we will use indistinctly the notations o,f = df /dt to express the derivative with respect to t.

We also consider the space L?(0, T; V) of classes of functions f : (0, T) — V that are Bschner-measurable and such that

T
W poyy = /0 IF @113 de < +oo.

Furthermore, we will use
H'(0,T; V) == {f € [’(0, T; V) : &f € [*(0, T; V)}.

Analogously, we define H*(0, T; V) for all k € N.

3. The model problem

The unit normal vector on I" that points from §2¢ to £2; (respectively from £2; to £2¢) is denoted by nc (respectively
n; = —nc).
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Let E(x, t) be the electric field and H(x, t) the magnetic field. Given a time-dependent compactly supported current
density J, our aim is to furnish an approximate solution to the problem below:
3 (uH) +curlE=0 inR3x (0,7),
curlH —6E =] inR3 x [0, T],
div(eE) =0 in £2; x [0, T], (1)
H(x,0),Ex,t) = O(Ix]"") as |x] — oo,
H(x,0) = Hy(x), x€R>,

where the asymptotic behavior (1)4 holds uniformly in [0, T].

The initial data Hy € (L?(R>))? has to satisfy div(uHp) = 0 in R3. Coefficients o, s and & are assumed to be symmetric
matrices with bounded entries. The electric conductivity ¢ is positive definite in £2¢ and vanishes in £2;,. The magnetic
permeability u is positive definite in all R* and satisfies u = ol in £2; (I being the identity matrix). The electric permittivity
€ is only needed in the dielectric domain in this formulation and we assume it satisfies & = gol in £2;; o and & being the
corresponding coefficients in vacuum. Finally, we assume that the source current is supported in £2¢. Moreover, we consider
J € I2(0, T; (1*(£20))?).

We define He := H| g and H; := H|g,; analogously, Hc o := Holo., Hi,0 := Holg,, Ec .= E|g., E; .= E|g,, etc.

We consider the space H(£2¢), defined as

H(82c) == {v € (I*(2¢))’ : curlv = 0, div(ov) =0, ov-nc =0onI'}.
We recall that each cutting surface Z‘ji“t, j=1,...,L “cuts” an independent non-bounding cycle in §2¢. They are connected

orientable Lipschitz surfaces with 82]-““ C T, such that every curl-free vector field in £2¢ has a global potential in FZC. A

basis of H(£2¢) is given by the functions w; which are the (L%(£2¢))3-extension of Vpj, where p; € HY(2¢\ Eji“t) is the
solution of the problem

div(eVp) =0 ingc\ I,
oVpj-nc=0 onl\ BEji“t,
[oVp; - n}“t]]Ejim =0, j=1,...,L
[Pl =1, j=1.....L
having denoted by [[-]| Ejgm the jump across the surface E}“t and by n}“t a unit normal vector on Eji“‘.
In order to obtain a suitable formulation for problem (1), we introduce the variable

t
Ac(x,t) = —/ Ec(x,5)ds 4 Aco(x) (2)
0

where Ac o is a vector potential of u-Hc o; namely, a vector field such that
Clll'lAC,Q = ILCHC,O in 2c, (3)

which is well known to exist because div(u-Hc o) = 0 in §2¢ (see, for instance, [9, Lemma 3.5]). In practice, Ac o can be
found, for instance, by solving the following problem:

Clll'lAC,Q = ILCHC,O in 2c,
diV(O’AC,O) =0 in Qc,
O'AC,O'HCIO onl,

/ O'AC’()'(x)jdX=0, _]=1,,L
2c
We obtain directly from (2) that Ec = —9;Ac in £2¢ x (0, T). Moreover, if we apply curl to (2) and use (1); and (3), we also
deduce that u-Hc = curl Ac in £2¢ x [0, T] and, replacing the new equalities in (1),, we have
0dAc + curl (u;'curlAc) =] in2c x (0,T).

We introduce the Beppo Levi space

¢

V1+ %2

wh(2) = :«) el .(2): € I*(2), Vo € (*(2))°
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and recall that the seminorm ||V (-)[lo,e; is a norm in W1(£2)) equivalent to the natural norm; i.e., there exists a constant
C > 0such that (see, e.g., [10]):

<ClVolg, YoeW! ().

2
|
2

1+ |x| 0.2

Moreover we define the harmonic Neumann vector-fields in £2; by
H($2) == {v e (*(£2))’: curlv =0, divv =0,v-m =00nT}.

We will also need a basis of the finite dimensional space H($2). To this end, let Ef’“, j=1,...,L, betheorientable cutting
surfaces in £2; introduced above. We fix a unit normal nj?’“ on each Zf’“. Then, foreachj =1, ..., L, consider the following
problem, which admits a unique solution: Find z; € W\ Zje’“) such that

Azy=0 ingy\ ™,
Vzi-m =0 onl\ az;‘-’“,

et — (4)
[[vzj : njex ]]Ejext - 01
IIZj]]EjEXt =1.
The set {%zj :j=1,...,L}, where %zj are the (L?(£2))3-extension of Vzj, is a basis of H($2)) (see, for instance, [7]).

We have the following representation of curl-free vector-fields in £2; (see, e.g., [11, Remark 7]).

Lemma 3.1. There holds
{ue @) : carlu=0in 2} = VW' (2))) & H(£2)).
Moreover, this is an L?(£2;)-orthogonal decomposition.

We know from (1), that curl H; = 0in §2; atall time t € [0, T]. Then, the previous lemma ensures the existence, at each
time t € [0, T], of a function v (t) in W(£2;) and real constants {oz]-(t)}}=1 such that

L
Hi(x.0) = Vg (x,0) + Y oi()Vz(x) in 2 x [0,T]. (5)
j=1

Moreover, taking divergence in the Eq. (1); and using that g4 = ol in £2;, we obtain that 9,(divH;) = 0in £2; x (0, T).
Hence, since we know that div H;(x, 0) = divH; o = 0 in £2;, we conclude that divH; = 0in £2; x [0, T]. Then, using (5)
and (4),, we obtain that

Ad/’) =0 in QI X [0, T]

On the other hand, multiplying (1); by %Zi, using a Green's formula and the fact that E; x n; = —E¢ X n¢, we obtain

/at(uoﬂ,)ﬁz,»dx=—/scxncﬁz,-dg, i=1,...,L
2 r

Replacing H; by Vi, + ZJ‘L:1 aj%zj and E¢ by —9;Ac, using the orthogonality between VW (£2;) and H(£2;) and integrating
by parts in £2;, we obtain

L
uozaj’(t)f sz~Vz,-dx:/E)tAc(t)xnc~Vzid§, i=1,...,L
j=1 2 r

Next, integrating in time between 0 and s (0 < s < T) and recalling that Ac(x, 0) = Ac (), we obtain

L L
o E ®(s) | Vz-Vzidx — / Ac(s) x n¢ - Vz;dZ = g ZO[]‘(O) Vzj - Vzidx — f Aco xnc-Vz;d¢, (6)
j=1 2r r j=1 2 r

withi =1, ..., L. From (4), Green’s formula yields

~ ~ 821‘
/ sz-Vzidx=/ —dg,
2 Ejext a"j
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foralli,j =1, ..., L. Then, we introduce the matrix

Bz,-
N:= T d¢ ) (7)
):J'ext n] 1<i,j<L

It is clear that N is symmetric and positive definite. We also define the matrix Z and the vector « by

Z:= [621 %zl_]t and a:=[a; - OlL]t. (8)

Thus, we can write Eq. (6) as follows:
oNe —/ Z(Ac X nc) d¢ = puoNop — / Z(Aco x nc) dg,
r r

where o := a(0) is known.
In conclusion, we are led to the following problem:
Find Ac € [%(0, T; H(curl ; 2¢)) NH'(0, T; (L2(£2¢))3), ¥ € L2(0, T; W'(£2))) and & € [%(0, T; R") such that

0dAc + curl (u;'curlAc) =] in2c x (0,T),

HoNe — /FZ(AC X nc) d¢ = poNeg — /FZ (Aco x nc) dg,
AY; =0 in £ x [0, T], 9)
(nc'curlAc) x nc + (Vi +Z'a) x m; =0 onT x [0,T],
curlAc -nc + oV -n; =0 onI x [0, T],
Ac(x,0) =Aco inS2c.
Egs. (9)4 and (9) 5 come from the fact that H € H(curl; R?) and uH € H(div; R®) and, hence, H- x nc = —H; x n; and
icHe - nc = —poH; - nyon I, respectively.

4. A FEM-BEM coupling variational formulation

In what follows we reduce problem (9) to the bounded domain £2¢. To do this we will use Costabel’s symmetric FEM-BEM
coupling technique (cf. [12,13]). We introduce on I” the single and double layer potentials, which are formally defined by

$HVAH(I) — HA(D),  $¢E)®) :=/ ém)dzy,
ré4m|x—y|

D :HYX(I) — HYA(I), D) :=/ %'U@)”C@)dfy,
rémlx—y|

respectively, and the hypersingular operator # : H/2(I") — H~'/2(I"), which is formally defined as the following normal
derivative:

H)(®) = —Vy (/ ﬁ ) ) dcy) e (®).
e

Let us remark that the restrictions to the boundary as well as the normal derivative above have to be understood in a weak
sense; for rigorous definitions see, for instance, [14]. The three operators are linear and bounded. Let &’ : H~?(I") —
H~'2(I") denote the adjoint operator of D.

In what follows, we recall some basic properties of these operators (see, e.g., [ 10,14] for the corresponding proofs).

Theorem 4.1. Let ¢ € W'(£2;) be a harmonic function. Then, the following identities hold on I", where I denotes the identity
operator:

LY s(22) 2o
(5 - >(<P|r)— (3111)_ ,

1 , dp _
_ (51 + @> (am> + 7 @) =0,

Lemma 4.1. (i) There exists k; > 0 such that

/ 500 de = ky Il Vi € HOV2(),
r
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(ii) There exists k, > 0 such that
/F @@ = ko gl Vo € HYI),
where

Hy*(r) = {(p e H(I) : f pd = o}.
r

Lemma4.2. #(1) =0, D(1) = —1/2and [, #(n)d; =0Vn € H/2(I).
Here and thereafter, for the ease of notation, we use the integration symbol on I" instead of the duality pairing between
H=Y2(I') and H'/*(I"); namely, [, #(n) dZ = (H (), 1)y-112(r) w12 (1)

Theorem 4.2. The linear operator  : H'/2(I") /R — Hy "/*(I"), where

Hy A = {n eH V2 : / nde = o},
r

defines an isomorphism.

Let (Ac, ¥, ) satisfying (9). Let ¥ (t) = | (t) — c(t), where c : [0, T] — R is such that ¢ (t) € HS/Z(F). By using

(9)3 and (9)s, according to Theorem 4.1 and Lemma 4.2, for all t € [0, T] we have

1 1
—51// —DW)+ —S(curlAc -nc) = —y; onl, (10)
Mo
1 1
—ocurlAc -nc + —D'(curlAc -nc) + #H(Yy) =0 onTl. (11)
210 Ho

The following is a variational formulation of problem (9), where
V = H(curl; £2¢).

Find Ac € 2(0, T; V) NH'(0, T; (I*(220))*), ¥ € 1%(0, T; Hy/*(I")) and @ € [2(0, T; R") such that
d
— oAc - wedx —l—/ ;LglcurlAC - curl we dx
dt 2c 2c
1 1 .
+ —Ew — D)+ —3S(curlAc - n¢) |curlwe - ncd¢ + Z(we xneg) d¢ = J - wcdx,
r Mo r

| e (12)
/ |:2curlAc “ne + D' (curlA¢ - n¢) + Moﬂ’(lﬁ)] nd¢ =0,
r

0B Net — ﬂt/ Z(Ac x n¢) di = 110B'Neto — ﬂt/ Z(Aco x nc) dg,
r r
forallwe € W, n € HY*(I') and B € R, with
Ac(o) = AC,O in Qc.

In fact, to derive (12);, we have multiplied (9); by wc, integrated by parts in £2¢ and used (9)4, the identity
/ n; X le - W¢ d; = / wlclll'lWC - N¢ d;, (13)
r r
(which in its turn follows by integration by parts, too) and (10). On the other hand, Egs. (12), and (12)5 follow directly from
(11) and (9),.

For the theoretical analysis it is convenient to eliminate & and i from the previous formulation. With this aim, we
introduce the linear operator T : 'V — R! defined by

T(Wc) = / Z (WC X nc) d{
r
We eliminate « from (12)3 and replace it in (12);. Then, the fourth term of this equation reads

o / Z(we x no) dZ = (Twe))'a = g (T(we)) N™'T(Ac) + (T(we)) '@o — 1y (T(We)) N~ T(Ac o).
r
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Moreover, we introduce the operator R : H(;m (ry— H(}/Z (I'") given by

/ H(RE)ds = / Ende Wi e HYA(I), VE e Hy VA, (14)
r r

It is straightforward to show, from Lemma 4.1(ii) and the Lax-Milgram lemma, that R is well defined and bounded.
Therefore, the second equation of (12) may be equivalently written

1
Y= —uglﬁ (EcurlAc -n¢ + D' (curl Ac -nc)> .

Consequently, (12) admits the following equivalent reduced form:
Find Ac € [?(0, T; V) NHY (0, T; (I?(£2¢))?) such that
d
1@ (Ac(t), we), + A(Ac(t), we) + B(Ac(t), we) = (J(t), We)o, o +8&(We) (15)
for allwe € VY, with
Ac(0) =Acpo inS2c,

where

H,G), = / oH -Gdx VH,G € (I*(£20))°,
2c
APV XV >R, A(H, G) ::f pc'curlH - curl G dx + ,ug]/ S(curlH - no)curl G - ncde,
2c r

B:VxV—>R  BHG) = Mo_lf K (G) R(K (H)) d¢ + g (T(6)) N~'T(H),
r

X:V—Hy '

), K(H) = %curlH -nc + D'(curlH - ne),
g: V>R, gH) = puy (TH) N TAco) — (T(H)) .

Notice that 4 and 8B are bounded, symmetric and non-negative definite bilinear forms.

Remark 4.1. The norm || - [|o,. is equivalent to || - ||, and, therefore, || - ||y is equivalent to || - [l + [|curl (-)[|o, -

4.1. Existence and uniqueness
As shown in the following lemma, problem (15) is well posed.

Lemma 4.3. There exists a unique solution to (15) and

2 2 2 2 2
1AClE 0.9 + 1Az g 1oy = € {0z + [Acoly + o] (16)
for some constant C > 0, independent of the problem data J, Ac o and o.

Proof. The classical theory for parabolic problems (see, for instance, [11]) allows us to show that problem (15) has a unique
solution Ac € [*(0, T; V) NH'(0, T; 'V’). Moreover, since Ac,o € V and the right hand side of (15) is the sum of two terms,
J(t), we)o,o, with] € L*(0,T; (L*(£2¢))*) and g(wc) with g € V' independent of ¢, it is straightforward to show that
actually 3,Ac € L?(0, T; (L*(£2¢))*) and the estimate (16) holds true (in fact, we may proceed as in the proof of Theorem
7.1.5 from [15] for the first term, and use Theorem A.1 from [16] for the second one). O

Remark 4.2. Problems (12) and (15) are actually equivalent. In fact, for Ac being a solution of (15), if we define ¢ :=
—Mglﬂ(K(Ac)) and & := o + MglN‘](T(AC) — T(Ac,0)), then (Ac, ¥, o) is a solution of (12). Moreover this problem
has a unique solution, because A¢ has to be the unique solution of (15) and ¥ and « are determined via (12), and (12)s,
respectively.

Problems (9) and (12) are also equivalent. In fact, we derived (12) from (9). In what follows, we show the converse
implication:

Theorem 4.3. Let (Ac, ¥, a) be the solution to problem (12). Then, there exists ¥, € L*(0,T; W'(£2;)) and a function
¢ : [0, T] — Rsuch that W = | — c and (Ac, ¥, ) satisfies (9).
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Proof. Testing (12); with we € (C3°(£2¢))* we obtain
00,Ac + curl (uc'curlAc) =] in$2¢ (17)
a.e.in [0, T]. Then, testing (12), with n € H'/?(I") and using Lemma 4.2 we have
%curlAc -ne + D' (curlAc - n¢) + poH(Y) =0 onT. (18)

Now, let y; € W1(£2)) be the solution of the following problem:
Alﬂ] =0 in 91,

19
Mthﬂ, ‘N = —Clll'lAC -nc onl'. ( )
Since v; € W1(£2)) is a harmonic function, Theorem 4.1 ensures that
1 1
~¥ilr — DWlr) + —3(curlAc - nc) =0,

1
icurlAc -nc + D' (curlA¢ - n¢) + poH (Y| r) = 0.

Subtracting (18) from (20),, we obtain #(yy — v;) = 0 on I'. Therefore, we conclude from Theorem 4.2 that v, (t) =
Y (t) 4+ c(t) on I, where, for each t € [0, T], c(t) is a constant. As a consequence, from (20); we have

1 1 1 1
—=Ylr —OWlr) + —4(curlAc -nc) = —-(Yilr —¢) — DWWyl — ) + —3S(curlAc - nc) = —y|r.
2 Mo 2 Ho

Now, replacing this equality in (12);, using (13) and testing with we € H(curl; §2¢), we obtain
(nc'eurlAc) x nc + (Vi + Z'a) x ;=0 onT.

Let us emphasize that the first term on the left hand side is well defined in H~'/2(I"), since /LglcurlAC € H(curl; 2¢),
which in turn follows because of (17) and the facts that J € L?(0, T; (L>(£2¢))?) and the solution to problem (12) satisfies
9:Ac € [2(0, T; (I2(£2¢))?). Finally (9), and (9); follow from (12); and the initial condition of problem (12), respectively. O

5. Fully-discrete scheme

Let {7,(£2¢)}n be a regular family of tetrahedral meshes of §2¢. As usual, h stands for the largest diameter of the
tetrahedra K in 7;,($2¢). Furthermore, we consider the corresponding family of triangulations induced on I", {7, (I")},. Let
NeN,At:=T/Nandt, =nAt,n=0,...,N.

We define a fully-discrete version of (12) by means of Nédélec finite elements. The local representation on K of the
lowest-order Nédélec finite element is given by

N(EK)={axx+b:abeR’ xcKk}.
The corresponding global space V), is the space of vector fields that are locally in & (K) for all K in £2¢ and globally in
VY = H(curl; 2¢). Moreover, we define

£4(I) = {n e H2(r) < e € By VE € T

which approximates the space H(}/ Z(F), where P, (F) is the set of polynomial functions defined in F of degree not greater
than k.

When §2¢ is not simply connected, problem (12) involves the matrices N and Z defined by (7) and (8), respectively. To
compute these matrices we also need to approximate numerically the basis {Vzk},ﬁ:1 of the harmonic Neumann vector-fields
space H($2)). A similar need arose in [7], where the authors proposed a coupled FEM-BEM method to compute the entries
of a matrix Nj, approximating N. For the sake of completeness, in what follows, we briefly describe the method introduced
in [7] to approximate N and the corresponding error estimate proved in this reference.

Consider a convex polyhedron £2 such that 2 U (Ui:l fim> C £2.Set

L
Q° ::Q\{QCU(UEZXt>}, Q=02\L2c and A:=03R.
k=1

From (4), px == $Zk|(fl» k=1, ..., L, belong to the closed subspace of H(div; @)
Y:={qe (*(@)*: divg=0in@andq-n =0on I}
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and satisfies the variational equation
[peatx— [ a-mec [qonadc vaey,
Q@ b A

where n correspond to the unit normal vector on A outer to @. Furthermore, as z; is harmonic in R? \ €2, the last equation
may be coupled with boundary integral equations relating z, and its normal derivative p, -n on A. This leads to the following
weak formulation (see [17] for more details).

Find p, € Y and ¢, € H/?(A)/R such that

1
/pk-qu+f 5(pk-n)q-nd§—f |:*¢l<+i)(¢k)i|‘I'nd§:/ q-nde,
Q A A 2 Efxt

(21)
1

/ [5X+§D(X)]Pk'"dé“+/ H()x d¢ =0,

A A

for all functions q € Y and x € H'/?(A)/R. The variable ¢ represents (up to and additive constant) the trace of z; on A.
Now, consider a regular family of triangulations {77,(@)}, of @ by tetrahedra K of diameter no greater than h > 0. Assume
that, for each h, the set 7, (£2¢) U 7,(Q) is a triangulation of £2. This implies that the triangulation induced by 7;(@) on I" is

identical to 7,(I"). It can be assumed, without loss of generality, that, for each mesh, the cutting surfaces X*" are union of

faces of tetrahedra in 7,(@). Finally, denote by 7;(A) the triangulation induced by 7;(Q) on A.
Consider a conforming discretization of H(div; @):

RTh(Q) = {q € Hdiv; @) : qlx € RT (K) VK € Th(Q)},

RT(K) = {ax +b:acR beR,xckK } being the lowest-order Raviart-Thomas element. The following is a convenient
way of discretizing problem (21) (for more details, see [7]):
Find pxy € RTNQ), drn € Pp/R and By € M), such that

1 .
/Pkl1'qu+/’3(th'”)¢1'”€1§—/ [¢kh+50(¢kh)]¢1'"dé'+/ﬂkhlequ=/ q-ndg,
@ A al2 Q Zext

1
/ |:2X + i)(x)] Pin - ndg +/ $(curl . gyp)curl . x d¢ =0, (22)
A A

f divpkhv dx = 0,
Q

for all functions q € JQTE(@), X € ®p/Rand v € M, where
RTp(Q) = {q € RTh(Q) : gl -m =0},
@y = {n € C°(A) : nlp € Py(F) VF € Ta(A)},
My = {v € [2(Q) : v|x € Po(K) VK € Th(Q)}.

Moreover, curl ; denotes the surface curl on A (see, for instance, [1, Section A.1]).
We know from [17] that (22) is a well posed problem. Once the functions py,, 1 < k < L, are computed, the matrix N can
be approximated by

N, = (/ DPin - 1 d{) . (23)
Ejext

1<k,j<L

Note that this matrix is symmetric and positive definite. Error estimates for the approximation N, of N has been obtained
in [7]. With this end, an additional regularity result has been also proved therein. In the sequel, we denote by sq € (1/2, 1)
the exponent of maximal regularity in @ of the solution of the Laplace operator with L% (@) right-hand side and homogeneous
Neumann boundary data.

Theorem 5.1. If (py, ¢r) is the solution to problem (21), k = 1, ..., L, then p, € (H*(Q))3 foralls € (1/2, se).
Proof. See [7, Theorem 7.1]. O

Finally we recall the error estimates obtained in [7]. Here and thereafter C denotes a generic positive constant not
necessarily the same at each occurrence, but always independent of the mesh size h and the time step At.

Theorem 5.2. Problems (21) and (22) are well posed and

e — Prnllo,e + bk — Punlli/zcaym < C° {lIPlls.q0 + 1dkllss/2,a}
holds, with s as in Theorem 5.1.
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Proof. See [7, Theorem 7.2]. O

Theorem 5.3. There exists hg > 0 such that Ny, is invertible for all h € (0, hy). Moreover, the error estimate

IN— Nyl + [N"" =N, | < cr’ p;kaé{npkns,@ + lpullss/2,4}

holds, with s as in Theorem 5.1.
Proof. See [7, Corollary 7.3]. O

Notice that ||¢x|ls+1/2, 4 is clearly bounded, since ¢y is the trace on A of the solution z, to problem (4).

To compute an approximation of the entries of Z, we need to resort to a different strategy. In fact, the previous methods
yields good approximation of py|r - n; = Vzi|r - n;, but not of Vzi| x n; (which are the terms defining the entries of Z). A
similar situation happened in [7], too. However, in this case, we follow an alternative approach that we think is simpler.

It is easy to show that the solution of (4) satisfies the following variational formulation:

Findz, € H'(@ \ ¥&)/R such that [2]lsex = 1and

/ Vz - Vo dx = / pe-npde Vo € HY(Q)/R. (24)
@\Eext A

k

We introduce
Li(@) = {0 € H'(Q) : O]k € P1(K) VK € T(@)},
L@\ Z = {0 e H'(@\ ) : 0l € P1(K) VK € Th(@)}

and consider the following discrete version of problem (24):
Find zj, € £,(@ \ Z£*)/R such that [[Zkh]]xlext = 1and

/ Vzi - Vo dx = / P -modl Vo € Ly(Q)/R. (25)
@\ A

Lemma 5.1. Let z, and zy;, be the solutions to problems (24) and (25), respectively. Then
IVze — Vziullo,e < CH,
with s as in Theorem 5.1.
Proof. LetZ, € (@ \ ) be such that Zllgee = 1. Let Z] be the Lagrange intepolant of Z in @ \ X¢*. Notice that

[Zi] zee = 1, too0. We write
k

-~ p— AI p—
Zy = Zx + zZ and Zkh = Z; + Zyn,

withZ; € H'(Q)/R and Zy; € £,(Q)/R. Substituting these expressions in problems (24) and (25), respectively, and using
the first Strang lemma (see, for instance, [18, Theorem 4.4.1]), we obtain

IVZk = VZialloe = C _inf  [[VZi = Vollp o

peLp(Q)/R
‘_ f@\):,fx‘ V(@ _/Z\Ii) -Vodx + fA(Pk — Pn) -n@d¢
+C sup .
PeLH(@)/R IVello.q

The second term on the right-hand side above is bounded as follows:

—/ V(Z\k—’z\lk)‘VQDdx‘i‘/(l’k_th)'"‘Pdf
Q\Zgx A

< | V2 = V2,5 gy e 190ll0.0 + C 1P = Pisllo 9 ¢ll0a
where we have used that div p; = divpy, = 0in @ and the fact that | V(-)||o.¢ is equivalent to || - ||;. on H'(Q)/R.
On the other hand, from Theorem 5.1 we know that VZ;|q € (H*(Q))>. Hence,

inf  ||VZ,—V < vz, — vZ! < Ch* ||VzZ )
Mh(a)/RH k= Voloe < | Vzk tloe = T IIVZilsq

Thus, using the last two estimates and Theorem 5.2, we obtain

IV2c = VZallo.a < Ch* { V2L o501 + Pkl + 9120 + [ VZkla )
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Therefore, as a consequence of Theorem 5.1,
1Vze = Vzinllo.a < CH°
and we conclude the proof. O
Now, we are in a position to introduce the following full discretization of problem (12):

Forn=1,...,N,find (A%, ¥, &) € YV, x Lp(I") x R such that

/ 00A}, - we dx + / nc'curl AY, - curl we dx
2c 2c

1 1
+ f [—fw,': — DY) + —48(curl A%, - ”c)] curl we - nc d¢ + (o) Tp(we) = [ J(ta) - we dx,
r 2 Mo 2c (26)

/r [%curlAZh -nc + D' (curl A, - nc) + uo,}(’(w,’])] nd¢ =0,
woB'Nwath — B'TH(AZ,) = oBNuato — B Th(Ac,0),

for all (we, n, B) € Vi x L,(I") x RE, with
A%, = Ao in 2,

whereAcp,o € V) isanapproximation of Ac o, 5A2h = (A%, —Agh’l)/At and the linear and continuous operator Ty, : ¥ — R’
is defined by

Th(w) == / Z, (w x nc) d¢, withZ, == [%zlh %th]t.
r

To prove the existence and uniqueness of solution to (26), first we proceed as in the continuous case and obtain a discrete

form of problem (15). Let R}, : HJ”Z(F) — Ly(I") be the operator defined by

f H(Rp(E))nd¢ = f gnd; Vi e L£u(I), V& € Hy /2(I).
r r

Note that this is a Galerkin discretization of the elliptic problem (14). Consequently, using the Galerkin orthogonality and
the continuity and ellipticity of # (cf. Lemma 4.1(ii)), we have the following Cea estimate:

IRE — Rk ll1jp.r < C inf | RE —nllypp  VE € Hy (D). (27)
neLy(I")
Now, using again that ;' = —/Lglth (JC (Azh)) (cf. (26),) we obtain the following equivalent formulation of (26):

Forn=1,...,N,find A}, € V), such that

@Agh, WC)U + A(Agh, WC) + Bh(Agha WC) = (’(tn)a WC)()..QC +gh(WC) (28)
for allwe € VY, with
Agh = ACh.O in .Qc,

where
By Vhx V>R, B(H,G) =y’ / K (G) Ry (K (H)) d¢ + po(T(G))'N; " Th(H),
r

g ViR, gy(H) = py (Th(H))'N; ' Th(Ac0) — (Th(H)) ao.

Hence, at each iteration, we have to find Af;, € V), such that

(A%, we), + At [AAL, we) + Bu(AG, we) | = AL [((tn), We)o o + 8h(We)] + (A%, " we), - (29)
Since B and + are non-negative definite, the existence and uniqueness of A%, n = 1, ..., N, is immediate.
Remark 5.1. It is easy to prove that if Y = —uy ' Ru(K (A%,)) as defined above and & = ag + uy 'N; ' (Th(AY) —

Tr(Ac,0)), then (AZ,, ¥y, o) is a solution of (26). This solution is unique, because # is elliptic in £,(I") C H(}/z (I') and Ny,

is a symmetric and positive definite matrix.
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5.1. Matrix form
To have it clear the kind of problem we have to solve in practice, we will write the fully discrete scheme (26) in matrix

form. Let {¢1, ey ¢]} and {Aq, ..., Ay} be bases of Y}, and £, (I"), respectively, and {e;, ..., e;} the canonical basis of RL.
We write the solution (A%, ¥, &), n =1, ..., N, to problem (26), in these bases:

J M L
Ac"fhzzaf% szbf?»;, ocZch]”ej, n=1,...,N.
= = =

Analogously, we write

J L
0 0
Acho = E aj¢j and «p = E e
=1 =1

We set a" = (a)1<i<y, €" = ([)1<i<t, Withn = 0,...,N,and b" = (b])1<ij<m, withn = 1,..., N. We also set
F' := (F")1<ij,n=1,...N, where

F':= J(tn) - ¢; dx.
¢

We introduce the matrices W := (Wjj)1<ij<j, D := (Djj)1<i<j 1<j<m> H := (Hjj))1<ij<m, R := Ry 1<ij<, Q :== (Qj)1<i<y1<j<t
and S .= (51‘]‘)151,1ﬂ, where

1
Wij = / G¢i . ¢j dx, Dij = / |:—2)\j — i)()\])] curl ¢i +N¢c dé’, H,‘j = / J‘f()\.i)}\.j d{,
2c r r

Rj == / e curl g, - curl ; dx, Q= e}f Zy (¢ x nc) dg, Sy = / S(curl ¢, - nc)curl §; - nc dg.
2c r r

Hence, we write problem (26) in block matrix form as follows:

W+ At (R+S) AtD AtQ | ra” AtF'+Wa"!
AtD' —AtH 0] b | = 0]
AtQ' 0  —AtNy | Le At (Q1a® — Nuc®)
As already mentioned in Remark 5.1, problem (26) has a unique solution, so that the matrix on the left hand side is non
singular.
Matrices Z,, and Ny, are both readily obtained once the solution py;, to problem (22) is computed. In what follows we write
down the matrix form of this problem. Let {uq, ..., w4}, {vq, ..., vg}and {wy, ..., wc} be bases of{R‘J‘g((Q), @, /R and Mp,

respectively. Then, we write the solution of problem (22) in these bases as follows:

A B c
Prn = Z Pilly, P = Z Yivj and By = Z Mg Wj.-
=

= =
Next, we define @, = (ki) 1<i<a, ¥ = (Vi) 1<i<g> M = (M) 1<i=c and G := (G;)1<j<a, Where

G; Z:/ u,»-nkd;'.
Z’fxt

Moreover, we introduce the matrices U = (Uy)i<ij<a, V = (Vi)1<ij<a, K = (Kj)1<i<a,1<j<s, E = (Ejj)1<i<a,1<j<c and
T := (Tj)1<ij<a, Where

U ::/u,--u,-dx, Vij ::/J(ui-n)ujwnd{,
Q A

1
K,‘j = —A |:2 j+ SD(UJ‘):| u; - ﬂdé‘, Eij = /{:‘l wjdivui dx, T,‘j = /A/X (curl,vj) curlfvi dC

Then, problem (22) reads

U+V K E]|Tfe, G
KK -T O |:yk] = [0] .
E' 0 OfLn o

It is proved in [17] that the matrix of the left hand side above is invertible. Finally, for a discussion on the efficient
computation of all the singular integrals appearing above, we refer to [19].

As a conclusion, we have that problem (26) is actually solvable. Although it involves the solution of the auxiliary problem
(22), this can be made off-line since it does not depend on time. Once it is solved, the time domain problem (26) involves only
a vector field on the conducting domain and a scalar field on its boundary. Therefore, this approach allows to minimizing
the number of degrees of freedom needed in the discretization.
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6. Error estimates

For any s > 0, we consider the space
He(curl; 2¢) = {v € (H(2c))* : curlv € (H(2c))’}
endowed with the norm ||v||f,5(cuﬂ; o0 = ||v||52’ o T ||curlv||§, oIt is well known that the Nédélec interpolation operator

I,‘.:VV € V) is well defined for any v € H*(curl; 2¢), with s > 1/2 (see, for instance, Lemma 4.7 of [9]). Moreover, for
1/2 < s < 1, the following interpolation error estimate holds true (see Proposition 5.6 of [20]):

[v—1v], < Ch° IVInsiu.a YV € H(curl; £2¢). (30)
To simplify the notation, we introduce for any w € V
Gr(w) = (R — Rp) KW)l1/2.1 -

Lemma 6.1. Let (Ac, ¥, o) and (Af,, ¥y, ;) be the solutions to problems (12) and (26), respectively, the latter with initial
data A, := I;Y(Ac,). Assume that Ac € C'([0, T V) N CO([0, T]; H(curl; £2¢)), with s > 1/2. Moreover, let p" =
Ac(ty) — I[YAc(ty), 8" == LY Ac(ty) — A%, and T" := 0Ac(t,) — 9:Ac(tn). Then, there exists C > 0, independent of h and At,
such that

n n
o 1815+ o S L = cfac S A+ 11+ s

1=ksn =1 =1

+ (1Al + 10Ac(@)1) (1maxL 192 - Vznl3 o

. ||2)} + (1Acol’ + leof)

~ ~ _ 1112
x <]rr511aﬁ)i IVzi = Vzullg o + [N"" = N || )

+ max [ ot + [max 9»h(AC(tk))2}-

0<k<n

Proof. It is straightforward to show that
(38, v), + AG V) + B v) = — (30", ), + (75, v), — A", v) — Bu(p*, v)
+ Bu(Ac(ty), v) — B(Ac(te), v) +8(v) —gn(v) Vv € Vp, (31)

as well as the following inequalities:

1 -
@88, = (15" - 1#']2).

A8 = p7" eunt 87,

1=<i<

+C [eurt 8|, , §n(Ac(t)),

BAc(t). 8) — By(Ac(t). 8 < ClAtlly [, (mgg 192 = Vznloa + [N =N, ||)

@) — &) = C (JAco], + leol) [8°] (1“““%3 1V2 = Vaulloa + [N =N, “) '

Constant 11 on the second inequality is an upper bound in £2¢ of the largest eigenvalue of u.. Hence, choosing v = 8 in
(31) and using that B), is non-negative, the Cauchy-Schwarz inequality, Remark 4.1 and Young’s inequality lead us to the
following estimate:

At
S —

2 1112 _ 2
1805 = 187G + atu™ feurts|, o = =

|80 + ¢ Af[HaP"Hi 1P+ 1R + gnacwor?
+ Aol ({Imi 1V2i = Vaulig.q + [N = N !\2)

+ (HAc,oHi, + |0l0|2> <1H<1?<>§ IVzi — Vzi |l o + [N7" — N, ! \|2)] (32)
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Then, summing over k, using the discrete Gronwall’s lemma (see, for instance, [21, Lemma 1.4.2]) and taking into account
that 8° = 0, we obtain

n
[8"]; = C{Af Z[”ap" [z 12415 + 165 + gnace?
k=1
+ I1Ac ol ({nmi 1V2 = Vznlg o + [N = N Hzﬂ

+ (”Ac,o ||'2|7 + Iaolz) <1rr<1:3<xL 1Vz; — %Zih”(z),(,‘z + N7 =N ”2>}

forn =1, ..., N.Inserting the last inequality in (32) and summing over k we have the estimate

51+ e Y Jeumtd o, < cfae Y| 136417+ 212+ [T+ gacacte?

k=1 k=1

ad ad — —1)2
+ IAct 1% (pwg IVzi = Vzill o + [N7" = N | )]

+ (1coll + 1eof) (max 192~ Fanlia + I ) . &

Let us now take v = 98" in (31). We have
|38 + A8, 58°) + B8, 38Y) = — (3p*. 38Y), + (1. 58), + A@p", 81 + By(@p", 8
+B(7*, 81 — Bu(r*, 8 + BOA(1), 87

_ _ 1
— Br(3Ac(ty), 8 + g (08") — g,(38") — ~ =7, (34)

where y; = A(p*, 8) + B (0¥, 8) — Br(Ac (1), 8) + B(Ac(ty). 8.
On the other hand, since 4 is non-negative definite and symmetric, it is easy to check that

- 1
A8, 08 = —— [A(8", 8 — AT, 8]
2At
and similarly for 8B;. Using these inequalities in (34) together with Cauchy-Schwarz inequality, and, then, summing over k
and recalling that B, is non-negative, we deduce that

1SN =2 1 _
L3I+ g e L
n

n
< [Hglok”z + ”Tk”i] + Z [M(gpk’ ak—l)’ + ‘58;,(5/)", Sk—l)’ + |£(tk’ 81y — By (e, Sk—l)’
k=1 k=1

1 1
+ | B@AC(t), 81 — Br(@BAc(t), 8 H|] + ~ lg(8") — g (8] + ~ Il (35)

The following bounds are easy to obtain from Young’s inequality and Remark 4.1:

n

n n
Z |A@p", 8| < Z | curt 8 ||;QC +C Z |curl 3 p* H;Qc ,

k=1 k=1 k=1

n n n n
D 1Br@eh 8] < D Jeur 81 o+ 8+ 3 6
k=1 k=1 k=1 k=1
n n n n
RZ |B(", 8 1) — By(z4, 8| < ’Z |curl 8! Héﬂc + ’Z (Ea ”j +C kZ K2l
=1 k=1 k=1 =1

n n n n
> 1B@AC(), 87 — Ba@Ac(t), 8] < Y Jeurd 8o L+ > [T +C Y ga@Ac(t)?
k=1 k=1

k=1 k=1

n

~ ~ _ _ 2

+C Y laAct I3 (;naxl IVzi = Vzinllg o + [N7" =N ) :
k=1 -
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and
2 2 -t S 2 -1 —112
56 — 2@ = € (JAcol + tao?) (max 192~ Faul o+ [N - ;[

1
gt leurt &G o+ 875

1 ~ ~
yal = gy ewntd™ g o+ 877 + [Up" |5 + I1AcE 1% (1121;13 1Vzi — Vznl2 o + [N7' = Ny ”2>] :
Substituting all these inequalities in (35), using (33) and Remark 4.1, we obtain

n
At Z H@S"Hi + | curl 8"

k=1

< clard| 130 + 115 + satancaceon + |,
k=1

ls
0,2¢

+ IAc (@)1 (1maxl 1V2i = Vaznlg o + [N7" = N, ||2>
+ 13Ac(@1% (1ma>§ 1V2 = Vznl o + [N~ =N, Hz)]
+ (lacoly + leol?) (]maﬁ 192 = Vzulig o + [N = N ||2> + 1ol + %(Ac(fn))z}-

Combining this inequality with (33) and Remark 4.1, we end the proof. O

Lemma 6.2. Let (Ac, ¥, o) be the solution of (12). If we assume that Ac € H'(0, T; H*(curl; 2¢)), 1/2 < s < sq, then
W e HY(0, T; H*tV/2(I")) and the following estimates hold true:

inf t) — n < Chs curl Ac(t . 36
7761 (D) ||W( ) ||1/2,1 = ” C( )”S,QC ( )
nenhl( )” Y () —nllyor < (19 (curl Ac () l5 o, (37)

Proof. Let (Ac, ¥, @) be the unique solution of (12). Let v, be as in Theorem 4.3. As shown in that theorem, ¥ (t) =
Y (t) 4+ c(t) withc(t) e Randt € [0, T]. Moreover, a.e. in [0, T], ¥;|¢ is the solution to

—AWI =0 ina@,

Y
MOTH, = —curlAc -nc onrl, (38)
Yila € CF(A).

Since A¢c € C°([0, T]; H’(curl ; £2¢)) with 1/2 < s < s and A is the boundary of a convex polyhedron, by applying classical
results for the Laplace equation (see [22]) we have that y; € H**1(Q) and

1¥1lls41,0 < ClleurlAc - nclls_q 5, < C llcurl Aclls g - (39)
Since s > 1/2, the Lagrange interpolant w,’ of ¢ is well defined. Moreover, since v, and i only differ in a constant,
(=) lr=y -y,

where ! € £,(I") denotes the 2D Lagrange surface interpolant on I". Therefore, because of the trace theorem, standard
estimates for the 3D Lagrange interpolant and (39), we have

v =" = Clon =], o < 0 Ills0.q < CF llcurl Acl; g -

Thus, we conclude (36).

To prove (37), we recall that v; is the solution to problem (19) (cf. the proof of Theorem 4.3). Then, since Ac €
H'(0, T; H*(curl ; £2¢)), differentiating in time each equation in (19), we obtain an estimate analogous to (39) for 9.
On the other hand, since ¥ (t) = ¥ (t) 4 c(t) with

1
c(t) = W/le(t)dﬁ,

we have that 9, (t) = 9, (t) — c’(t). Hence, the rest of the proof follows identically as above. O
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Now we are in a position to conclude the following asymptotic error estimate for the fully discrete scheme.

Theorem 6.1. Let (Ac, ¥, ) and (A}, ¥, o), n = 1,..., N, be the solutions to problem (12) and (26), respectively. Let us
assume that Ac € H'(0, T; H*(curl ; 2¢)) NH?(0, T; H(curl ; 2¢)) withs € (1/2, sq). Then, there exists hy > 0 such that, for
all h € (0, hy), the following estimate holds:

N
max Ac(t) — AL |5 + At Y [3Acw) — Ay,

n=1

T
< Ch* { / 10:Ac (O 1l75s curt 20y dt + max |9, (curl Ac (t2))I2 o
0 1<n=<N

2 2 v 2 2
+ max (1Ac(e) 1+ 10Ac)1R) (max 192012 + 12,
2 2 T |12 2
+ (”Ac,o ”'\7 + |eol ) <1n;’2(l_ IVzili§ o + ||Zk||s+1/2,A>

T
+ max ||Ac(tn)||i,5(mﬂ;gc)} + (A1)? / (100 Ac(D)I3 dt
<n< 0

= [0 + 1] (1A 0 s cunt o + 101
where z; is the solution of problem (4),k =1, ..., L

Proof. A Taylor expansion shows that

_ 1 173
BAC(t) = HAt) + — / (tir — £) BAc(t) dt.
At tk—1

Consequently,

n T
S < At/ 19.Ac() | dt.
k=1 0

Moreover, we have from (30),

n . 1 n [
Sl < 5 X [l —iacol o <
k=1 k=1 Y tk—1

We recall that ¢ (t) = —ME]R(K(Ac(t))) (cf. Remark 4.2). It follows from (27) that

Ch25
At

T
/ ”atAC(t)“%IS(curl;.Qc) dt.
0

Gr(Ac(tn)) < EF) Iy (tn) — 77”%/11* s

in
neLp
QAc(t)) < inf (19w (t) — %, -
Gr(0:Ac(tn)) e [0 (£0) 77||1/2,r
Thus, using Lemma 6.2, we obtain

Gn(Ac(ta)) < Ch* [lcurl Ac (o) |5 o, »

S (40)
Gn(tAc(tn)) < CI° ||0; (curl Ac () |ls, o -

Hence, the results follows by writing Ac(t;) — A%, = 8" + p" and using Lemmas 6.1 and 5.1, Theorem 5.3 and (30). O

Remark 6.1. Let us recall that ¥ (t,) = —MEIR(JC(AC(tn))) and ¥ = —Mgl,ﬂh(x(Agh)). Therefore, using (40) and the
uniform boundedness of Ry, with respect to h, we obtain

v @) = vl o r < 9nAc) + | RR(K Ac(ta) = AG) |, 5. < C {1 lleurl Ac(t) [ o + |Ac(tn) — Ay [} -

Then, using Lemma 6.2 and Theorem 6.1, under the assumptions of the latter, we conclude that

N
ACY v =il < C I + (A0,

n=1
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Moreover under the same assumptions, since «(t,;) = g — ,LL(TN*1 (T(Ac(ta) — Ac,o)) and af = otg — /LEIN;1 (8Th(AY, —
Ac,)), from Theorem 5.3, Lemma 5.1 and Theorem 6.1, we also conclude that

max |e(ty) — of|” < C[h* + (a0)?].

1<n<N
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