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a b s t r a c t

The three-dimensional eddy current time-dependent problem is considered.We formulate
it in terms of two variables, one lying only on the conducting domain and the other on
its boundary. We combine finite elements (FEM) and boundary elements (BEM) to obtain
a FEM–BEM coupled variational formulation. We establish the existence and uniqueness
of the solution in the continuous and the fully discrete case. Finally, we investigate the
convergence order of the fully discrete scheme.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The eddy current model is commonly used inmany problems in sciences and industry, for example, in induction heating,
electromagnetic braking, electric generation, etc. An overview of the mathematical analysis of the eddy current model and
its numerical solution in harmonic regime can be found in the recent book [1], which provides a large list of references on
this subject.

In this paper, we deal with the numerical solution of the time-dependent eddy current problem, which is naturally
formulated in the whole space, with adequate decay conditions at infinity. The literature on the numerical analysis of
time-dependent problems of this kind is more scarce. Among the few papers devoted to this subject, both in bounded
and unbounded domains, by using finite element (FEM), boundary element (BEM) or coupled FEM–BEM methods, we can
mention [2–8]. These articles differ from each other by the physical quantities chosen for the formulation (magnetic field,
electric field or different kind of potentials) and by the way of treating the decay condition to reduce the problem to a
bounded domain.

We consider a FEM–BEM method to compute the eddy currents generated in a three-dimensional conductor ΩC by a
time-dependent source current. The problem is reformulated by expressing the magnetic and the electric fields in terms
of convenient new variables. We use FEM only on the conducting domainΩC , the integral conditions being imposed on its
boundary ∂ΩC . Therefore, the domain where FEM is used results as small as possible, leading to a more efficient method
as compared, for instance, with [2,3], where similar formulations but involving FEM in part of the dielectric domain are
considered. Another important feature of this approach is that it preserves the coercivity of the original problem. Thepurpose
of this paper is to analyze the convergence of a fully discrete FEM–BEM scheme for this formulation and to investigate the
convergence order.

The paper is organized as follows. In Section 2 we give some basic definitions. In Section 3 we introduce the model
problem and the assumptions over the data. Then, we introduce a new variable, the time-primitive of the electric field,
which plays the role of a vector potential for the magnetic field. In Section 4 we introduce the integral operators and recall
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their properties. Then, we derive the FEM–BEM formulation and show the existence and uniqueness of the solution to
the problem. In Section 5, we introduce a space-discretization of the problem based on Nédélec edge elements in ΩC and
piecewise linear continuous elements for the variable on ∂ΩC arising from the integral equations. Then, a backward Euler
method is employed for the time discretization. Finally, the results presented in Section 6 prove that the proposed fully
discrete scheme is convergent with optimal order.

2. Preliminaries

In the sequel we deal with real valued functions. Boldface letters will denote vectors (in Rn) or vector-valued functions,
as well as matrices. The symbol | · | will represent the Euclidean norm for n-dimensional vectors:

|v|2 = v · v :=

n
i=1

v2i .

In all the paper the conductor ΩC ⊂ R3 is a bounded connected polyhedron, with a Lipschitz-continuous connected
boundary Γ := ∂ΩC , so that the insulatorΩI := R3

\ΩC is also connected.
We remark that, under the above conditions, ΩC and ΩI have the same number of non-bounding cycles L; namely,

there exist L disjoint connected open ‘‘cutting’’ surfaces Σ int
j ⊂ ΩC (respectively Σext

j ⊂ ΩI ), j = 1, . . . , L, such thatΩC := ΩC \
L

j=1Σ
int
j (respectively ΩI := ΩI \

L
j=1Σ

ext
j ) is simply connected. The boundary curves ∂Σ int

j and ∂Σext
j lie

on Γ .
We denote by

(f , g)0,Ω∗
:=


Ω∗

fg dx

the inner product in L2(Ω∗) and ∥ · ∥0,Ω∗
the corresponding norm with ∗ ∈ {C, I}. As usual, ∥ · ∥s,ΩC stands for the norm of

the Hilbertian Sobolev spaces Hs(ΩC ) for all s ∈ R. We recall that, for s ∈ (0, 1), the space Hs(Γ ) has an intrinsic definition
(by localization) on the Lipschitz surface Γ due to their invariance under Lipschitz coordinate transformations. We denote
by ∥ · ∥s,Γ the norm in Hs(Γ ). Moreover, H−s(Γ ) denotes the corresponding dual space.

In this paper, the spaces that are product of function spaces are endowed with the natural product norms and duality
pairings without changing the notations; it will be clear from the context when scalar or vector functions are used.

Finally, we introduce the functional spaces

H(curl ;ΩC ) :=

v ∈ (L2(ΩC ))

3
: curl v ∈ (L2(ΩC ))

3 ,
H(div;ΩC ) :=


v ∈ (L2(ΩC ))

3
: div v ∈ L2(ΩC )


,

endowed with their natural norms ∥v∥2
H(curl ;ΩC )

:= ∥v∥2
0,ΩC

+ ∥curl v∥2
0,ΩC

and ∥v∥2
H(div;ΩC )

:= ∥v∥2
0,ΩC

+ ∥div v∥2
0,ΩC

,
respectively.

2.1. Basic spaces for time dependent problems

Since we will deal with a time-dependent problem, we will use spaces of functions defined on a bounded interval [0, T ]

and with values in a separable Hilbert space V whose norm is denoted here by ∥ · ∥V . We use the notation C0([0, T ]; V ) for
the Banach space consisting of all continuous functions f : [0, T ] → V . More generally, for any k ∈ N,Ck([0, T ]; V ) denotes
the subspace of C0([0, T ]; V ) of all functions f with (strong) derivatives djf /dt j in C0([0, T ]; V ) for all j = 1, . . . , k. In the
sequel, we will use indistinctly the notations ∂t f = df /dt to express the derivative with respect to t .

We also consider the space L2(0, T ; V ) of classes of functions f : (0, T ) → V that are Böchner-measurable and such that

∥f ∥2
L2(0,T ;V ) :=

 T

0
∥f (t)∥2

V dt < +∞.

Furthermore, we will use

H1(0, T ; V ) :=

f ∈ L2(0, T ; V ) : ∂t f ∈ L2(0, T ; V )


.

Analogously, we define Hk(0, T ; V ) for all k ∈ N.

3. The model problem

The unit normal vector on Γ that points from ΩC to ΩI (respectively from ΩI to ΩC ) is denoted by nC (respectively
nI = −nC ).
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Let E(x, t) be the electric field and H(x, t) the magnetic field. Given a time-dependent compactly supported current
density J , our aim is to furnish an approximate solution to the problem below:

∂t(µH)+ curl E = 0 in R3
× (0, T ),

curlH − σE = J in R3
× [0, T ],

div(εE) = 0 inΩI × [0, T ],

H(x, t), E(x, t) = O(|x|−1) as |x| → ∞,

H(x, 0) = H0(x), x ∈ R3,

(1)

where the asymptotic behavior (1)4 holds uniformly in [0, T ].
The initial data H0 ∈ (L2(R3))3 has to satisfy div(µH0) = 0 in R3. Coefficients σ,µ and ε are assumed to be symmetric

matrices with bounded entries. The electric conductivity σ is positive definite in ΩC and vanishes in ΩI . The magnetic
permeabilityµ is positive definite in all R3 and satisfiesµ = µ0I inΩI (I being the identitymatrix). The electric permittivity
ε is only needed in the dielectric domain in this formulation and we assume it satisfies ε = ε0I inΩI ; µ0 and ε0 being the
corresponding coefficients in vacuum. Finally, we assume that the source current is supported inΩC . Moreover, we consider
J ∈ L2(0, T ; (L2(ΩC ))

3).
We define HC := H |ΩC and HI := H |ΩI ; analogously, HC,0 := H0|ΩC ,HI,0 := H0|ΩI , EC := E|ΩC , EI := E|ΩI , etc.
We consider the space H(ΩC ), defined as

H(ΩC ) :=

v ∈ (L2(ΩC ))

3
: curl v = 0, div(σv) = 0, σv · nC = 0 on Γ


.

We recall that each cutting surfaceΣ int
j , j = 1, . . . , L, ‘‘cuts’’ an independent non-bounding cycle inΩC . They are connected

orientable Lipschitz surfaces with ∂Σ int
j ⊂ Γ , such that every curl-free vector field in ΩC has a global potential in ΩC . A

basis of H(ΩC ) is given by the functions ωj which are the (L2(ΩC ))
3-extension of ∇pj, where pj ∈ H1(ΩC \ Σ int

j ) is the
solution of the problem

div(σ∇pj) = 0 inΩC \Σ int
j ,

σ∇pj · nC = 0 on Γ \ ∂Σ int
j ,

[[σ∇pj · nint
j ]]

Σ int
j

= 0, j = 1, . . . , L,

[[pj]]Σ int
j

= 1, j = 1, . . . , L,

having denoted by [[·]]Σ int
j

the jump across the surfaceΣ int
j and by nint

j a unit normal vector onΣ int
j .

In order to obtain a suitable formulation for problem (1), we introduce the variable

AC (x, t) := −

 t

0
EC (x, s) ds + AC,0(x) (2)

where AC,0 is a vector potential of µCHC,0; namely, a vector field such that

curlAC,0 = µCHC,0 inΩC , (3)

which is well known to exist because div(µCHC,0) = 0 in ΩC (see, for instance, [9, Lemma 3.5]). In practice, AC,0 can be
found, for instance, by solving the following problem:

curlAC,0 = µCHC,0 inΩC ,

div(σAC,0) = 0 inΩC ,

σAC,0 · nC = 0 on Γ ,
ΩC

σAC,0 · ωj dx = 0, j = 1, . . . , L.

We obtain directly from (2) that EC = −∂tAC inΩC × (0, T ). Moreover, if we apply curl to (2) and use (1)1 and (3), we also
deduce that µCHC = curlAC inΩC × [0, T ] and, replacing the new equalities in (1)2, we have

σ∂tAC + curl (µ−1
C curlAC ) = J inΩC × (0, T ).

We introduce the Beppo Levi space

W 1(ΩI) :=


ϕ ∈ L2loc(ΩI) :

ϕ
1 + |x|2

∈ L2(ΩI),∇ϕ ∈ (L2(ΩI))
3


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and recall that the seminorm ∥∇(·)∥0,ΩI is a norm in W 1(ΩI) equivalent to the natural norm; i.e., there exists a constant
C > 0 such that (see, e.g., [10]): ϕ

1 + |x|2


2

0,ΩI

≤ C ∥∇ϕ∥
2
0,ΩI

∀ϕ ∈ W 1(ΩI).

Moreover we define the harmonic Neumann vector-fields inΩI by

H(ΩI) :=

v ∈ (L2(ΩI))

3
: curl v = 0, div v = 0, v · nI = 0 on Γ


.

Wewill also need a basis of the finite dimensional space H(ΩI). To this end, letΣext
j , j = 1, . . . , L, be the orientable cutting

surfaces inΩI introduced above. We fix a unit normal next
j on eachΣext

j . Then, for each j = 1, . . . , L, consider the following
problem, which admits a unique solution: Find zj ∈ W 1(ΩI \Σext

j ) such that

1zj = 0 inΩI \Σext
j ,

∇zj · nI = 0 on Γ \ ∂Σext
j ,

[[∇zj · next
j ]]

Σext
j

= 0,

[[zj]]Σext
j

= 1.

(4)

The set {∇zj : j = 1, . . . , L}, where ∇zj are the (L2(ΩI))
3-extension of ∇zj, is a basis of H(ΩI) (see, for instance, [7]).

We have the following representation of curl-free vector-fields inΩI (see, e.g., [11, Remark 7]).

Lemma 3.1. There holds
u ∈ (L2(ΩI))

3
: curl u = 0 inΩI


= ∇(W 1(ΩI))⊕ H(ΩI).

Moreover, this is an L2(ΩI)-orthogonal decomposition.

We know from (1)2 that curlHI = 0 inΩI at all time t ∈ [0, T ]. Then, the previous lemma ensures the existence, at each
time t ∈ [0, T ], of a function ψI(t) in W 1(ΩI) and real constants {αj(t)}Lj=1 such that

HI(x, t) = ∇ψI(x, t)+

L
j=1

αj(t)∇zj(x) inΩI × [0, T ]. (5)

Moreover, taking divergence in the Eq. (1)1 and using that µ = µ0I in ΩI , we obtain that ∂t(divHI) = 0 in ΩI × (0, T ).
Hence, since we know that divHI(x, 0) = divHI,0 = 0 in ΩI , we conclude that divHI = 0 in ΩI × [0, T ]. Then, using (5)
and (4)1, we obtain that

1ψI = 0 inΩI × [0, T ].

On the other hand, multiplying (1)1 by ∇zi, using a Green’s formula and the fact that EI × nI = −EC × nC , we obtain
ΩI

∂t(µ0HI) · ∇zi dx = −


Γ

EC × nC · ∇zi dζ , i = 1, . . . , L.

Replacing HI by ∇ψI +
L

j=1 αj∇zj and EC by −∂tAC , using the orthogonality between ∇W 1(ΩI) and H(ΩI) and integrating
by parts inΩI , we obtain

µ0

L
j=1

α′

j(t)

ΩI

∇zj · ∇zi dx =


Γ

∂tAC (t)× nC · ∇zi dζ , i = 1, . . . , L.

Next, integrating in time between 0 and s (0 < s < T ) and recalling that AC (x, 0) = AC,0(x), we obtain

µ0

L
j=1

αj(s)

ΩI

∇zj · ∇zi dx −


Γ

AC (s)× nC · ∇zi dζ = µ0

L
j=1

αj(0)

ΩI

∇zj · ∇zi dx −


Γ

AC,0 × nC · ∇zi dζ , (6)

with i = 1, . . . , L. From (4), Green’s formula yields
ΩI

∇zj · ∇zi dx =


Σext

j

∂zi
∂nj

dζ ,



3088 J. Camaño, R. Rodríguez / Journal of Computational and Applied Mathematics 236 (2012) 3084–3100

for all i, j = 1, . . . , L. Then, we introduce the matrix

N :=


Σext

j

∂zi
∂nj

dζ


1≤i,j≤L

. (7)

It is clear that N is symmetric and positive definite. We also define the matrix Z and the vector α by

Z :=
∇z1 · · · ∇zL

t and α :=

α1 · · · αL

t
. (8)

Thus, we can write Eq. (6) as follows:

µ0Nα −


Γ

Z (AC × nC ) dζ = µ0Nα0 −


Γ

Z

AC,0 × nC


dζ ,

where α0 := α(0) is known.
In conclusion, we are led to the following problem:
Find AC ∈ L2(0, T ;H(curl ;ΩC )) ∩ H1(0, T ; (L2(ΩC ))

3), ψI ∈ L2(0, T ;W 1(ΩI)) and α ∈ L2(0, T ; RL) such that

σ∂tAC + curl (µ−1
C curlAC ) = J inΩC × (0, T ),

µ0Nα −


Γ

Z (AC × nC ) dζ = µ0Nα0 −


Γ

Z

AC,0 × nC


dζ ,

1ψI = 0 inΩI × [0, T ],
µ−1

C curlAC

× nC +


∇ψI + Ztα


× nI = 0 on Γ × [0, T ],

curlAC · nC + µ0∇ψI · nI = 0 on Γ × [0, T ],

AC (x, 0) = AC,0 inΩC .

(9)

Eqs. (9)4 and (9) 5 come from the fact that H ∈ H(curl ; R3) and µH ∈ H(div ; R3) and, hence, HC × nC = −HI × nI and
µCHC · nC = −µ0HI · nI on Γ , respectively.

4. A FEM–BEM coupling variational formulation

Inwhat followswe reduce problem (9) to the bounded domainΩC . To do thiswewill use Costabel’s symmetric FEM–BEM
coupling technique (cf. [12,13]). We introduce on Γ the single and double layer potentials, which are formally defined by

S : H−1/2(Γ ) → H1/2(Γ ), S(ξ)(x) :=


Γ

1
4π |x − y|

ξ(y) dζy,

D : H1/2(Γ ) → H1/2(Γ ), D(η)(x) :=


Γ

x − y
4π |x − y|3

· η(y)nC (y) dζy,

respectively, and the hypersingular operator H : H1/2(Γ ) → H−1/2(Γ ), which is formally defined as the following normal
derivative:

H(η)(x) := −∇x


Γ

x − y
4π |x − y|3

· η(y) nC (y) dζy


· nC (x).

Let us remark that the restrictions to the boundary as well as the normal derivative above have to be understood in a weak
sense; for rigorous definitions see, for instance, [14]. The three operators are linear and bounded. Let D ′

: H−1/2(Γ ) →

H−1/2(Γ ) denote the adjoint operator of D .
In what follows, we recall some basic properties of these operators (see, e.g., [10,14] for the corresponding proofs).

Theorem 4.1. Let ϕ ∈ W 1(ΩI) be a harmonic function. Then, the following identities hold on Γ , where I denotes the identity
operator:

1
2
I − D


(ϕ|Γ )− S


∂ϕ

∂nI


= 0,

−


1
2
I + D ′


∂ϕ

∂nI


+ H (ϕ|Γ ) = 0.

Lemma 4.1. (i) There exists k1 > 0 such that
Γ

S(η)η dζ ≥ k1 ∥η∥2
−1/2,Γ ∀η ∈ H−1/2(Γ ).
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(ii) There exists k2 > 0 such that
Γ

H(ϕ)ϕ dζ ≥ k2 ∥ϕ∥
2
1/2,Γ ∀ϕ ∈ H1/2

0 (Γ ),

where

H1/2
0 (Γ ) :=


ϕ ∈ H1/2(Γ ) :


Γ

ϕ dζ = 0

.

Lemma 4.2. H(1) = 0,D(1) = −1/2 and

Γ

H(η) dζ = 0 ∀η ∈ H1/2(Γ ).

Here and thereafter, for the ease of notation, we use the integration symbol on Γ instead of the duality pairing between
H−1/2(Γ ) and H1/2(Γ ); namely,


Γ

H(η) dζ = ⟨H(η), 1⟩H−1/2(Γ )×H1/2(Γ ).

Theorem 4.2. The linear operator H : H1/2(Γ )/R → H−1/2
0 (Γ ), where

H−1/2
0 (Γ ) :=


η ∈ H−1/2(Γ ) :


Γ

η dζ = 0

,

defines an isomorphism.

Let (AC , ψI ,α) satisfying (9). Let ψ(t) := ψI |Γ (t) − c(t), where c : [0, T ] → R is such that ψ(t) ∈ H1/2
0 (Γ ). By using

(9)3 and (9)5, according to Theorem 4.1 and Lemma 4.2, for all t ∈ [0, T ] we have

−
1
2
ψ − D(ψ)+

1
µ0

S(curlAC · nC ) = −ψI on Γ , (10)

1
2µ0

curlAC · nC +
1
µ0

D ′(curlAC · nC )+ H(ψ) = 0 on Γ . (11)

The following is a variational formulation of problem (9), where

V := H(curl ;ΩC ).

Find AC ∈ L2(0, T ; V) ∩ H1(0, T ; (L2(ΩC ))
3), ψ ∈ L2(0, T ;H1/2

0 (Γ )) and α ∈ L2(0, T ; RL) such that

d
dt


ΩC

σAC · wC dx +


ΩC

µ−1
C curlAC · curlwC dx

+


Γ


−

1
2
ψ − D(ψ)+

1
µ0

S(curlAC · nC )


curlwC · nC dζ + αt


Γ

Z (wC × nC ) dζ =


ΩC

J · wC dx,
Γ


1
2
curlAC · nC + D ′(curlAC · nC )+ µ0H(ψ)


η dζ = 0,

µ0β
tNα − βt


Γ

Z (AC × nC ) dζ = µ0β
tNα0 − βt


Γ

Z

AC,0 × nC


dζ ,

(12)

for allwC ∈ V, η ∈ H1/2
0 (Γ ) and β ∈ RL, with

AC (0) = AC,0 inΩC .

In fact, to derive (12)1, we have multiplied (9)1 by wC , integrated by parts inΩC and used (9)4, the identity
Γ

nI × ∇ψI · wC dζ =


Γ

ψIcurlwC · nC dζ , (13)

(which in its turn follows by integration by parts, too) and (10). On the other hand, Eqs. (12)2 and (12)3 follow directly from
(11) and (9)2.

For the theoretical analysis it is convenient to eliminate α and ψ from the previous formulation. With this aim, we
introduce the linear operator T : V → RL defined by

T(wC ) :=


Γ

Z (wC × nC ) dζ .

We eliminate α from (12)3 and replace it in (12)1. Then, the fourth term of this equation reads

αt

Γ

Z (wC × nC ) dζ =

T(wC )

t
α = µ−1

0


T(wC )

tN−1T(AC )+

T(wC )

t
α0 − µ−1

0


T(wC )

tN−1T(AC,0).
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Moreover, we introduce the operator R : H−1/2
0 (Γ ) → H1/2

0 (Γ ) given by
Γ

H(R(ξ))η dζ =


Γ

ξη dζ ∀η ∈ H1/2
0 (Γ ), ∀ξ ∈ H−1/2

0 (Γ ). (14)

It is straightforward to show, from Lemma 4.1(ii) and the Lax–Milgram lemma, that R is well defined and bounded.
Therefore, the second equation of (12) may be equivalently written

ψ = −µ−1
0 R


1
2
curlAC · nC + D ′(curlAC · nC )


.

Consequently, (12) admits the following equivalent reduced form:
Find AC ∈ L2(0, T ; V) ∩ H1(0, T ; (L2(ΩC ))

3) such that

d
dt
(AC (t),wC )σ + A(AC (t),wC )+ B(AC (t),wC ) = (J(t),wC )0,ΩC

+ g(wC ) (15)

for all wC ∈ V , with

AC (0) = AC,0 inΩC ,

where

(H,G)σ :=


ΩC

σH · G dx ∀H,G ∈ (L2(ΩC ))
3,

A : V × V → R, A(H,G) :=


ΩC

µ−1
C curlH · curlG dx + µ−1

0


Γ

S(curlH · nC )curlG · nC dζ ,

B : V × V → R, B(H,G) := µ−1
0


Γ

K(G)R(K(H)) dζ + µ−1
0


T(G)

tN−1T(H),

K : V → H−1/2
0 (Γ ), K(H) :=

1
2
curlH · nC + D ′(curlH · nC ),

g : V → R, g(H) := µ−1
0


T(H)

tN−1T(AC,0)−

T(H)

t
α0.

Notice that A and B are bounded, symmetric and non-negative definite bilinear forms.

Remark 4.1. The norm ∥ · ∥0,ΩC is equivalent to ∥ · ∥σ and, therefore, ∥ · ∥V is equivalent to ∥ · ∥σ + ∥curl (·)∥0,ΩC .

4.1. Existence and uniqueness

As shown in the following lemma, problem (15) is well posed.

Lemma 4.3. There exists a unique solution to (15) and

∥AC∥
2
L∞(0,T ;V) + ∥∂tAC∥

2
L2(0,T ;(L2(ΩC ))3)

≤ C

∥J∥2

L2(0,T ;(L2(ΩC ))3)
+
AC,0

2
V

+ |α0|
2


(16)

for some constant C > 0, independent of the problem data J , AC,0 and α0.

Proof. The classical theory for parabolic problems (see, for instance, [11]) allows us to show that problem (15) has a unique
solution AC ∈ L2(0, T ; V)∩H1(0, T ; V ′). Moreover, since AC,0 ∈ V and the right hand side of (15) is the sum of two terms,
(J(t),wC )0,ΩC with J ∈ L2(0, T ; (L2(ΩC ))

3) and g(wC ) with g ∈ V ′ independent of t , it is straightforward to show that
actually ∂tAC ∈ L2(0, T ; (L2(ΩC ))

3) and the estimate (16) holds true (in fact, we may proceed as in the proof of Theorem
7.1.5 from [15] for the first term, and use Theorem A.1 from [16] for the second one). �

Remark 4.2. Problems (12) and (15) are actually equivalent. In fact, for AC being a solution of (15), if we define ψ :=

−µ−1
0 R(K(AC )) and α := α0 + µ−1

0 N−1(T(AC ) − T(AC,0)), then (AC , ψ,α) is a solution of (12). Moreover this problem
has a unique solution, because AC has to be the unique solution of (15) and ψ and α are determined via (12)2 and (12)3,
respectively.

Problems (9) and (12) are also equivalent. In fact, we derived (12) from (9). In what follows, we show the converse
implication:

Theorem 4.3. Let (AC , ψ,α) be the solution to problem (12). Then, there exists ψI ∈ L2(0, T ;W 1(ΩI)) and a function
c : [0, T ] → R such that ψ = ψI |Γ − c and (AC , ψI ,α) satisfies (9).
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Proof. Testing (12)1 with wC ∈ (C∞

0 (ΩC ))
3 we obtain

σ∂tAC + curl

µ−1

C curlAC


= J inΩC (17)

a.e. in [0, T ]. Then, testing (12)2 with η ∈ H1/2(Γ ) and using Lemma 4.2 we have

1
2
curlAC · nC + D ′(curlAC · nC )+ µ0H(ψ) = 0 on Γ . (18)

Now, let ψI ∈ W 1(ΩI) be the solution of the following problem:

1ψI = 0 inΩI ,

µ0∇ψI · nI = −curlAC · nC on Γ .
(19)

Since ψI ∈ W 1(ΩI) is a harmonic function, Theorem 4.1 ensures that

1
2
ψI |Γ − D(ψI |Γ )+

1
µ0

S(curlAC · nC ) = 0,

1
2
curlAC · nC + D ′(curlAC · nC )+ µ0H(ψI |Γ ) = 0.

(20)

Subtracting (18) from (20)2, we obtain H(ψ − ψI) = 0 on Γ . Therefore, we conclude from Theorem 4.2 that ψI(t) =

ψ(t)+ c(t) on Γ , where, for each t ∈ [0, T ], c(t) is a constant. As a consequence, from (20)1 we have

−
1
2
ψ |Γ − D(ψ |Γ )+

1
µ0

S(curlAC · nC ) = −
1
2
(ψI |Γ − c)− D(ψI |Γ − c)+

1
µ0

S(curlAC · nC ) = −ψI |Γ .

Now, replacing this equality in (12)1, using (13) and testing withwC ∈ H(curl ;ΩC ), we obtain
µ−1

C curlAC

× nC +


∇ψI + Ztα


× nI = 0 on Γ .

Let us emphasize that the first term on the left hand side is well defined in H−1/2(Γ ), since µ−1
C curlAC ∈ H(curl ;ΩC ),

which in turn follows because of (17) and the facts that J ∈ L2(0, T ; (L2(ΩC ))
3) and the solution to problem (12) satisfies

∂tAC ∈ L2(0, T ; (L2(ΩC ))
3). Finally (9)2 and (9)3 follow from (12)3 and the initial condition of problem (12), respectively. �

5. Fully-discrete scheme

Let {Th(ΩC )}h be a regular family of tetrahedral meshes of ΩC . As usual, h stands for the largest diameter of the
tetrahedra K in Th(ΩC ). Furthermore, we consider the corresponding family of triangulations induced on Γ , {Th(Γ )}h. Let
N ∈ N,1t := T/N and tn = n1t, n = 0, . . . ,N .

We define a fully-discrete version of (12) by means of Nédélec finite elements. The local representation on K of the
lowest-order Nédélec finite element is given by

N (K) :=

a × x + b : a, b ∈ R3, x ∈ K


.

The corresponding global space Vh is the space of vector fields that are locally in N (K) for all K in ΩC and globally in
V = H(curl ;ΩC ). Moreover, we define

Lh(Γ ) :=


η ∈ H1/2

0 (Γ ) : η|F ∈ P1(F) ∀F ∈ Th(Γ )

,

which approximates the space H1/2
0 (Γ ), where Pk(F) is the set of polynomial functions defined in F of degree not greater

than k.
When ΩC is not simply connected, problem (12) involves the matrices N and Z defined by (7) and (8), respectively. To

compute thesematriceswe also need to approximate numerically the basis {∇zk}Lk=1 of the harmonic Neumann vector-fields
space H(ΩI). A similar need arose in [7], where the authors proposed a coupled FEM–BEM method to compute the entries
of a matrix Nh approximating N. For the sake of completeness, in what follows, we briefly describe the method introduced
in [7] to approximate N and the corresponding error estimate proved in this reference.

Consider a convex polyhedronΩ such thatΩC ∪

L
k=1Σ

ext
k


⊂ Ω . Set

Q0
:= Ω \


ΩC ∪


L

k=1

Σ
ext
k


, Q := Ω \ΩC and Λ := ∂Ω.

From (4), pk := ∇zk|Q, k = 1, . . . , L, belong to the closed subspace of H(div; Q)

Y :=

q ∈ (L2(Q))3 : div q = 0 in Q and q · nI = 0 on Γ





3092 J. Camaño, R. Rodríguez / Journal of Computational and Applied Mathematics 236 (2012) 3084–3100

and satisfies the variational equation
Q

pk · q dx −


Σext

k

q · nk dζ +


Λ

q · nzk dζ ∀q ∈ Y,

where n correspond to the unit normal vector onΛ outer to Q. Furthermore, as zk is harmonic in R3
\Ω , the last equation

may be coupledwith boundary integral equations relating zk and its normal derivative pk ·n onΛ. This leads to the following
weak formulation (see [17] for more details).

Find pk ∈ Y and φk ∈ H1/2(Λ)/R such that
Q

pk · q dx +


Λ

S(pk · n)q · n dζ −


Λ


1
2
φk + D(φk)


q · n dζ =


Σext

k

q · nk dζ ,
Λ


1
2
χ + D(χ)


pk · n dζ +


Λ

H(φk)χ dζ = 0,

(21)

for all functions q ∈ Y and χ ∈ H1/2(Λ)/R. The variable φk represents (up to and additive constant) the trace of zk on Λ.
Now, consider a regular family of triangulations {Th(Q)}h of Q by tetrahedra K of diameter no greater than h > 0. Assume
that, for each h, the set Th(ΩC )∪ Th(Q) is a triangulation ofΩ . This implies that the triangulation induced by Th(Q) on Γ is
identical to Th(Γ ). It can be assumed, without loss of generality, that, for each mesh, the cutting surfacesΣext

k are union of
faces of tetrahedra in Th(Q). Finally, denote by Th(Λ) the triangulation induced by Th(Q) onΛ.

Consider a conforming discretization of H(div; Q):

RT h(Q) := {q ∈ H(div; Q) : q|K ∈ RT (K) ∀K ∈ Th(Q)} ,

RT (K) :=

ax + b : a ∈ R, b ∈ R3, x ∈ K


being the lowest-order Raviart–Thomas element. The following is a convenient

way of discretizing problem (21) (for more details, see [7]):
Find pkh ∈ RT 0

h(Q), φkh ∈ Φh/R and βkh ∈ Mh such that
Q

pkh · q dx +


Λ

S(pkh · n)q · n dζ −


Λ


1
2
φkh + D(φkh)


q · n dζ +


Q

βkhdiv q dx =


Σext

k

q · nk dζ ,
Λ


1
2
χ + D(χ)


pkh · n dζ +


Λ

S(curl τφkh)curl τχ dζ = 0,
Q

div pkhv dx = 0,

(22)

for all functions q ∈ RT 0
h(Q), χ ∈ Φh/R and v ∈ Mh, where

RT 0
h(Q) := {q ∈ RT h(Q) : q|Γ · nI = 0},

Φh := {η ∈ C0(Λ) : η|F ∈ P1(F) ∀F ∈ Th(Λ)},

Mh := {v ∈ L2(Q) : v|K ∈ P0(K) ∀K ∈ Th(Q)}.

Moreover, curl τ denotes the surface curl onΛ (see, for instance, [1, Section A.1]).
We know from [17] that (22) is a well posed problem. Once the functions pkh, 1 ≤ k ≤ L, are computed, the matrixN can

be approximated by

Nh :=


Σext

j

pkh · nj dζ


1≤k,j≤L

. (23)

Note that this matrix is symmetric and positive definite. Error estimates for the approximation Nh of N has been obtained
in [7]. With this end, an additional regularity result has been also proved therein. In the sequel, we denote by sQ ∈ (1/2, 1)
the exponent ofmaximal regularity inQ of the solution of the Laplace operatorwith L2(Q) right-hand side andhomogeneous
Neumann boundary data.

Theorem 5.1. If (pk, φk) is the solution to problem (21), k = 1, . . . , L, then pk ∈ (Hs(Q))3 for all s ∈ (1/2, sQ).

Proof. See [7, Theorem 7.1]. �

Finally we recall the error estimates obtained in [7]. Here and thereafter C denotes a generic positive constant not
necessarily the same at each occurrence, but always independent of the mesh size h and the time step1t .

Theorem 5.2. Problems (21) and (22) are well posed and

∥pk − pkh∥0,Q + ∥φk − φkh∥H1/2(Λ)/R ≤ Chs 
∥pk∥s,Q + ∥φk∥s+1/2,Λ


holds, with s as in Theorem 5.1.
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Proof. See [7, Theorem 7.2]. �

Theorem 5.3. There exists h0 > 0 such that Nh is invertible for all h ∈ (0, h0). Moreover, the error estimate

∥N − Nh∥ +
N−1

− N−1
h

 ≤ Chs max
1≤k≤L


∥pk∥s,Q + ∥φk∥s+1/2,Λ


holds, with s as in Theorem 5.1.

Proof. See [7, Corollary 7.3]. �

Notice that ∥φk∥s+1/2,Λ is clearly bounded, since φk is the trace onΛ of the solution zk to problem (4).
To compute an approximation of the entries of Z, we need to resort to a different strategy. In fact, the previous methods

yields good approximation of pk|Γ · nI = ∇zk|Γ · nI , but not of∇zk|Γ × nI (which are the terms defining the entries of Z). A
similar situation happened in [7], too. However, in this case, we follow an alternative approach that we think is simpler.

It is easy to show that the solution of (4) satisfies the following variational formulation:
Find zk ∈ H1(Q \Σext

k )/R such that [[zk]]Σext
k

= 1 and
Q\Σext

k

∇zk · ∇ϕ dx =


Λ

pk · nϕ dζ ∀ϕ ∈ H1(Q)/R. (24)

We introduce

Lh(Q) :=

θ ∈ H1(Q) : θ |K ∈ P1(K) ∀K ∈ Th(Q)


,

Lh(Q \Σext
k ) :=


θ ∈ H1(Q \Σext

k ) : θ |K ∈ P1(K) ∀K ∈ Th(Q)


and consider the following discrete version of problem (24):
Find zkh ∈ Lh(Q \Σext

k )/R such that [[zkh]]Σext
k

= 1 and
Q\Σext

k

∇zkh · ∇ϕ dx =


Λ

pkh · nϕ dζ ∀ϕ ∈ Lh(Q)/R. (25)

Lemma 5.1. Let zk and zkh be the solutions to problems (24) and (25), respectively. Then

∥∇zk − ∇zkh∥0,Q ≤ Chs,

with s as in Theorem 5.1.

Proof. Letzk ∈ C∞(Q \ Σext
k ) be such that [[zk]]Σext

k
= 1. Letz Ik be the Lagrange intepolant ofzk in Q \ Σext

k . Notice that
[[z Ik]]Σext

k
= 1, too. We write

zk =zk + zk and zkh =z Ik + zkh,

with zk ∈ H1(Q)/R and zkh ∈ Lh(Q)/R. Substituting these expressions in problems (24) and (25), respectively, and using
the first Strang lemma (see, for instance, [18, Theorem 4.4.1]), we obtain

∥∇zk − ∇zkh∥0,Q ≤ C inf
ϕ∈Lh(Q)/R

∥∇zk − ∇ϕ∥0,Q

+ C sup
ϕ∈Lh(Q)/R

− Q\Σext
k

∇(zk −z Ik) · ∇ϕ dx +

Λ
(pk − pkh) · nϕ dζ


∥∇ϕ∥0,Q

.

The second term on the right-hand side above is bounded as follows:−


Q\Σext
k

∇(zk −z Ik) · ∇ϕ dx +


Λ

(pk − pkh) · nϕ dζ


≤
∇zk − ∇z Ik0,Q\Σext

j
∥∇ϕ∥0,Q + C ∥pk − pkh∥0,Q ∥∇ϕ∥0,Q ,

where we have used that div pk = div pkh = 0 in Q and the fact that ∥∇(·)∥0,Q is equivalent to ∥ · ∥1,Q on H1(Q)/R.
On the other hand, from Theorem 5.1 we know that ∇zk|Q ∈ (Hs(Q))3. Hence,

inf
ϕ∈Lh(Q)/R

∥∇zk − ∇ϕ∥0,Q ≤
∇zk − ∇z Ik


0,Q ≤ Chs

∥∇zk∥s,Q .

Thus, using the last two estimates and Theorem 5.2, we obtain

∥∇zk − ∇zkh∥0,Q ≤ Chs

∥∇zk∥s,Q\Σext

k
+ ∥pk∥s,Q + ∥φk∥s+1/2,Λ + ∥∇zk∥s,Q


.
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Therefore, as a consequence of Theorem 5.1,

∥∇zk − ∇zkh∥0,Q ≤ Chs

and we conclude the proof. �

Now, we are in a position to introduce the following full discretization of problem (12):
For n = 1, . . . ,N , find (An

Ch, ψ
n
h ,α

n
h) ∈ Vh × Lh(Γ )× RL such that

ΩC

σ∂An
Ch · wC dx +


ΩC

µ−1
C curlAn

Ch · curlwC dx

+


Γ


−

1
2
ψn

h − D(ψn
h )+

1
µ0

S(curlAn
Ch · nC )


curlwC · nC dζ + (αn

h)
tTh(wC ) =


ΩC

J(tn) · wC dx,
Γ


1
2
curlAn

Ch · nC + D ′(curlAn
Ch · nC )+ µ0H(ψ

n
h )


η dζ = 0,

µ0β
tNhα

n
h − βtTh(An

Ch) = µ0β
tNhα0 − βtTh(AC,0),

(26)

for all (wC , η,β) ∈ Vh × Lh(Γ )× RL, with

A0
Ch = ACh,0 inΩC ,

whereACh,0 ∈ Vh is an approximation ofAC,0, ∂An
Ch := (An

Ch−An−1
Ch )/1t and the linear and continuous operatorTh : V → RL

is defined by

Th(w) :=


Γ

Zh (w × nC ) dζ , with Zh :=
∇z1h · · · ∇zLh

t
.

To prove the existence and uniqueness of solution to (26), first we proceed as in the continuous case and obtain a discrete
form of problem (15). Let Rh : H−1/2

0 (Γ ) → Lh(Γ ) be the operator defined by
Γ

H(Rh(ξ))η dζ =


Γ

ξη dζ ∀η ∈ Lh(Γ ), ∀ξ ∈ H−1/2
0 (Γ ).

Note that this is a Galerkin discretization of the elliptic problem (14). Consequently, using the Galerkin orthogonality and
the continuity and ellipticity of H (cf. Lemma 4.1(ii)), we have the following Cea estimate:

∥Rξ − Rhξ∥1/2,Γ ≤ C inf
η∈Lh(Γ )

∥Rξ − η∥1/2,Γ ∀ξ ∈ H−1/2
0 (Γ ). (27)

Now, using again that ψn
h := −µ−1

0 Rh

K(An

Ch)

(cf. (26)2) we obtain the following equivalent formulation of (26):

For n = 1, . . . ,N , find An
Ch ∈ Vh such that

∂An
Ch,wC


σ

+ A(An
Ch,wC )+ Bh(An

Ch,wC ) = (J(tn),wC )0,ΩC
+ gh(wC ) (28)

for all wC ∈ Vh, with

A0
Ch = ACh,0 inΩC ,

where

Bh : Vh × Vh → R, Bh(H,G) := µ−1
0


Γ

K(G)Rh(K(H)) dζ + µ0

Th(G)

tN−1
h Th(H),

gh : Vh → R, gh(H) := µ−1
0


Th(H)

tN−1
h Th(AC,0)−


Th(H)

t
α0.

Hence, at each iteration, we have to find An
Ch ∈ Vh such that

An
Ch,wC


σ

+1t

A(An

Ch,wC )+ Bh(An
Ch,wC )


= 1t


(J(tn),wC )0,ΩC

+ gh(wC )

+

An−1
Ch ,wC


σ
. (29)

Since Bh and A are non-negative definite, the existence and uniqueness of An
Ch, n = 1, . . . ,N , is immediate.

Remark 5.1. It is easy to prove that if ψn
h := −µ−1

0 Rh(K(An
Ch)) as defined above and αn

h := α0 + µ−1
0 N−1

h (Th(An
Ch) −

Th(AC,0)), then (An
Ch, ψ

n
h ,α

n
h) is a solution of (26). This solution is unique, because H is elliptic in Lh(Γ ) ⊂ H1/2

0 (Γ ) and Nh
is a symmetric and positive definite matrix.
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5.1. Matrix form

To have it clear the kind of problem we have to solve in practice, we will write the fully discrete scheme (26) in matrix
form. Let


φ1, . . . ,φJ


and {λ1, . . . , λM} be bases of Vh and Lh(Γ ), respectively, and {e1, . . . , eL} the canonical basis of RL.

We write the solution (An
Ch, ψ

n
h ,α

n
h), n = 1, . . . ,N , to problem (26), in these bases:

An
Ch =

J
j=1

anj φj, ψn
h =

M
j=1

bnj λj, αn
h =

L
j=1

cnj ej, n = 1, . . . ,N.

Analogously, we write

ACh,0 =

J
j=1

a0j φj and α0 =

L
j=1

c0j ej.

We set an := (ani )1≤i≤J , cn := (cni )1≤i≤L, with n = 0, . . . ,N , and bn
:= (bni )1≤i≤M , with n = 1, . . . ,N . We also set

Fn := (F n
i )1≤i≤J , n = 1, . . .N , where

F n
i :=


ΩC

J(tn) · φi dx.

We introduce the matrices W := (Wij)1≤i,j≤J ,D := (Dij)1≤i≤J,1≤j≤M ,H := (Hij)1≤i,j≤M ,R := (Rij)1≤i,j≤J ,Q := (Qij)1≤i≤J,1≤j≤L
and S := (Sij)1≤i,j≤J , where

Wij :=


ΩC

σφi · φj dx, Dij :=


Γ


−

1
2
λj − D(λj)


curlφi · nC dζ , Hij :=


Γ

H(λi)λj dζ ,

Rij :=


ΩC

µ−1
C curlφi · curlφj dx, Qij := etj


Γ

Zh

φi × nC


dζ , Sij :=


Γ

S(curlφi · nC )curlφj · nC dζ .

Hence, we write problem (26) in block matrix form as follows:W +1t (R + S) 1t D 1t Q
1t Dt

−1t H O
1t Qt O −1t Nh

anbn

cn


=

 1t Fn + Wan−1

O
1t

Qta0 − Nhc0


 .

As already mentioned in Remark 5.1, problem (26) has a unique solution, so that the matrix on the left hand side is non
singular.

Matrices Zh andNh are both readily obtained once the solution pkh to problem (22) is computed. In what followswewrite
down the matrix form of this problem. Let {u1, . . . , uA} , {v1, . . . , vB} and {w1, . . . , wC } be bases of RT 0

h(Q),Φh/R andMh,
respectively. Then, we write the solution of problem (22) in these bases as follows:

pkh =

A
j=1

ϕkjuj, φkh =

B
j=1

γkjvj and βkh =

C
j=1

ηkjwj.

Next, we define ϕk := (ϕki)1≤i≤A, γk := (γki)1≤i≤B, ηk := (ηki)1≤i≤C and G := (Gi)1≤i≤A, where

Gi :=


Σext

k

ui · nk dζ .

Moreover, we introduce the matrices U := (Uij)1≤i,j≤A,V := (Vij)1≤i,j≤A,K := (Kij)1≤i≤A,1≤j≤B, E := (Eij)1≤i≤A,1≤j≤C and
T := (Tij)1≤i,j≤A, where

Uij :=


Q

ui · uj dx, Vij :=


Λ

S (ui · n) uj · n dζ ,

Kij := −


Λ


1
2
vj + D(vj)


ui · n dζ , Eij :=


Q

wjdiv ui dx, Tij :=


Λ

S

curl τvj


curl τvi dζ .

Then, problem (22) readsU + V K E
Kt

−T O
Et O O

ϕk
γk
ηk


=

G
O
O


.

It is proved in [17] that the matrix of the left hand side above is invertible. Finally, for a discussion on the efficient
computation of all the singular integrals appearing above, we refer to [19].

As a conclusion, we have that problem (26) is actually solvable. Although it involves the solution of the auxiliary problem
(22), this can bemade off-line since it does not depend on time. Once it is solved, the time domain problem (26) involves only
a vector field on the conducting domain and a scalar field on its boundary. Therefore, this approach allows to minimizing
the number of degrees of freedom needed in the discretization.
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6. Error estimates

For any s ≥ 0, we consider the space
H s(curl ;ΩC ) :=


v ∈ (Hs(ΩC ))

3
: curl v ∈ (Hs(ΩC ))

3
endowed with the norm ∥v∥2

Hs(curl ;ΩC )
:= ∥v∥2

s,ΩC
+ ∥curl v∥2

s,ΩC
. It is well known that the Nédélec interpolation operator

INh v ∈ Vh is well defined for any v ∈ H s(curl ;ΩC ), with s > 1/2 (see, for instance, Lemma 4.7 of [9]). Moreover, for
1/2 < s ≤ 1, the following interpolation error estimate holds true (see Proposition 5.6 of [20]):v − INh v


V

≤ Chs
∥v∥Hs(curl ;ΩC ) ∀v ∈ H s(curl ;ΩC ). (30)

To simplify the notation, we introduce for anyw ∈ V

Gh(w) := ∥(R − Rh)K(w)∥1/2,Γ .

Lemma 6.1. Let (AC , ψ,α) and (An
Ch, ψ

n
h ,α

n
h) be the solutions to problems (12) and (26), respectively, the latter with initial

data A0
Ch := INh (AC,0). Assume that AC ∈ C1([0, T ]; V) ∩ C0([0, T ];H s(curl ;ΩC )), with s > 1/2. Moreover, let ρn

:=

AC (tn) − INh AC (tn), δn := INh AC (tn) − An
Ch and τn

:= ∂AC (tn) − ∂tAC (tn). Then, there exists C > 0, independent of h and 1t,
such that

max
1≤k≤n

δk2
V

+1t
n

k=1

∂δk2
σ

≤ C


1t

n
k=1

∂ρk
2

V
+
τk

2
V

+ Gh(∂tAC (tk))2

+

∥AC (tk)∥2

V + ∥∂tAC (tk)∥2
V

 
max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q

+
N−1

− N−1
h

2+

AC,0
2

V
+ |α0|

2


×


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+ max

0≤k≤n

ρk
2

V
+ max

0≤k≤n
Gh(AC (tk))2


.

Proof. It is straightforward to show that
∂δk, v


σ

+ A(δk, v)+ Bh(δ
k, v) = −


∂ρk, v


σ

+

τk, v


σ

− A(ρk, v)− Bh(ρ
k, v)

+ Bh(AC (tk), v)− B(AC (tk), v)+ g(v)− gh(v) ∀v ∈ Vh, (31)

as well as the following inequalities:
∂δk, δk


σ

≥
1

21t

δk2
σ

−
δk−1

2
σ


,

A(δk, δk) ≥ µ−1
1

curl δk20,ΩC
,

B(AC (tk), δk)− Bh(AC (tk), δk) ≤ C ∥AC (tk)∥V

δk
V


max
1≤i≤L

∥∇zi − ∇zih∥0,Q +
N−1

− N−1
h


+ C

curl δk0,ΩC
Gh(AC (tk)),

g(δk)− gh(δk) ≤ C
AC,0


V

+ |α0|
 δk

V


max
1≤i≤L

∥∇zi − ∇zih∥0,Q +
N−1

− N−1
h

 .
Constant µ1 on the second inequality is an upper bound in ΩC of the largest eigenvalue of µC . Hence, choosing v = δk in
(31) and using that Bh is non-negative, the Cauchy–Schwarz inequality, Remark 4.1 and Young’s inequality lead us to the
following estimate:δk2

σ
−
δk−1

2
σ

+1tµ−1
1

curl δk20,ΩC
≤
1t
2T

δk2
σ

+ C1t
∂ρk

2
σ

+
τk

2
σ

+
ρk

2
V

+ Gh(AC (tk))2

+ ∥AC (tk)∥2
V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+

AC,0
2

V
+ |α0|

2


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2. (32)
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Then, summing over k, using the discrete Gronwall’s lemma (see, for instance, [21, Lemma 1.4.2]) and taking into account
that δ0 = 0, we obtainδn2

σ
≤ C


1t

n
k=1

∂ρk
2

σ
+
τk

2
σ

+
ρk

2
V

+ Gh(AC (tk))2

+ ∥AC (tk)∥2
V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+

AC,0
2

V
+ |α0|

2


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
for n = 1, . . . ,N . Inserting the last inequality in (32) and summing over k we have the estimateδn2

σ
+1t

n
k=1

curl δk20,ΩC
≤ C


1t

n
k=1

∂ρk
2

σ
+
τk

2
σ

+
ρk

2
V

+ Gh(AC (tk))2

+ ∥AC (tk)∥2
V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+

AC,0
2

V
+ |α0|

2


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2. (33)

Let us now take v = ∂δk in (31). We have∂δk2
σ

+ A(δk, ∂δk)+ Bh(δ
k, ∂δk) = −


∂ρk, ∂δk


σ

+

τk, ∂δk


σ

+ A(∂ρk, δk−1)+ Bh(∂ρ
k, δk−1)

+ B(τk, δk−1)− Bh(τ
k, δk−1)+ B(∂tAC (tk), δk−1)

− Bh(∂tAC (tk), δk−1)+ g(∂δk)− gh(∂δk)−
1
1t

(γk − γk−1) , (34)

where γk := A(ρk, δk)+ Bh(ρ
k, δk)− Bh(AC (tk), δk)+ B(AC (tk), δk).

On the other hand, since A is non-negative definite and symmetric, it is easy to check that

A(δk, ∂δk) ≥
1

21t


A(δk, δk)− A(δk−1, δk−1)


and similarly for Bh. Using these inequalities in (34) together with Cauchy–Schwarz inequality, and, then, summing over k
and recalling that Bh is non-negative, we deduce that

1
2

n
k=1

∂δk2
σ

+
1

21t
µ−1

1

curl δn20,ΩC

≤

n
k=1

∂ρk
2

σ
+
τk

2
σ


+

n
k=1

A(∂ρk, δk−1)
+ Bh(∂ρ

k, δk−1)
+ B(τk, δk−1)− Bh(τ

k, δk−1)


+
B(∂tAC (tk), δk−1)− Bh(∂tAC (tk), δk−1)

+
1
1t

g(δn)− gh(δn)
+ 1

1t
|γn| . (35)

The following bounds are easy to obtain from Young’s inequality and Remark 4.1:
n

k=1

A(∂ρk, δk−1)
 ≤

n
k=1

curl δk−1
2
0,ΩC

+ C
n

k=1

curl ∂ρk
2
0,ΩC

,

n
k=1

Bh(∂ρ
k, δk−1)

 ≤

n
k=1

curl δk−1
2
0,ΩC

+

n
k=1

δk−1
2

σ
+ C

n
k=1

∂ρk
2

V
,

n
k=1

B(τk, δk−1)− Bh(τ
k, δk−1)

 ≤

n
k=1

curl δk−1
2
0,ΩC

+

n
k=1

δk−1
2

σ
+ C

n
k=1

τk
2

V
,

n
k=1

B(∂tAC (tk), δk−1)− Bh(∂tAC (tk), δk−1)
 ≤

n
k=1

curl δk−1
2
0,ΩC

+

n
k=1

δk−1
2

σ
+ C

n
k=1

Gh(∂tAC (tk))2

+ C
n

k=1

∥∂tAC (tk)∥2
V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2 ,
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and g(δn)− gh(δn)
 ≤ C

AC,0
2

V
+ |α0|

2


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+

1
8
µ−1

1

curl δn20,ΩC
+
δn2

σ
,

|γn| ≤
1
8
µ−1

1

curl δn20,ΩC
+
δn2

σ
+ C

ρn
2

V
+ ∥AC (tn)∥2

V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2 .
Substituting all these inequalities in (35), using (33) and Remark 4.1, we obtain

1t
n

k=1

∂δk2
σ

+
curl δn20,ΩC

≤ C

1t

n
k=1

∂ρk
2

V
+
τk

2
V

+ Gh(∂t(AC (tk)))2 +
ρk

2
V

+ ∥AC (tk)∥2
V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+ ∥∂tAC (tk)∥2

V


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2
+

AC,0
2

V
+ |α0|

2


max
1≤i≤L

∥∇zi − ∇zih∥2
0,Q +

N−1
− N−1

h

2+
ρn

2
V

+ Gh(AC (tn))2

.

Combining this inequality with (33) and Remark 4.1, we end the proof. �

Lemma 6.2. Let (AC , ψ,α) be the solution of (12). If we assume that AC ∈ H1(0, T ;H s(curl ;ΩC )), 1/2 < s < sQ , then
ψ ∈ H1(0, T ;Hs+1/2(Γ )) and the following estimates hold true:

inf
η∈Lh(Γ )

∥ψ(t)− η∥1/2,Γ ≤ Chs
∥curlAC (t)∥s,ΩC , (36)

inf
η∈Lh(Γ )

∥∂tψ(t)− η∥1/2,Γ ≤ Chs
∥∂t(curlAC (t))∥s,ΩC . (37)

Proof. Let (AC , ψ,α) be the unique solution of (12). Let ψI be as in Theorem 4.3. As shown in that theorem, ψI(t) =

ψ(t)+ c(t)with c(t) ∈ R and t ∈ [0, T ]. Moreover, a.e. in [0, T ], ψI |Q is the solution to

−1ψI = 0 in Q,

µ0
∂ψI

∂nI
= −curlAC · nC on Γ ,

ψI |Λ ∈ C∞(Λ).

(38)

SinceAC ∈ C0([0, T ];H s(curl ;ΩC ))with 1/2 < s < sQ andΛ is the boundary of a convex polyhedron, by applying classical
results for the Laplace equation (see [22]) we have that ψI ∈ Hs+1(Q) and

∥ψI∥s+1,Q ≤ C ∥curlAC · nC∥s−1/2,Γ ≤ C ∥curlAC∥s,ΩC . (39)

Since s > 1/2, the Lagrange interpolant ψ I
I of ψI is well defined. Moreover, since ψI and ψ only differ in a constant,

ψI − ψ I
I


|Γ = ψ − ψ IΓ ,

where ψ IΓ ∈ Lh(Γ ) denotes the 2D Lagrange surface interpolant on Γ . Therefore, because of the trace theorem, standard
estimates for the 3D Lagrange interpolant and (39), we haveψ − ψ IΓ


1/2,Γ ≤ C

ψI − ψ I
I


1,Q ≤ Chs

∥ψI∥s+1,Q ≤ Chs
∥curlAC∥s,ΩC .

Thus, we conclude (36).
To prove (37), we recall that ψI is the solution to problem (19) (cf. the proof of Theorem 4.3). Then, since AC ∈

H1(0, T ;H s(curl ;ΩC )), differentiating in time each equation in (19), we obtain an estimate analogous to (39) for ∂tψI .
On the other hand, since ψI(t) = ψ(t)+ c(t)with

c(t) =
1

|Γ |


Γ

ψI(t) dζ ,

we have that ∂tψ(t) = ∂tψI(t)− c ′(t). Hence, the rest of the proof follows identically as above. �
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Now we are in a position to conclude the following asymptotic error estimate for the fully discrete scheme.

Theorem 6.1. Let (AC , ψ,α) and (An
Ch, ψ

n
h ,α

n
h), n = 1, . . . ,N, be the solutions to problem (12) and (26), respectively. Let us

assume that AC ∈ H1(0, T ;H s(curl ;ΩC ))∩H2(0, T ;H(curl ;ΩC ))with s ∈ (1/2, sQ). Then, there exists h0 > 0 such that, for
all h ∈ (0, h0), the following estimate holds:

max
1≤n≤N

AC (tn)− An
Ch

2
V

+1t
N

n=1

∂(AC (tn)− An
Ch)
2

σ

≤ Ch2s
 T

0
∥∂tAC (t)∥2

Hs(curl ;ΩC )
dt + max

1≤n≤N
∥∂t(curlAC (tn))∥2

s,ΩC

+ max
1≤n≤N


∥AC (tn)∥2

V + ∥∂tAC (tn)∥2
V

 
max
1≤k≤L

∥∇zk∥2
s,Q + ∥zk∥2

s+1/2,Λ


+

AC,0
2

V
+ |α0|

2


max
1≤k≤L

∥∇zk∥2
s,Q + ∥zk∥2

s+1/2,Λ


+ max

1≤n≤N
∥AC (tn)∥2

Hs(curl ;ΩC )


+ (1t)2

 T

0
∥∂ttAC (t)∥2

V dt

≤ C

(1t)2 + h2s 

∥AC∥
2
H2(0,T ;Hs(curl ΩC ))

+ |α0|
2

,

where zk is the solution of problem (4), k = 1, . . . , L.

Proof. A Taylor expansion shows that

∂AC (tk) = ∂tAC (tk)+
1
1t

 tk

tk−1

(tk−1 − t) ∂ttAC (t) dt.

Consequently,

n
k=1

τk
2

V
≤ 1t

 T

0
∥∂ttAC (t)∥2

V dt.

Moreover, we have from (30),

n
k=1

∂ρk
2

V
≤

1
1t

n
k=1

 tk

tk−1

∂t(I − INh )AC (t)
2

V
dt ≤

Ch2s

1t

 T

0
∥∂tAC (t)∥2

Hs(curl ;ΩC )
dt.

We recall that ψ(t) = −µ−1
0 R(K(AC (t))) (cf. Remark 4.2). It follows from (27) that

Gh(AC (tn)) ≤ inf
η∈Lh(Γ )

∥ψ(tn)− η∥2
1/2,Γ ,

Gh(∂tAC (tn)) ≤ inf
η∈Lh(Γ )

∥∂tψ(tn)− η∥2
1/2,Γ .

Thus, using Lemma 6.2, we obtain

Gh(AC (tn)) ≤ Chs
∥curlAC (tn)∥s,ΩC ,

Gh(∂tAC (tn)) ≤ Chs
∥∂t(curlAC (tn))∥s,ΩC .

(40)

Hence, the results follows by writing AC (tn)− An
Ch = δn + ρn and using Lemmas 6.1 and 5.1, Theorem 5.3 and (30). �

Remark 6.1. Let us recall that ψ(tn) = −µ−1
0 R(K(AC (tn))) and ψn

h = −µ−1
0 Rh(K(An

Ch)). Therefore, using (40) and the
uniform boundedness of Rh with respect to h, we obtainψ(tn)− ψn

h


1/2,Γ ≤ Gh(AC (tn))+

Rh(K(AC (tn)− An
Ch))


1/2,Γ ≤ C


hs

∥curlAC (tn)∥s,ΩC +
AC (tn)− An

Ch


V


.

Then, using Lemma 6.2 and Theorem 6.1, under the assumptions of the latter, we conclude that

1t
N

n=1

ψ(tn)− ψn
h

2
1/2,Γ ≤ C


h2s

+ (1t)2

.
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Moreover under the same assumptions, since α(tn) = α0 − µ−1
0 N−1(T(AC (tn)− AC,0)) and αn

h = α0 − µ−1
0 N−1

h (gTh(An
Ch −

AC,0)), from Theorem 5.3, Lemma 5.1 and Theorem 6.1, we also conclude that

max
1≤n≤N

α(tn)− αn
h

2 ≤ C

h2s

+ (1t)2

.
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