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a b s t r a c t

The objective of this paper is to present a numerical method for solving singularly per-
turbed turning point problems exhibiting an interior layer. The method is based on the
asymptotic expansion technique and the reproducing kernel method (RKM). The original
problem is reduced to interior layer and regular domain problems. The regular domain
problems are solved by using the asymptotic expansion method. The interior layer prob-
lem is treated by the method of stretching variable and the RKM. Four numerical examples
are provided to illustrate the effectiveness of the present method. The results of numerical
examples show that the present method can provide very accurate approximate solutions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Singularly perturbed problems arise frequently in applications including geophysical fluid dynamics, oceanic and atmo-
spheric circulation, chemical reactions, optimal control, etc. These problems are characterized by the presence of a small
parameter that multiplies the highest order derivative, and they are stiff and there exists a boundary or interior layer where
the solutions change rapidly.

The numerical treatment of such problems present somemajor computational difficulties due to the presence of bound-
ary and interior layers. Recently, a large number of special purpose methods have been developed by various authors for
singularly perturbed boundary value problems [1–11]. However, discussion on the numerical solutions of singularly per-
turbed turning point problems is rare. Phaneendra1, Reddy and Soujanya [1] proposed a non-iterative numerical integration
method on a uniformmesh for dealingwith singularly perturbed turning point problems. Rai and Sharma [2–4] discussed the
numerical methods for solving singularly perturbed differential-difference equations with turning points. Natesan, Jayaku-
mar andVigo-Aguiar [5] introduced a parameter uniformnumericalmethod for singularly perturbed turning point problems
exhibiting boundary layers. Kadalbajoo, Arora and Gupta [10] developed a collocation method using artificial viscosity for
solving a stiff singularly perturbed turning point problem having twin boundary layers.

Reproducing kernel theory has important applications in numerical analysis, differential equations, probability and
statistics, amongst other fields [12–27,11]. Recently, based on reproducing kernel theory, the authors have discussed two-
point boundary value problems, nonlocal boundary value problems and partial differential equations [18–27,11]. However,
it is very difficult to extend the application of reproducing kernel theory to singularly perturbed differential equations.
Geng [11] developed a method for solving a class of singularly perturbed boundary value problems based on the RKM and a
proper transformation. Nevertheless, this method fails to solve singularly perturbed turning point problems.

In this paper, based on the RKM presented in [12,18], an effective numerical method shall be presented for solving
singularly perturbed turning point problems exhibiting an interior layer.
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Consider the following singularly perturbed problems:
εu′′(x)+ a(x)u′(x)− b(x)u(x) = f (x), −1 < x < 1,
u(−1) = α, u(1) = γ ,

(1.1)

where 0 < ε ≪ 1, a(x), b(x) and f (x) are assumed to be sufficiently smooth, and such that (1.1) has a unique solution.
The solution of (1.1) exhibits a layer behavior or turning point behavior depending upon the coefficient a(x). The points of

the domain where a(x) = 0 are known as turning points. The presence of the turning point results in a boundary or interior
layer in the solution of the problem and is more difficult to handle as compared to the non-turning point case. In this paper,
we consider the case in which the turning point results into an interior layer in the solution of the problem.

We consider problem (1.1) with the following assumptions
a(0) = 0, a′(0) > 0,
b(x) ≥ b0 > 0, x ∈ [−1, 1],

|a′(x)| ≥
|a′(0)|

2
, x ∈ [−1, 1].

(1.2)

Under these assumptions the given turning point problem possesses a unique solution exhibiting interior layers at x = 0.
Unlike boundary layers this layer occurs in the interior of the domains and is considerably weaker.

The rest of the paper is organized as follows. In the next section, the numerical technique for (1.1) is introduced. Error
analysis is introduced in Section 3. The numerical examples are given in Section 4. Section 5 ends this paper with a brief
conclusion.

2. Numerical method

Following the idea of [5,6], we divide the given interval [−1, 1] into three subintervals [−1,−Kερ], [−Kερ, Kερ] and
[Kερ, 1], where K , ρ are positive real numbers. The subintervals [−1,−Kερ] and [Kερ, 1] represent the regular regions, and
the interval [−Kερ, Kερ] represents the interior layer region. The asymptotic approximation technique is used to solve (1.1)
in the regular regions [−1,−Kερ] and [Kερ, 1]. Then the values of the asymptotic approximation are used as the boundary
conditions at the so-called transition points x = ±Kερ . In the interior layer region [−Kερ, Kερ], (1.1) is solved by combining
the method of stretching variable and the RKM. After solving both the regular and interior layer problems their solutions
are combined to obtain an approximate solution to the original problem over the entire region [−1, 1].

2.1. Solutions of the regular regions problems

Consider (1.1) in right regular region [Kερ, 1] and left regular region [−1,−Kερ]. LetUR,M(x) andUL,M(x) be the straight-
forward asymptotic expansions in the intervals [Kερ, 1] and [−1,−Kερ] respectively.

UR,M(x) =

M
k=0

εkuk(x), (2.1)

where uk(x) are solutions of the following equations

a(x)u′

0(x)− b(x)u0(x) = f (x), u0(1) = γ ,

a(x)u′

1(x)− b(x)u1(x) = −u′′

0(x), u1(1) = 0,
a(x)u′

2(x)− b(x)u2(x) = −u′′

1(x), u2(1) = 0,
. . .
a(x)u′

M(x)− b(x)uM(x) = −u′′

M−1(x), uM(1) = 0.

(2.2)

UL,M(x) =

M
k=0

εkvk(x), (2.3)

where vk(x) are solutions of the following equations

a(x)v′

0(x)− b(x)v0(x) = f (x), v0(−1) = α,

a(x)v′

1(x)− b(x)v1(x) = −v′′

0 (x), v1(−1) = 0,

a(x)v′

2(x)− b(x)v2(x) = −v′′

1 (x), v2(−1) = 0,

. . .

a(x)v′

M(x)− b(x)vM(x) = −v′′

M−1(x), vM(−1) = 0.

(2.4)



F.Z. Geng et al. / Journal of Computational and Applied Mathematics 255 (2014) 97–105 99

2.2. Solution of the interior layer region problem

Consider (1.1) in the interior layer region [−Kερ, Kερ]
εu′′(x)+ a(x)u′(x)− b(x)u(x) = f (x), −Kερ < x < Kερ,
u(−Kερ) = δ0 , UL,M(−Kερ), u(Kερ) = δ1 , UR,M(Kερ).

(2.5)

For the interior layer region, we scale x = ερswith y(s) ≡ u(x), then (2.5) becomes
ε1−2ρy′′(s)+ ε−ρa(ερs)y′(s)− b(ερs)y(s) = f (ερs), −K < s < K ,
y(−K) = δ0, y(K) = δ1.

(2.6)

In the following, we shall show how to use the RKM to solve (2.6) in detail.
Setting Ly(s) = ε1−2ρy′′(s)+ ε−ρa(ερs)y′(s)− b(ερs)y(s) and h(s) = f (ερs), (2.6) becomes

Ly(s) = h(s), −K < x < K ,
y(−K) = δ0, y(K) = δ1.

(2.7)

Introducing a new unknown function

Y (s) = y(s)− φ(s) (2.8)

where φ(s) = γ 0 + γ 1s and satisfies φ(−K) = δ0, φ(K) = δ1.
Problem (2.7)with inhomogeneous boundary conditions can be equivalently reduced to the problemof finding a function

Y (s) satisfying
LY (s) = F(s), −K < s < K ,
Y (−K) = 0, Y (K) = 0.

(2.9)

where F(s) = h(s)− Lφ(s).
To solve (2.9) using the RKM, first define and then construct a reproducing kernel space W 4

[−K , K ] in which every
function satisfies the homogeneous boundary conditions of (2.9).

Definition 2.1. W 4
[−K , K ] = {u(x) | u′′′(x) is absolutely continuous, u(4)(x) ∈ L2[−K , K ], u(−K) = 0, u(K) = 0}. The

inner product and norm inW 4
[−K , K ] are given, respectively, by

(u(y), v(y))4 = u(−K)v(−K)+ u′(−K)v′(−K)+ u(K)v(K)+ u′(K)v′(K)+

 K

−K
u(4)v(4)dy

and

∥u∥4 =


(u, u)4, u, v ∈ W 4

[−K , K ].

Theorem 2.1. W 4
[−K , K ] is a reproducing kernel space and its reproducing kernel is

k(x, y) =


k1(x, y), y ≤ x,
k1(y, x), y > x, (2.10)

where k1(x, y) =
1

20160K4 [26K 11
+(−56x2+6yx−56y2)K 9

+(35x4−16yx3+126y2x2−16y3x+35y4)K 7
+2520K 6

+(−7x6+
21yx5−105y2x4+66y3x3−105y4x2+21y5x−7y6)K 5

+2(x7−7yx6+21y2x5−35y3x4+35y4x3−21(y5+60)x2+7y(y5+180)x−
y2(y5+1260))K 4

+xy(3x6−7yx5+21y2x4+21y4x2−7y5x+3y6)K 3
−2520xy(x2−yx+y2)K 2

−x3y3(x4+y4)K +2520x3y3].

In [18], we give the method of obtaining a reproducing kernel. For the proof, please refer to Appendix B in [18].

Definition 2.2. W 1
[−K , K ] = {u(x) | u(x) is an absolutely continuous real value function, u′(x) ∈ L2[−K , K ]}. The inner

product and norm inW 1
[0, 1] are given, respectively, by

(u(y), v(y))1 = u(−K)v(−K)+

 K

−K
u′v′dy

and

∥u∥1 =


(u, u)1, u, v ∈ W 1

[−K , K ].

Theorem 2.2. W 1
[−K , K ] is a reproducing kernel space and its reproducing kernel is

k(x, y) =


1 + K + y, y ≤ x,
1 + K + x, y > x, (2.11)
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In (2.9), it is clear that L : W 4
[−K , K ] → W 1

[−K , K ] is a bounded linear operator. Put ϕi(s) = k(s, si) and ψi(s) =

L∗ϕi(s) where L∗ is the adjoint operator of L. The orthonormal system {ψ i(s)}
∞

i=1 of W 4
[−K , K ] can be derived from the

Gram–Schmidt orthogonalization process applied to {ψi(s)}∞i=1,

ψ i(s) =

i
k=1

βikψk(s), (βii > 0, i = 1, 2, . . .).

Theorem 2.3. For (2.9), if {si}∞i=1 is dense in [−K , K ], then {ψi(s)}∞i=1 is a complete system of W 4
[−K , K ] and ψi(s) =

Ltk(s, t)|t=si .

Proof. Note here that

ψi(s) = (L∗ϕi)(s) = ((L∗ϕi)(t), k(s, t))
= (ϕi(t), Ltk(s, t)) = Ltk(s, t)|t=si .

Hence, ψi(s) ∈ W 4
[−K , K ].

For each fixed u(s) ∈ W 4
[−K , K ], let (u(s), ψi(s)) = 0, (i = 1, 2, . . .), which means that

(u(s), (L∗ϕi)(s)) = (Lu(·), ϕi(·)) = (Lu)(si) = 0.

Since {si}∞i=1 is dense in [−K , K ], (Lu)(s) = 0. It follows that u ≡ 0 from the existence of L−1. Completing the proof. �

Theorem 2.4. If {si}∞i=1 is dense in [−K , K ] and the solution of (2.9) is unique, then the solution of (2.9) is

Y (s) =

∞
i=1

i
k=1

βikF(sk)ψ i(s). (2.12)

Proof. Applying Theorem 2.3, it follows that {ψ i(s)}
∞

i=1 is the complete orthonormal basis ofW 4
[−K , K ].

Note that (w(s), ϕi(s)) = w(si) for eachw(x) ∈ W 1
[−K , K ]; hence we have

Y (s) =

∞
i=1

(Y (s), ψ i(s))ψ i(s)

=

∞
i=1

i
k=1

βik(Y (s), L∗ϕk(s))ψ i(s)

=

∞
i=1

i
k=1

βik(LY (s), ϕk(s))ψ i(s)

=

∞
i=1

i
k=1

βik(F(s), ϕk(s))ψ i(s)

=

∞
i=1

i
k=1

βikF(sk)ψ i(s) (2.13)

and the proof of the theorem is complete. �

The approximate solution YN(s) can be obtained by taking finitely many terms in the series representation of Y (s) and

YN(s) =

N
i=1

i
k=1

βikF(sk)ψ i(s). (2.14)

Theorem 2.5. The approximate solution YN(s) and its derivatives Y
(i)
N (x), i = 1, 2 are all convergent.

Proof. Noting thatW 4
[−K , K ] is a Hilbert space, we have

∥YN(s)− Y (s)∥4 → 0, N → ∞.

Since

|Y
(i)
N (s)− Y

(i)
(s)| =

YN(t)− Y (t),
∂ ik(s, t)
∂si


4


≤ ∥YN − Y∥4

∂ ik(s, t)∂si


4
, (i = 0, 1, 2),
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we must have

|Y
(i)
N (s)− Y

(i)
(s)| → 0, N → ∞ (i = 0, 1, 2).

Therefore, the approximate solution YN(x) and its derivatives Y
(i)
N (x), i = 1, 2 are all convergent, and the proof is

complete. �

Combining (2.8) and (2.14), leads to the approximate solution of (2.6)

yN(s) = YN(s)+ φ(s) =

N
i=1

i
k=1

βikF(sk)ψ i(s)+ φ(s). (2.15)

Furthermore, the approximation of the solution of interior layer region problem (2.5) can be obtained by

UI,N(x) = yN
 x
ερ


. (2.16)

By (2.1), (2.3) and (2.16), the approximate solution of (1.1) on the entire region [−1, 1] is immediately obtained

UM,N(x) =

UL,M(x), −1 ≤ x < −Kερ,
UI,N(x), −Kερ ≤ x ≤ Kερ,
UR,M(x), Kερ < x ≤ 1.

(2.17)

3. Error analysis

Firstly, we discuss the errors of solution in the regular domain.

Theorem 3.1. The approximate solutions UR,M(x) and UL,M(x) of regular regions satisfy

∥UR,M(x)− u(x)∥∞ = max
s∈[Kερ ,1]

|UR,M(x)− u(x)| ≤ d1εM+1,

and

∥UL,M(x)− u(x)∥∞ = max
s∈[−1,−Kερ ]

|UL,M(x)− u(x)| ≤ d2εM+1,

where d1, d2 are positive constants.

Please refer to [28] for the proof of Theorem 3.1.
Theorem 3.1 shows that it is enough to take a small value ofM .
Secondly, we discuss the errors of solution in the interior layer region.
Suppose that the exact values of u(−Kερ) and u(Kερ) are δ0 and δ1. From Theorem 3.1, one obtains

|δ0 − δ0| ≤ d2εM+1, |δ1 − δ1| ≤ d1εM+1. (3.1)
Replacing δ0 and δ1 with δ0 and δ1 in (2.5) and (2.9), we have

εu′′(x)+ a(x)u′(x)− b(x)u(x) = f (x), −Kερ < x < Kερ,
u(−Kερ) = δ0, u(Kερ) = δ1.

(3.2)

and 
LY (s) = F(s), −K < s < K ,
Y (−K) = 0, Y (K) = 0. (3.3)

By using the RKM, we can obtain the approximate solutions YN(s) of (3.3) in the spaceW 4
[−K , K ]. Let u(x) and Y (s) be the

exact solutions of (3.2) and (3.3), respectively.
From [10], we have the following lemmas.

Lemma 3.1 (Minimum Principle). Consider (2.9). If Y (−K) ≥ 0, Y (K) ≥ 0 and LY (s) ≥ 0, ∀ s ∈ (−K , K), then
Y (s) ≥ 0, ∀ s ∈ (−K , K).

Lemma 3.2. If Y (s) is the solution of (2.9), then there exists a positive C such that

∥Y (s)∥∞ ≤ C∥F∥∞.

Lemma 3.3. If −K = s1 < s2 < · · · < sN = K , and if a(ερs), b(ερs), F(s) ∈ C2
[−K , K ], then the approximate solution YN(s)

of (2.9) satisfies

∥LYN − F∥∞ = max
s∈[−K ,K ]

|LYN − F | ≤ d3h2,

where d3 is a positive constant, h = max1≤i≤N−1 |si+1 − si|.
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Proof. For the details of the proof, one may refer to [15]. �

Theorem 3.2. The approximate solution YN(s) of (2.9) satisfies

∥YN(s)− Y (s)∥∞ ≤ d5 h2
+ d6εM+1,

where d5, d6 are positive constants.

Proof. By Theorem 3.1, it follows that

∥F − F∥∞ ≤ d4εM+1. (3.4)

From (3.4) and Lemma 3.3, one obtains

∥LYN − F∥∞ = ∥LYN − F + F − F∥∞

≤ ∥LYN − F∥∞ + ∥F − F∥∞

≤ d3h2
+ d4εM+1. (3.5)

Note that YN(s)− Y (s) is the solution of
LV = LYN − F , −K < s < K ,
V (−K) = 0, V (K) = 0.

Applying Lemma 3.2, we get

∥YN(s)− Y (s)∥∞ ≤ d5 h2
+ d6εM+1,

where d5, d6 are positive constants. �

Theorem 3.3. The approximate solution UI,N(x) of the interior layer region problem satisfies

∥UI,N(x)− u(x)∥∞ = max
s∈[−Kερ ,Kερ ]

|UI,N(x)− u(x)| ≤ d7 h2
+ d8εM+1.

Proof. Combining (2.8) and Theorem 3.2, we have

∥yN(s)− y(s)∥∞ = max
s∈[−K ,K ]

|yN(s)− y(s)| ≤ d7 h2
+ d8εM+1,

where d7, d8 are positive constants.
Note that

max
x∈[−Kερ ,Kερ ]

|UI,N(x)− u(x)| = max
s∈[−K ,K ]

|yN(s)− y(s)|.

Hence,

∥UI,N(x)− u(x)∥∞ ≤ d7 h2
+ d8εM+1. �

From Theorems 3.1 and 3.3, the following theorem can be obtained.

Theorem 3.4. The function UM,N(x) defined in (2.17) is an approximate solution in the sense that

∥UM,N(x)− u(x)∥∞ = max
x∈[−1,1]

|UM,N(x)− u(x)| ≤ d h2
+ dd εM+1,

where d, dd are positive constants, h = max1≤i≤N−1 |si+1 − si|.

4. Numerical examples

Example 4.1. Consider the following singular perturbation problem [1]
εu′′(x)+ 2xu′(x) = 0, −1 < x < 1,
u(−1) = −1, u(1) = 1.

This problem has an internal layer of width O(
√
ε). The exact solution is u(x) = erf( x

√
ε
). Using the present method, taking

ρ =
1
2 ,M = 1, K = 10, si = −K + (i − 1)h, h =

2K
N−1 , i = 1, 2, . . . ,N . All computations are performed by using

Mathematica 7.0. It is easy to obtain UL,1 = −1,UR,1 = 1. The relative errors using the present method (PM) are compared
with [1] in Table 1 for ε = 2−5, 2−10, 2−30. Taking ε = 10−5,N = 200, 400, the absolute errors are shown in Fig. 1.
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Table 1
Comparison of relative errors for Example 4.1.

ε h = 2−5 ([1]) h = 2−5 (PM) h = 2−6 ([1]) h = 2−6 (PM) h = 2−7 ([1]) h = 2−7 (PM)

2−5 1.53 × 10−2 8.40 × 10−5 1.45 × 10−2 5.20 × 10−6 1.20 × 10−2 3.20 × 10−7

2−10 2.63 × 10−3 8.33 × 10−5 1.20 × 10−3 5.15 × 10−6 2.40 × 10−3 3.30 × 10−7

2−30 1.07 × 10−5 8.40 × 10−5 1.07 × 10−5 5.22 × 10−6 1.07 × 10−5 3.33 × 10−7

Fig. 1. Absolute errors between the approximate solution and exact solution of Example 4.1 for ε = 10−5 (the left: N = 200; the right: N = 400).

Example 4.2. Consider the following singular perturbation problem [1]
εu′′(x)+ xu′(x)− u(x) = 0, −1 < x < 1,
u(−1) = 1, u(1) = 2.

This problem has an internal layer of width O(
√
ε). The exact solution is

u(x) =

2
√
ε


x + 3e−

x2−1
2ε


+ e

1
2ε

√
2πxerf


1

√
2
√
ε


+ 3e

1
2ε

√
2πxerf


x

√
2
√
ε


2e

1
2ε

√
2πerf


1

√
2
√
ε


+ 4

√
ε

.

Using the present method, taking ρ =
1
2 ,M = 1, K = 10, si = −K + (i − 1)h, h =

2K
N−1 , i = 1, 2, . . . ,N . It is easy

to obtain UL,1 = −x,UR,1 = 2x. The numerical results compared with [1] are given in Table 2 for ε = 2−5, 2−10. Taking
ε = 10−5,N = 100, 200, the absolute errors are shown in Fig. 2.

Example 4.3. Consider the following singular perturbation problem [2]
εu′′(x)+ 2(2x − 1)u′(x)− 4u(x) = 0, 0 < x < 1,
u(0) = 1, u(1) = 1.

This problem has an internal layer of width O(
√
ε). The exact solution is

u(x) = −

e
1
2ε−

(1−2x)2
2ε


2e

(1−2x)2
2ε

√
2πxerf


1−2x
√
2
√
ε


− e

(1−2x)2
2ε

√
2πerf


1−2x
√
2
√
ε


− 2

√
ε


e

1
2ε

√
2πerf


1

√
2
√
ε


+ 2

√
ε

.

Using the present method, taking ρ =
1
2 ,M = 1, K = 10, si = −K + (i−1)h, h =

2K
N−1 , i = 1, 2, . . . ,N . It is easy to obtain

UL,1 = 1−2x,UR,1 = 2x−1. The numerical results compared with [2] are given in Table 3. Taking ε = 10−6,N = 100, 200,
the absolute errors are shown in Fig. 3.

Example 4.4. Consider the following singular perturbation problem [7]
εu′′(x)+ u′(x) = −(1 + 2x), 0 < x < 1,
u′(0) = −1, u(1) = 0,

whose exact solution is given by

u(x) = 2ε2

e−

x
ε − e−

1
ε


− x(x − 2ε + 1)+ 2(1 − ε).

Using the present method, taking ρ =
1
2 ,M = 1, K = 10, si = (i − 1)h, h =

K
N−1 , i = 1, 2, . . . ,N = 100. It is easy to

obtain UR,1 = 2 − x − x2 + 2ε(x − 1). The numerical results compared with [7] are given in Table 4.
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Fig. 2. Absolute errors between the approximate solution and exact solution of Example 4.2 for ε = 10−5 (the left: N = 100; the right: N = 200).

Fig. 3. Absolute errors between the approximate solution and exact solution of Example 4.3 for ε = 10−6 (the left: N = 100; the right: N = 200).

Table 2
Comparison of numerical results for Example 4.2 with N = 100.

x ε = 2−5 (Exact solution) [1] PM ε = 2−10 (Exact solution) [1] PM

−1.000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
−0.875 0.875000 0.875005 0.875000 0.875000 0.875000 0.875000
−0.500 0.500367 0.501224 0.500367 0.500000 0.500001 0.500000
−0.125 0.199865 0.200683 0.199865 0.125001 0.127626 0.125001
−0.000 0.211571 0.210547 0.211571 0.0374008 0.021125 0.0374009
0.125 0.324865 0.325683 0.324865 0.250001 0.252626 0.250001
0.500 1.000370 1.001224 1.000370 1.000000 1.000001 1.000000
0.875 1.750000 1.750005 1.750000 1.750000 1.750000 1.750000
1.000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000

Table 3
Comparison of maximum absolute errors for Example 4.3.

ε N = 128 ([2]) N = 128 (PM) N = 256 ([2]) N = 256 (PM)

2−6 7.40 × 10−4 1.41 × 10−4 2.53 × 10−4 3.53 × 10−5

2−10 9.86 × 10−4 3.52 × 10−5 4.89 × 10−4 8.10 × 10−6

2−14 1.79 × 10−3 8.05 × 10−6 4.92 × 10−4 2.60 × 10−6

2−20 9.92 × 10−4 2.61 × 10−7 4.92 × 10−4 6.00 × 10−8

Table 4
Comparison of absolute errors for Example 4.4with ε = 10−3 .

x Method in [7] Present method

0.00000 3.50 × 10−8 2.43 × 10−10

0.00010 3.47 × 10−8 2.39 × 10−10

0.00050 3.35 × 10−8 2.22 × 10−10

0.00090 3.25 × 10−8 2.10 × 10−10

0.00300 2.84 × 10−8 1.71 × 10−10

0.00700 2.16 × 10−8 1.22 × 10−10

0.01000 1.66 × 10−8 9.08 × 10−11

0.02000 8.27 × 10−15 4.12 × 10−15

0.10000 1.80 × 10−3 5.85 × 10−18

0.30000 7.00 × 10−3 1.06 × 10−17

0.70000 3.00 × 10−3 6.78 × 10−17

0.90000 5.00 × 10−3 1.98 × 10−16

1.00000 0 0
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5. Conclusion

In this paper, a new method is proposed for solving singularly perturbed turning point problems with an interior layer.
The present method is based on the RKM, the asymptotic expansion technique and the method of stretching variable. The
major advantage of the method is that it can produce good globally continuous approximate solutions. The results from the
numerical example show that the present method is an accurate and reliable analytical technique for treating singularly
perturbed turning point problems with an interior layer.
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