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Abstract

This paper deals with a monotone alternating direction (ADI) scheme for
solving nonlinear singularly perturbed parabolic problems. Monotone se-
quences, based on the method of upper and lower solutions, are constructed
for a nonlinear difference scheme which approximates the nonlinear parabolic
problem. The monotone sequences possess quadratic convergence rate. An
analysis of uniform convergence of the monotone ADI scheme to the solutions
of the nonlinear difference scheme and to the continuous problem is given.
Numerical experiments are presented.
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1. Introduction

In this paper we give a numerical treatment for the nonlinear singularly
perturbed parabolic problem in the form

ut − Lu+ f(x, y, t, u) = 0, Lu ≡ µ2(uxx + uyy), (1)

(x, y, t) ∈ Q = ω × (0, T ], ω = {0 < x < 1} × {0 < y < 1} ,
u(x, y, t) = 0, (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = ψ(x, y), (x, y) ∈ ω,
where µ is a small positive parameter, ∂ω is the boundary of ω, the functions
f and ψ are smooth in their respective domains, and f satisfies the constraint

fu ≥ β, (x, y, t, u) ∈ ω × [0, T ]× (−∞,∞), (2)
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where β = const > 0. This assumption can always be obtained via a change
of variables. Indeed, introduce z(x, y, t) = e−λtu(x, y, t), where λ is a con-
stant. Now, z(x, y, t) satisfies (1) with ϕ = λz + e−λtf(x, y, t, eλtz), instead
of f , and we have ϕz = λ + fu. Thus, if λ ≥ −min fu + β, where minimum
is taking over the domain from (2), we conclude ϕz ≥ β.

For µ ≪ 1, the problem is singularly perturbed and characterized by
boundary layers (regions with rapid change of solutions) near boundary ∂ω
(see [2] for details). Various reaction-diffusion-type problems in chemical,
physical and engineering sciences are described by problem (1).

In the study of numerical methods for nonlinear singularly perturbed
problems, the two major points to be developed are: i) constructing robust
difference schemes (this means that unlike classical schemes, the error does
not increase to infinity, but rather remains bounded, as the small parameter
approaches zero); ii) obtaining reliable and efficient computing algorithms
for solving nonlinear discrete problems.

We shall employ a two-time level implicit scheme for approximating the
semilinear problem (1). Alternating direction implicit (ADI) methods are
very efficient methods for solving two or three dimensional parabolic prob-
lems. At each time-step, the ADI method reduces two or three dimensional
problems to a succession of one dimensional problems, and, usually, one needs
only to solve a sequence of tridiagonal systems. In the case of the nonlin-
ear reaction function f in (1), the corresponding discrete problems become
systems of nonlinear algebraic equations.

A fruitful method for solving the nonlinear difference scheme is the method
of upper and lower solutions and its associated monotone iterations. By us-
ing upper and lower solutions as two initial iterations, one can construct two
monotone sequences which converge monotonically from above and below,
respectively, to a solution of the problem. The above monotone iterative
method is well known and has been widely used for continuous and discrete
elliptic and parabolic boundary value problems. Most of publications on this
topic involve monotone iterative schemes whose rate of convergence is linear.
Accelerated monotone iterative methods for solving discrete parabolic prob-
lems are presented in [3, 9, 13]. An advantage of this accelerated approach
is that it leads to sequences which converge quadratically.

In [4, 6], the ADI method based on the Douglas-Rachford ADI scheme [5]
is applied to linear singularly perturbed reaction-diffusion problems of type
(1). This ADI method is shown to be uniformly convergent (robust) with
respect to the small parameter µ on special nonuniform meshes.
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In this paper, we construct a nonlinear ADI scheme based on a modifica-
tion of the Douglas-Rachford ADI scheme [5]. A monotone iterative method
with quadratic convergence rate from [3] is in use for solving nonlinear dis-
crete systems. We consider the case when on each time level a nonlinear
difference scheme is solved inexactly, and give an analysis of convergence of
a monotone ADI scheme on the whole interval of integration [0, T ].

The structure of the paper as follows. In Section 2, we introduce a non-
linear difference scheme for the numerical solution of (1), (2). In Section 3,
we construct a nonlinear ADI scheme. The new monotone ADI scheme is
presented in Section 4. Monotone properties of the ADI scheme are estab-
lished. Based on these properties, existence and uniqueness of the solution
to the nonlinear ADI scheme are proved. In Section 5, we show that on each
time level the monotone iterative method possesses quadratic convergence
rate. We analyze a convergence rate of the monotone ADI scheme on the
whole interval of integration [0, T ]. Section 6 deals with uniform convergence
of the monotone ADI scheme to the nonlinear parabolic problem (1), (2).
The final Section 7 presents results of numerical experiments.

2. The nonlinear difference scheme

On Q introduce a rectangular mesh ωh × ωτ , ωh = ωhx × ωhy:

ωhx = {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi} , (3)

ωhy =
{
yj, 0 ≤ j ≤ Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj

}
,

ωτ = {tk, 0 ≤ k ≤ Nτ ; t0 = 0, tNτ = T ; τk = tk − tk−1} .
For solving (1), consider the nonlinear implicit difference scheme

LU(p, tk) + f(p, tk, U)− τ−1
k U(p, tk−1) = 0, (p, tk) ∈ ωh × (ωτ \ {0}), (4)

with the boundary and initial conditions

U(p, tk) = 0, (p, tk) ∈ ∂ωh × (ωτ \ {0}),

U(p, 0) = ψ(p), p ∈ ωh,

where ∂ωh is the boundary of ωh. When no confusion arises, we write
f(p, tk, U(p, tk)) = f(p, tk, U). The difference operator L is defined by

LU(p, tk) = LhU(p, tk) + τ−1
k U(p, tk),
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LhU = Lh
xU + Lh

yU, Lh
νU = −µ2D2

νU, ν = x, y,

where D2
xU and D2

yU are the central difference approximations to the second
derivatives

D2
xU

k
ij = (~xi)

−1 [(Uk
i+1,j − Uk

ij

)
(hxi)

−1 −
(
Uk

ij − Uk
i−1,j

)
(hx,i−1)

−1] ,

D2
yU

k
ij = (~yj)

−1 [(Uk
i,j+1 − Uk

ij

)
(hyj)

−1 −
(
Uk

ij − Uk
i,j−1

)
(hy,j−1)

−1] ,
~xi = 2−1 (hx,i−1 + hxi) , ~yj = 2−1 (hy,j−1 + hyj) , Uk

ij ≡ U (xi, yj, tk) .

On each time level tk, k ≥ 1, introduce the linear difference problem

(L+ c(p, tk)I)W (p, tk) = Φ(p, tk), p ∈ ωh, (5)

W (p, tk) = g(p, tk), p ∈ ∂ωh,

where I is the identity operator. We are concerned with maximal nodal
errors, so we use the norm

‖W (·, tk)‖ωh = max
p∈ωh

|W (p, tk)|.

We now formulate the maximum principle and give an estimate to the solu-
tion of (5).

Lemma 1. Let the assumption

τ−1
k + min

p∈ωh
c(p, tk) > 0

hold true for k ≥ 1.
(i) If a mesh function W (p, tk) satisfies the conditions

(L+ c(p, tk)I)W (p, tk) ≥ 0 (≤ 0), p ∈ ωh,

W (p, tk) ≥ 0 (≤ 0), p ∈ ∂ωh,

then W (p, tk) ≥ 0 (≤ 0) in ωh.
(ii) The following estimates of the solutions to (5) hold true

‖W (·, tk)‖ωh ≤ max
p∈ωh

|Φ(p, tk)|
τ−1
k + c(p, tk)

. (6)

The proof of the lemma can be found in [11].
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Remark 1. A difference scheme which satisfies the maximum principle from
Lemma 1 is said to be monotone. The monotonicity condition guarantees that
the systems of algebraic equations based on such methods are well-posed (see
[11] for details).

Remark 2. The maximum principle from Lemma 1 holds true for the linear
difference operators Lh

ν + (τ−1
k + c(p, tk))I, ν = x, y.

3. The nonlinear ADI scheme

We use the following ADI scheme

(
I + τkLh

x

)
U∗(p, tk) = U(p, tk−1), p ∈ ωh, k ≥ 1, (7)

U∗(0, yj, tk) = U∗(1, yj, tk) = 0, j = 1, . . . , Ny − 1,
(
I + τkLh

y

)
U(p, tk) = U∗(p, tk)− τkf(p, tk, U), p ∈ ωh, k ≥ 1,

U(xi, 0, tk) = U(xi, 1, tk) = 0, i = 1, . . . , Nx − 1,

U(p, 0) = ψ(p), p ∈ ωh.

On each time level tk, k ≥ 1, for U∗(p, tk), Ny − 1 linear systems in the
x-direction must be solved, and for U(p, tk), Nx− 1 nonlinear systems in the
y-direction must be solved. The matrices corresponding to I + τkLh

ν(p, tk),
ν = x, y, are tridiagonal and can be inverted conveniently with the Thomas
algorithm (see [8] for details).

Applying from the left the linear operator I + τkLh
x to the difference

equation for U(p, tk) from (7), we get

(
I + τkLh

x

) (
I + τkLh

y

)
U(p, tk) = U(p, tk−1)−

(
I + τkLh

x

)
τkf(p, tk, U), (8)

or

(
I + τkLh

)
U(p, tk) + τkf(p, tk, U)− U(p, tk−1) + (9)

τ 2
kLh

x

(
f(p, tk, U) + Lh

yU(p, tk)
)

= 0.

The implicit scheme (4) and the nonlinear ADI scheme (7) differ by an order
of τ 2

k . Taking error accumulation into account, both schemes will give the
same first order accuracy in time.
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4. The monotone ADI scheme

We say that mesh functions Ũ(p, tk), Ũ
∗(p, tk) and Û(p, tk), Û

∗(p, tk) are

ordered upper and lower solutions of (7), if they satisfy Ũ(p, tk) ≥ Û(p, tk),

Ũ∗(p, tk) ≥ Û∗(p, tk), p ∈ ωh, k ≥ 1, and

(
I + τkLh

x

)
Ũ∗(p, tk) ≥ Ũ(p, tk−1), p ∈ ωh, k ≥ 1, (10)

(
I + τkLh

x

)
Û∗(p, tk) ≤ Û(p, tk−1), p ∈ ωh, k ≥ 1,

Û∗(0, yj, tk) ≤ 0 ≤ Ũ∗(1, yj, tk), j = 1, . . . , Ny − 1,
(
I + τkLh

y

)
Ũ(p, tk) ≥ Ũ∗(p, tk)− τkf(p, tk, Ũ), p ∈ ωh, k ≥ 1,

(
I + τkLh

y

)
Û(p, tk) ≤ Û∗(p, tk)− τkf(p, tk, Û), p ∈ ωh, k ≥ 1,

Û(xi, 0, tk) ≤ 0 ≤ Ũ(xi, 1, tk), i = 1, . . . , Nx − 1,

Û(p, 0) ≤ ψ(p) ≤ Ũ(p, 0), p ∈ ωh.

We now construct an iterative method for solving (7) in the following
way. Introduce the notation

Lν = Lh
ν + τ−1

k I, ν = x, y.

On each time level tk, k ≥ 1, we calculate sequences of upper and lower
solutions {V (n)

α (p, tk)} (α = 1 and α = −1 correspond to, respectively, the
upper and lower cases) and define

V1(p, tk) = V
(nk)
1 (p, tk), k ≥ 1, V1(p, 0) = ψ(p), p ∈ ωh,

as an approximate solution of the nonlinear ADI scheme (7) on tk, k ≥ 0,
where nk is a number of iterative steps on time level tk. Initial upper and
lower solutions V

(0)
α (p, tk), α = 1,−1, are calculated by solving the linear

problems
LxV

∗(p, tk) = τ−1
k V1(p, tk−1), p ∈ ωh, (11)

V ∗(0, yj, tk) = V ∗(1, yj, tk) = 0, j = 1, . . . , Ny − 1,

LyY
(0)
α (p, tk) = α|R(p, tk, S)|, p ∈ ωh,

Y (0)
α (p, tk) = 0, p ∈ ∂ωh,

R(p, tk, S) = LyS(p, tk) + f(p, tk, S)− τ−1
k V ∗(p, tk),

6



V (0)
α (p, tk) = S(p, tk) + Y (0)

α (p, tk), p ∈ ωh,

where S(p, tk) is an arbitrary mesh function, defined on ωh, which satisfies
S(p, tk) = 0 on ∂ωh. For n ≥ 1, we calculate upper and lower solutions by
using the recurrence formulae

(
Ly + c(n−1)(p, tk)I

)
Z(n)

α (p, tk) = −R(p, tk, V
(n−1)
α ), p ∈ ωh, (12)

R(p, tk, V
(n−1)
α ) = LyV

(n−1)
α (p, tk) + f(p, tk, V

(n−1)
α )−

τ−1
k V ∗(p, tk),

Z(1)
α (xi, 0, tk) = −V (0)

α (xi, 0, tk), i = 1, . . . , Nx − 1,

Z(1)
α (xi, 1, tk) = −V (0)

α (xi, 1, tk), i = 1, . . . , Nx − 1,

Z(n)
α (xi, 0, tk) = Z(n)

α (xi, 1, tk) = 0, i = 1, . . . , Nx − 1, n ≥ 2,

V (n)
α (p, tk) = V (n−1)

α (p, tk) + Z(n)
α (p, tk), p ∈ ωh,

The mesh function c(n−1)(p, tk) is given by

c(n−1)(p, tk) = max
V
{fu(p, tk, V ), V

(n−1)
−1 (p, tk) ≤ V ≤ V

(n−1)
1 (p, tk)}, (13)

where below in Theorem 1, we prove that V
(n−1)
−1 (p, tk) ≤ V

(n−1)
1 (p, tk), p ∈

ωh.
In the following theorem we prove the monotone property of the ADI

scheme (11)–(13).

Theorem 1. Let (2) hold. The sequences {V (n)
1 }, {V (n)

−1 }, generated by (11)–
(13) are ordered upper and lower solutions to (7) and converge monotonically

V
(n−1)
−1 (p, tk) ≤ V

(n)
−1 (p, tk) ≤ V

(n)
1 (p, tk) ≤ V

(n−1)
1 (p, tk), p ∈ ωh, (14)

where k ≥ 1 and n ≥ 1.

Proof. We show that V
(0)
1 (p, tk), k ≥ 1, defined by (11) is an upper solution.

From (11), by the maximum principle in Lemma 1, it follows that

Y
(0)
1 (p, tk) ≥ 0, p ∈ ωh.
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Using the difference equation and the mean-value theorem, we have

Ly(S(p, tk) + Y
(0)
1 (p, tk)) + f(p, tk, S + Y

(0)
1 )− τ−1

k V1(p, tk−1) =

R(p, tk, S) + |R(p, tk, S)|+ fu(p, tk, R)Y
(0)
1 (p, tk),

where S(p, tk) ≤ R(p, tk) ≤ S(p, tk) + Y (0)(p, tk). From (2) and Y
(0)
1 is

nonnegative, we conclude that V
(0)
1 (p, tk) = S(p, tk) + Y

(0)
1 (p, tk) is an upper

solution. Similarly, we can prove that V
(0)
−1 (p, tk) = S(p, tk) + Y

(0)
−1 (p, tk) is a

lower solution.
Since V

(0)
1 is an upper solution, then from (12), we have

(
Ly + c(0)(p, t1)I

)
Z

(1)
1 (p, t1) ≤ 0, p ∈ ωh,

Z
(1)
1 (xi, 0, t1) ≤ 0, Z

(1)
1 (xi, 1, t1) ≤ 0, i = 1, . . . , Nx − 1.

From (2) and (13), by Lemma 1, it follows that

Z
(1)
1 (p, t1) ≤ 0, p ∈ ωh. (15)

Similarly, for a lower solution V
(0)
−1 , we conclude that

Z
(1)
−1(p, t1) ≥ 0, p ∈ ωh. (16)

We now prove that

V
(1)
−1 (p, t1) ≤ V

(1)
1 (p, t1), p ∈ ωh. (17)

Letting W (n) = V
(n)
1 − V

(n)
−1 , n ≥ 0, from (12) and the mean-value theorem,

we have
(
Ly + c(0)(p, t1)I

)
W (1)(p, t1) = (c(0)(p, t1)− fu(p, t1, E))W (0)(p, t1),

p ∈ ωh, W (1)(xi, 0, t1) ≥ 0, W (1)(xi, 1, t1) ≥ 0, i = 1, . . . , Nx − 1,

where V
(0)
−1 (p, t1) ≤ E(p, t1) ≤ V

(0)
1 (p, t1). From W (0)(p, t1) ≥ 0, p ∈ ωh, (2)

and (13), we conclude that the right hand side in the difference equation is
nonnegative. Taking into account (2) and (13), the positivity property in
Lemma 1 implies W (1)(p, t1) ≥ 0, p ∈ ωh, and this leads to (17).

We now prove that V
(1)
1 (p, t1) and V

(1)
−1 (p, t1) are upper and lower solutions

(10), respectively. Using the mean-value theorem, from (12) we obtain

R(p, t1, V
(1)
1 ) = −

(
c(0)(p, t1)− fu(p, t1, Q)

)
Z

(1)
1 (p, t1), (18)
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where V
(1)
1 (p, t1) ≤ Q(p, t1) ≤ V

(0)
1 (p, t1). From here, (13), (15), (16) and

(17), it follows that

c(0)(p, t1) ≥ fu(p, t1, Q), p ∈ ωh.

From here and (15), we conclude that

R(p, t1, V
(1)
1 ) ≥ 0, p ∈ ωh,

V
(1)
1 (xi, 0, t1) = V

(1)
1 (xi, 1, t1) = 0, i = 1, . . . , Nx − 1.

Thus, V
(1)
1 (p, t1) is an upper solution. Similarly, we can prove that V

(1)
−1 (p, t1)

is a lower solution, that is,

R(p, t1, V
(1)
−1 ) ≤ 0, p ∈ ωh,

V
(1)
−1 (xi, 0, t1) = V

(1)
−1 (xi, 1, t1) = 0, i = 1, . . . , Nx − 1.

By induction on n, we can prove that {V (n)
1 (p, t1)} is a monotonically

decreasing sequence of upper solutions and {V (n)
−1 (p, t1)} is a monotonically

increasing sequence of lower solutions, which satisfy (14) for t1.

By induction on k, k ≥ 1 , we can prove that {V (n)
1 (p, tk)} is a mono-

tonically decreasing sequence of upper solutions and {V (n)
−1 (p, tk)} is a mono-

tonically increasing sequence of lower solutions, which satisfy (14). Thus, we
prove the theorem.

Applying Theorem 1, we investigate existence and uniqueness of a solution
to the nonlinear ADI scheme (7).

Theorem 2. Let (2) hold. Then the nonlinear ADI scheme (7) has a unique
solution.

Proof. Let U1(p, t1) = limn→∞ V
(n)
1 (p, t1), p ∈ ωh. It follows from (14) that

the limit exists and

U1(p, t1) ≤ V
(n)
1 (p, t1), lim

n→∞
Z

(n)
1 (p, t1) = 0, p ∈ ωh. (19)

Similar to (18), we can prove that

R(p, t1, V
(n)
1 ) = −(c(n−1)(p, t1)− fu(p, t1, Q

(n))Z
(n)
1 (p, t1), n ≥ 1, (20)

9



where V
(n)
1 (p, t1) ≤ Q(n)(p, t1) ≤ V

(n−1)
1 (p, t1). From here and (19), we con-

clude that U1(p, t1) solves (7) at t1. By induction on k, k ≥ 1, we can prove
that

U1(p, tk) = lim
n→∞

V
(n)
1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear ADI scheme (7). Similarly, we can prove that

U−1(p, tk) = lim
n→∞

V
(n)
−1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear ADI scheme (7).
We now show that

U1(p, tk) = U−1(p, tk), p ∈ ωh, k ≥ 1,

where U1(p, tk) and U−1(p, tk) are solutions to the nonlinear ADI scheme (7),
which are defined above. Let W (p, tk) = U1(p, tk)− U−1(p, tk). From (7), by
Lemma 1, it follows that U∗(p, t1) = 0, p ∈ ωh. From here and (7), we have

LyW (p, t1) + f(p, t1, U1)− f(p, t1, U−1) = 0, p ∈ ωh,

W (p, t1) = 0, p ∈ ∂ωh.

From (14), it follows that

V
(n)
−1 (p, t1) ≤ U−1(p, t1) ≤ U1(p, t1) ≤ V

(n)
1 (p, t1), p ∈ ωh. (21)

Using the mean-value theorem, we obtain

(Ly + fu(p, t1, E)I)W (p, t1) = 0, p ∈ ωh, W (p, t1) = 0, p ∈ ∂ωh,

where U−1(p, t1) ≤ E(p, t1) ≤ U1(p, t1). Using (2), by Lemma 1, we conclude
that W (p, t1) = 0, p ∈ ωh. By induction on k, k ≥ 1, we can prove that
W (p, tk) = 0, p ∈ ωh, k ≥ 1, and prove the theorem.

5. Convergence properties of the monotone ADI scheme

5.1. Quadratic convergence of the monotone iterative method

Introduce the notation

rk = max
p∈ωh

[max
V
{|fuu(p, tk, V )|, Û(p, tk) ≤ V ≤ Ũ(p, tk)}]. (22)

The following theorem gives the quadratic convergence of the monotone it-
erative method (11)–(13).
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Theorem 3. Let (2) hold. On each time level, for the sequences {V (n)
α },

α = 1,−1, generated by (11)–(13), the following estimate holds:

‖W (n+1)(·, tk)‖ωh ≤ ρk‖W (n)(·, tk)‖2
ωh , ρk = τkrk, (23)

where W (n)(p, tk) = V
(n)
1 (p, tk)− V

(n)
−1 (p, tk).

Proof. From (12), we have

(Ly + c(n)(p, tk)I)W
(n+1)(p, tk) = H(n)(p, tk), p ∈ ωh, (24)

H(n)(p, tk) = c(n)(p, tk)W
(n)(p, tk)− (f(p, tk, V

(n)
1 )− f(p, tk, V

(n)
−1 )),

W (n+1)(xi, 0, tk) = W (n+1)(xi, 1, tk) = 0, i = 1, . . . , Nx − 1.

By the mean-value theorem,

f(p, tk, V
(n)
1 )− f(p, tk, V

(n)
−1 ) = fu(p, tk, E

(n))W (n)(p, tk),

where V
(n)
−1 (p, tk) ≤ E(n)(p, tk) ≤ V

(n)
1 (p, tk). From (13), it follows that

c(n)(p, tk) = fu(p, tk, Q
(n)), V

(n)
−1 (p, tk) ≤ Q(n)(p, tk) ≤ V

(n)
1 (p, tk).

Thus, we represent the right hand side H(n) from (24) in the form

(fu(p, tk, Q
(n))− fu(p, tk, E

(n)))W (n)(p, tk).

Applying again the mean-value theorem, we get

fu(p, tk, Q
(n))− fu(p, tk, E

(n)) = fuu(p, tk, G
(n))(Q(n)(p, tk)−E(n)(p, tk)),

where G(n) lies between Q(n) and E(n). Taking into account that

|Q(n)(p, tk)− E(n)(p, tk)| ≤ V
(n)
1 (p, tk)− V

(n)
−1 (p, tk),

in the notation (22), we estimate H(n) from (24) as follows

‖H(n)(·, tk)‖ωh ≤ rk‖W (n)(·, tk)‖2
ωh.

From here, using (6), we prove the estimate (23).
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Remark 3. If on each time level tk, k ≥ 1, the nonlinear function f satisfies
the constraint

min
p∈ωh

[min
V
{fuu(p, tk, V ), Û(p, tk) ≤ V ≤ Ũ(p, tk)}] ≥ 0, (25)

then for the upper sequence {V (n)
1 } in Theorem 3, we have the estimate

‖V (n+1)
1 (·, tk)− U(·, tk)‖ωh ≤ ρk‖V (n)

1 (·, tk)− U(·, tk)‖2
ωh ,

where U is the exact solution of the nonlinear ADI scheme (7). From as-
sumption (25) on fuu and (13), it follows that

c(n)(p, tk) = fu(p, tk, V
(n)
1 ). (26)

If we take into account that W (n)(p, tk) = V
(n)
1 (p, tk) − U(p, tk), U

∗(p, tk) ≤
E(n)(p, tk) ≤ V

(n)
1 (p, tk) and Q(n) = V

(n)
1 , the proof of the estimate repeats

the proof of Theorem 3.
In the case of the constraint (25), from (26), it follows that on each

time level tk, k ≥ 1, one can calculate only the sequence of upper solutions
{V (n)

1 (p, tk)} in the monotone ADI scheme (11)–(13). Thus, calculation of
the mesh function c(n−1)(p, tk) is simplified to compare (26) to (13).

If on each time level tk, k ≥ 1, the nonlinear function f satisfies the
constraint

max
p∈ωh

[max
V
{fuu(p, tk, V ), Û(p, tk) ≤ V ≤ Ũ(p, tk)}] ≤ 0, (27)

then for the lower sequence {V (n)
−1 } in Theorem 3, we have the estimate

‖V (n+1)
−1 (·, tk)− U(·, tk)‖ωh ≤ ρk‖V (n)

−1 (·, tk)− U(·, tk)‖2
ωh .

From assumption (27) on fuu and (13), it follows that

c(n)(p, tk) = fu(p, tk, V
(n)
−1 ). (28)

If we take into account that W (n)(p, tk) = V
(n)
−1 (p, tk)−U(p, tk), V

(n)
−1 (p, tk) ≤

E(n)(tk) ≤ U∗(p, tk) and Q(n) = V
(n)
−1 , the proof of the estimate repeats the

proof of Theorem 3.
In the case of the constraint (27), from (28), it follows that on each

time level tk, k ≥ 1, one can calculate only the sequence of lower solutions
{V (n)
−1 (p, tk)} in the monotone ADI scheme (11)–(13). Thus, calculation of

the mesh function c(n−1)(p, tk) is simplified to compare (28) to (13).

12



Introduce the notation

qn(tk) = ‖V (n)
1 (·, tk)− V

(n)
−1 (·, tk)‖ωh.

In the following theorem we estimate the quadratic convergence rate in (23).

Theorem 4. Let (2) hold. Then on each time level, for the sequences {V (n)
α },

α = 1, 2, generated by (11)–(13), there exists nk, such that ρkqnk
< 1, and

the following estimate holds:

qn(tk) ≤
1

ρk

[ρkqnk
(tk)]

2n−nk
, n ≥ nk, (29)

where ρk is defined in (23).

Proof. Let κn(tk) = ρkqn(tk). Multiplying (23) by ρk, we have

κn+1(tk) ≤ [κn(tk)]
2 , n ≥ 0.

Since the sequences {V (n)
α (p, tk)}, α = 1,−1, converge to the exact solution

U(p, tk) of the nonlinear scheme (7), then for some nk the inequality κnk
< 1

holds. By induction, we show that

κn(tk) ≤ [κnk
(tk)]

2n−nk
, n ≥ nk. (30)

It is true for n = nk. Assuming that it holds true for n = l, we have

κl+1(tk) ≤ [κl(tk)]
2 ≤

(
[κnk

(tk)]
2l−nk

)2

= [κnk
(tk)]

2l+1−nk
,

and prove (30). From (30) and κn(tk) = ρkqn(tk), we conclude (29).

5.2. Convergence of the monotone ADI scheme on [0, T ]

In Theorems 1, 3 and 4, we have investigated convergence properties
of the monotone ADI scheme (11)–(13) on each time-level tk, k ≥ 1. We
now investigate convergence of the monotone ADI scheme (11)–(13) on the
whole interval of integration [0, T ]. In (12), we assume that on each time-
level tk, k ≥ 1, V1(p, tk) is the approximation of the exact solution, where

V1(p, tk) = V
(nk)
1 (p, tk). Thus, on the whole interval of integration, we esti-

mate maxtk∈ωτ ‖V1(·, tk) − U(·, tk)‖ωh, where U is the exact solution to the
nonlinear ADI scheme (7).

13



We now choose the stopping criterion of the monotone ADI scheme (11)–
(13) in the form

‖R(·, tk, V (n)
1 )‖ωh ≤ δ, (31)

where δ is a prescribed accuracy, and set up V1(p, tk) = V
(nk)
1 (p, tk), p ∈ ωh,

such that nk is minimal subject to (31).
We prove the following convergence result for the monotone ADI scheme

(11)–(13), (31).

Theorem 5. Let (2) hold true. The sequence {V (n)
1 }, generated by (11)–(13),

(31), converges uniformly in the perturbation parameter µ:

max
tk∈ωτ

‖V1(·, tk)− U(·, tk)‖ωh ≤ Tδ, (32)

where U(p, tk) is the unique solution to (7).

Proof. The difference problem for V1(p, tk) = V
(nk)
1 (p, tk), k ≥ 1, can be

represented in the form

LyV1(p, tk) + f(p, tk, V1)− τ−1
k V ∗(p, tk) = R(p, tk, V

(nk)
1 ), p ∈ ωh,

V1(xi, 0, tk) = V1(xi, 1, tk) = 0, i = 1, . . . , Nx − 1.

From here, (7) and using the mean-value theorem, we get the following
difference problems for W ∗(p, tk) = V ∗(p, tk) − U∗(p, tk) and W (p, tk) =
V1(p, tk)− U(p, tk):

LxW
∗(p, tk) = τ−1

k W (p, tk−1), p ∈ ωh, (33)

W ∗(0, yj, tk) = W ∗(1, yj, tk) = 0, j = 1, . . . , Ny − 1,

(Ly + fu(p, tk, E)I)W (p, tk) = R(p, tk, V1) + τ−1
k W ∗(p, tk), p ∈ ωh,

W (xi, 0, tk) = W (xi, 1, tk) = 0, i = 1, . . . , Nx − 1,

where E(p, tk) lies between V1(p, tk) and U(p, tk). From here and (2), by
using (6), we have

‖W ∗(·, tk)‖ωh ≤ ‖W (·, tk−1)‖ωh , (34)

‖W (·, tk)‖ωh ≤ τk‖R(·, tk, V1)‖ωh + ‖W ∗(·, tk)‖ωh.
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Since W (p, 0) = 0, from here, by using (6), we conclude that W ∗(p, t1) = 0,
p ∈ ωh. From here, (34) and taking into account that according to Theorem 1
the stopping criterion (31) can always be satisfied, it follows that

‖W (·, t1)‖ωh ≤ δτ1.

Similarly, from here and (34), we obtain

‖W ∗(·, t2)‖ωh ≤ δτ1, ‖W (·, t2)‖ωh ≤ δτ1 + δτ2.

Now, by induction on k, we conclude that

‖W (·, tk)‖ωh ≤ δ

k∑

l=1

τl ≤ δT, k ≥ 1.

Thus, we prove the theorem.

6. Uniform convergence of the monotone ADI scheme to the non-
linear parabolic problem

We suppose sufficient smoothness of functions f and ψ in (1) and also
sufficient compatibility conditions between the initial and boundary data, in
such a way that for l sufficiently large integer and 0 < ǫ < 1, the solution of
(1) satisfies

u(x, y, t) ∈ C l+ǫ,l+ǫ,(l+ǫ)/2(Q).

Using the mean-value theorem, the reaction function f in (1) can be written
in the form f(x, y, t, u) = f(x, y, t, 0)+fuu. Now, we may consider (1), (2) as
a linear parabolic problem with the smooth coefficient fu and use the bounds
of the exact solution and its derivatives obtained in [12] for a linear problem.
According to [12], the solution can be decomposed into two parts u = S+E,
where S and E are the regular and singular parts of u, respectively. In turn,
the singular part can be decomposed in the form

E = Φ + Ψ + (Υ00 + Υ10 + Υ01 + Υ11) ,

where Φ and Ψ are essentially one-dimensional boundary layer functions in
some neighborhoods of sides x = 0, x = 1 and y = 0, y = 1, respectively, and
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Υmn, m, n = 0, 1 are corner layers in the neighborhood of (m,n). According
to the results from [12], the following bounds hold true:

∣∣∣∣
∂kS(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ ≤ C, (35)

∣∣∣∣
∂kΦ(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ ≤ Cµ−kxΠ(x), Π(x) = Π0(x) + Π1(x),

∣∣∣∣
∂kΨ(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ ≤ Cµ−kyΠ̂(y), Π̂(y) = Π̂0(y) + Π̂1(y),

∣∣∣∣
∂kΥmn(x, y, t)

∂xkx∂yky∂tkt

∣∣∣∣ ≤ Cµ−(ky+ky)Πm(x)Π̂n(y), m, n = 0, 1,

Π0(x) = exp
(
−
√
βx/µ

)
, Π1(x) = exp

(
−
√
β(1− x)/µ

)
,

Π̂0(y) = exp
(
−
√
βy/µ

)
, Π̂1(y) = exp

(
−
√
β(1− y)/µ

)
,

where k = (kx, ky, kt), kx+ky +2kt ≤ l, and here and throughout C denotes a
generic positive constant which is independent of µ and the mesh parameters.

6.1. Layer-adapted meshes

We employ a layer-adapted mesh from [10] which is formed in the follow-
ing manner. We divide each of the intervals ωx = [0, 1] and ωy = [0, 1] into
three parts [0, ςx], [ςx, 1− ςx], [1− ςx, 1], and [0, ςy], [ςy, 1− ςy], [1− ςy, 1],
respectively. Assuming that Nx, Ny are divisible by 4, in the parts [0, ςx],
[1− ςx, 1] and [0, ςy], [1− ςy, 1] we allocate Nx/4+1 and Ny/4+1 mesh points,
respectively, and in the parts [ςx, 1− ςx] and [ςy, 1− ςy] we allocate Nx/2 + 1
and Ny/2 + 1 mesh points, respectively. Points ςx, (1− ςx) and ςy, (1− ςy)
correspond to transition to the boundary layers. We consider meshes ωhx and
ωhy which are equidistant in

[
xNx/4, x3Nx/4

]
and

[
yNy/4, y3Ny/4

]
but graded

in
[
0, xNx/4

]
,
[
x3Nx/4, 1

]
and

[
0, yNy/4

]
,
[
y3Ny/4, 1

]
. On

[
0, xNx/4

]
,
[
x3Nx/4, 1

]

and
[
0, yNy/4

]
,
[
y3Ny/4, 1

]
let our mesh be given by a mesh generating func-

tion φ with φ(0) = 0 and φ(1/4) = 1 which is supposed to be continuous,
monotonically increasing, and piecewise continuously differentiable. Then
our mesh is defined by

xi =





ςxφ (ξi) , ξi = i
Nx
, i = 0, . . . , Nx

4
;

ihx, i = Nx

4
+ 1, . . . , 3Nx

4
− 1;

1− ςx (1− φ (ξi)) , ξi = (i− 3Nx

4
)N−1

x , i = 3Nx

4
+ 1, . . . , Nx,
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yj =





ςyφ (ξj) , ξj = j
Ny
, j = 0, . . . , Ny

4
;

jhy, j = Ny

4
+ 1, . . . , 3Ny

4
− 1;

1− ςy (1− φ (ξj)) , ξj = (j − 3Ny

4
)N−1

y , j = 3Ny

4
+ 1, . . . , Ny,

hx = 2 (1− 2ςx)N
−1
x , hy = 2 (1− 2ςy)N

−1
y .

We also assume that φ
′
does not decrease. This condition implies that

hxi ≤ hx,i+1, i = 1, . . . ,
Nx

4
− 1, hxi ≥ hx,i+1, i =

3Nx

4
+ 1, . . . , Nx − 1,

hyj ≤ hy,j+1, j = 1, . . . ,
Ny

4
− 1, hyj ≥ hy,j+1, j =

3Ny

4
+ 1, . . . , Ny − 1.

Piecewise uniform meshes of Shishkin-type. The piecewise uniform
meshes ωhx and ωhy are defined in the manner of [7] and are referred to as
Shishkin meshes. The boundary layer thicknesses ςx and ςy are chosen as

ςx = min {1/4, m1µ lnNx} , ςy = min {1/4, m2µ lnNy} ,
where m1 and m2 are positive constants independent of µ, Nx and Ny. If
ςx,y = 1/4, then N−1

x,y are very small relative to µ, and in this case, the
difference scheme can be analyzed using standard techniques. We therefore
assume that

ςx = m1µ lnNx, ςy = m2µ lnNy. (36)

Consider the mesh generating function φ in the form

φ(ξ) = 4ξ. (37)

In this case the meshes ωhx and ωhy are piecewise equidistant with the step
sizes

N−1
x < hx < 2N−1

x , hxµ = m1µN
−1
x lnNx,

N−1
y < hy < 2N−1

y , hyµ = m2µN
−1
y lnNy.

The mesh ωhy is defined similarly.
Log-meshes of Bakhvalov-type. We choose the transition points ςx,

(1− ςx) and ςy, (1− ςy) in Bakhvalov’s sense (see [1] for details), i.e.

ςx = m1µ ln (1/µ) , ςy = m2µ ln (1/µ) , (38)

and the mesh generating function φ is given in the form

φ(ξ) =
ln[1− 4(1− µ)ξ]

lnµ
, (39)

where m1 and m2 are positive constants independent of µ, Nx and Ny.
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6.2. Error analysis

Firstly, we analyze a local truncation error of the exact solution u(x, y, t)
to the nonlinear problem (1), (2) on the nonlinear ADI scheme (7). Since
the exact solution U(p, tk) of (7) satisfies (9), then on each time level tk the
local truncation error σ(p, tk) is defined by the left hand side of (9), where
u(p, tk) is in use instead of U(p, tk).

Lemma 2. The following error bounds hold true:

‖σ(·, tk)‖ωh ≤
{
Cτk (N−1 lnN + τk) , on mesh (36), (37),
Cτk (N−1 + τk) , on mesh (38), (39),

(40)

where N = min {Nx, Ny}, and constant C is independent of µ, N and τk.

Proof. We split σ(p, tk) into two parts σ1(p, tk) and σ2(p, tk), where

σ1(p, tk) = (I + τkLh)u(p, tk) + τkf(p, tk, u)− u(p, tk−1),

σ2(p, tk) = τ 2
kLh

x(f(p, tk, u) + Lh
yu(p, tk)).

The part σ1(p, tk) corresponds to the nonlinear implicit difference scheme for
solving (1), (2), and for σ1(p, tk), we proved the error bounds (40) in [2].

We now estimate σ2(p, tk). The representation

D2
xgij = (~xihxi)

−1

∫ xi+1

xi

∫ s

xi

∂2g(z, yj)

∂x2
dzds+

(~xihx,i−1)
−1

∫ xi−1

xi

∫ s

xi

∂2g(z, yj)

∂x2
dzds

for any smooth g yields
∣∣D2

xgij

∣∣ ≤
∥∥∂2g/∂x2

∥∥
[xi−1,xi+1]

.

From here, (35) and using the mean-value theorem, we obtain

‖Lh
xf(·, tk, u)‖ωh ≤ ‖Lh

xf(·, tk, 0)‖ωh + ‖Lh
xfuu(·, tk)‖ωh ≤ C.

For any smooth g, we have

D2
xD2

ygij = (~yjhyj)
−1

∫ yj+1

yj

∫ s

yj

D2
x

∂2g(xi, z)

∂y2
dzds+

(~yjhy,j−1)
−1

∫ yj−1

yj

∫ s

yj

D2
x

∂2g(xi, z)

∂y2
dzds.
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Using the above integral representation for D2
x, we get

∣∣D2
xD2

ygij

∣∣ ≤
∥∥∂4g/(∂x2∂y2)

∥∥
[xi−1,xi+1]×[yj−1,yj+1]

.

From here and (35), we obtain

‖Lh
xLh

yu(·, tk)‖ωh ≤ C.

Collecting the above bounds, we estimate σ2(p, tk) in the form

‖σ2(·, tk)‖ωh ≤ Cτ 2
k .

From here, we prove the error bounds (40) for σ(p, tk).

We now investigate µ-uniform convergence of the nonlinear ADI scheme
(7) on layer-adapted meshes to the nonlinear parabolic problem (1), (2).

Lemma 3. On each time level tk, k ≥ 1, the nonlinear ADI scheme (7)
converges µ-uniformly to the nonlinear parabolic problem (1), (2):

‖U(·, tk)− u(·, tk)‖ωh ≤
{
C (N−1 lnN + τ) , on mesh (36), (37),
C (N−1 + τ) , on mesh (38), (39),

(41)

where N = min {Nx, Ny}, τ = maxk τk, and constant C is independent of µ,
N and τ .

Proof. Let e(p, tk) = U(p, tk) − u(p, tk). We use (8) and the mean-value
theorem to represent the difference problem for e(p, tk) in the form
(
I + τkLh

x

) (
(1 + τkfu)I + τkLh

y

)
e(p, tk) = e(p, tk−1)− σ(p, tk), p ∈ ωh,

e(p, tk) = 0, p ∈ ∂ωh, e(p, 0) = 0, p ∈ ωh.

From here and taking into account that
∥∥∥
(
I + τkLh

x

)−1
∥∥∥ ≤ 1,

∥∥∥
(
(1 + τkfu)I + τkLh

y

)−1
∥∥∥ ≤ 1,

we obtain the following estimate for e(p, tk):

‖e(·, tk)‖ωh ≤ ‖e(·, tk−1)‖ωh + ‖σ(·, tk)‖ωh .

From here and e(p, 0) = 0, p ∈ ωh, we conclude that

‖e(·, tk)‖ωh ≤
(

k∑

l=1

τl

)
‖τ−1

l σ(·, tl)‖ωh,

From here,
∑k

l=1 τk ≤ T and (40), we prove (41).
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We now arrive at our main theoretical result.

Theorem 6. The sequence {V (n)
1 }, generated by the monotone ADI scheme

(11)–(13), (31), converges µ-uniformly to the solution u of the nonlinear
parabolic problem (1), (2):

‖V1(·, tk)− u(·, tk)‖ωh ≤
{
C (δ +N−1 lnN + τ) , on mesh (36), (37),
C (δ +N−1 + τ) , on mesh (38), (39),

where constant C is independent of µ, N and τ .

Proof. The proof follows from (32) and (41).

7. Numerical experiments

In this section, we present some numerical experiments for the monotone
ADI scheme. Our test problem arises from the enzyme reaction model where
the reaction function is based on the Michaelis-Menton hypothesis. In the
test problem, the true continuous solution is explicitly known and is used to
compare with the numerical solution from the monotone iterations by the
monotone ADI scheme.

We choose the stopping criterion in the form (31) with δ = 10−5. In all
numerical experiments, the monotone property of upper and lower solutions
is observed at every mesh point of the computational domain.

We consider the enzyme reaction model with an internal source q(x, y, t)
in ω = {0 < x < 1, 0 < y < 1}. This is given by

ut − µ2(uxx + uyy)−
a+ u

b+ u
= q(x, y, t), (x, y, t) ∈ ω × (0, T ],

u(x, y, t) = 0, (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = 0, (x, y) ∈ ω,
where a and b are positive constants, a > b > 0. We choose q(x, y, t) such
that the exact solution is

u(x, y, t) = (1− e−t)φ(x)φ(y), φ(z) = 1− e−z/µ + e−(1−z)/µ

1 + e−1/µ
. (42)

For f(x, y, t, u) = −(a + u)/(b+ u)− q(x, y, t), we have

fu =
a− b

(b+ u)2
,

a− b

(1 + b)2
≤ fu ≤

a− b

b2
, u ≥ 0.
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Thus, β = (a− b)/(1 + b)2 in (2). Since fuu = −2(a− b)(b+u)−3 ≤ 0, u ≥ 0,
then c(n−1) in (13) is given in the form of (28), and we can calculate only the

sequence of lower solutions {V (n)
−1 (p, tk)}, where V−1(p, tk−1) = V

(nk−1)
−1 (p, tk−1)

is in use in (12), instead of V1(p, tk−1).
Piecewise uniform mesh of Shishkin-type. Here we consider the

monotone ADI scheme on the piecewise uniform mesh (36), (37). In Table 1,
for a = 50, b = 1 and T = 0.5 and different values of µ, N and τ = T/N , we
present the maximum numerical error

error(N) = max
0≤k≤Nτ

‖V−1(·, tk)− u(·, tk)‖ωh,

where u(x, t) is the exact solution (42), and number of monotone iterations
on each time level is given in parentheses. The order of maximum numerical
error, corresponding to the data from Table 1,

order(N) = log2

(
error(N)

error(2N)

)
,

is reported in Table 2. The data in Tables 1 and 2 show that the monotone
ADI scheme converges µ-uniformly, the numerical solution has the first-order
accuracy in the time variable, and the monotone lower sequences converge
in a few iterations to the exact solution.

µ/N 64 128 256 512 1024
1 2.21e-4(2) 1.34e-4(2) 7.60e-5(2) 4.06e-5(2) 2.10e-5(2)

10−1 1.54e-3(4) 9.75e-4(4) 5.89e-4(3) 3.29e-4(3) 1.76e-4(3)
10−2 2.10e-3(4) 1.27e-3(4) 5.97e-4(3) 3.34e-4(3) 1.78e-4 (3)
10−3 1.05e-2(4) 6.23e-3(4) 3.52e-3(3) 1.93e-3(3) 1.01e-3(3)
10−4 7.31e-3(4) 4.19e-3(4) 2.30e-3(3) 1.21e-3(3) 6.26e-4(3)
≤ 10−5 7.66e-3(4) 4.21e-3(4) 2.32e-3(3) 1.22e-3(3) 6.28e-4(3)

Table 1: Errors in the monotone ADI scheme on mesh (36), (37) for τ = T/N .

For the same set of parameters as in Table 1 but τ = (T/N)2, we present
the maximum numerical error and the order of maximum numerical error
in Tables 3 and 4, respectively. The data in Tables 3 and 4 show that the
monotone ADI scheme converges µ-uniformly, for µ ≤ 10−3, the numerical
solution has the first-order accuracy in the space variables, and the monotone
lower sequences converge in a few iterations to the exact solution.
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µ/N 64 128 256 512
1 0.72 0.82 0.91 0.95

10−1 0.66 0.73 0.84 0.90
10−2 0.73 1.09 0.84 0.91
10−3 0.76 0.82 0.87 0.93
10−4 0.80 0.84 0.90 0.95
≤ 10−5 0.86 0.90 0.93 0.97

Table 2: Order of convergence in the monotone ADI scheme on mesh (36), (37) for τ =
T/N .

µ/N 64 128 256 512 1024
1 4.81e-6(2) 1.28e-6(2) 3.30e-7(2) 8.37e-8(2) 2.08e-8(2)

10−1 9.17e-5(3) 1.94e-5(3) 3.54e-6(3) 6.62e-7(2) 1.36e-7(2)
10−2 2.21e-3(3) 1.23e-3(3) 5.08e-4(3) 1.64e-4(3) 4.30e-5(2)
10−3 1.05e-2(3) 6.03e-3(3) 3.38e-3(3) 1.86e-3(3) 9.81e-4(2)
10−4 7.26e-3(3) 4.11e-3(3) 2.27e-3(3) 1.18e-3(3) 6.11e-4(2)
≤ 10−5 7.66e-3(3) 4.19e-3(3) 2.28e-3(3) 1.18e-3(3) 5.98e-4(2)

Table 3: Errors in the monotone ADI scheme on mesh (36), (37) for τ = (T/N)2.

µ/N 64 128 256 512
1 1.91 1.96 1.98 2.01

10−1 2.24 2.45 2.42 2.28
10−2 0.85 1.29 1.62 1.93
10−3 0.80 0.84 0.86 0.90
10−4 0.83 0.86 0.92 0.95
≤ 10−5 0.87 0.92 0.95 0.98

Table 4: Order of convergence in the monotone ADI scheme on mesh (36), (37) for τ =
(T/N)2.

Log-meshes of Bakhvalov-type. Here we consider the monotone ADI
scheme on log-mesh of Bakhvalov-type (38), (39). For the same set of pa-
rameters as in Table 1, we present the maximum numerical error and the
order of maximum numerical error in Tables 5 and 6, respectively. The
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data in Tables 5 and 6 indicate that the monotone ADI scheme converges
µ-uniformly, the numerical solution has the first-order accuracy in the time
variable, and the monotone lower sequences converge in a few iterations to
the exact solution.

µ/N 64 128 256 512 1024
1 2.18e-4(2) 1.35e-4(2) 7.61e-5(2) 4.06e-5(2) 2.10e-5(2)

10−1 2.04e-3(4) 1.21e-3(4) 6.74e-4(3) 3.57e-4(3) 1.84e-4(3)
10−2 2.06e-3(4) 1.23e-3(4) 6.81e-4(3) 3.61e-4(3) 1.86e-4 (3)
10−3 8.50e-3(4) 4.96e-3(4) 2.73e-3(3) 1.48e-3(3) 7.77e-4(3)
10−4 5.94e-3(4) 3.37e-3(4) 1.85e-3(3) 9.70e-4(3) 5.02e-4(3)
≤ 10−5 6.63e-3(4) 3.62e-3(4) 1.91e-3(3) 9.80e-4(3) 4.97e-4(3)

Table 5: Errors in the monotone ADI scheme on mesh (38), (39) for τ = T/N .

µ/N 64 128 256 512
1 0.70 0.83 0.91 0.95

10−1 0.75 0.84 0.92 0.96
10−2 0.74 0.85 0.92 0.96
10−3 0.78 0.86 0.88 0.93
10−4 0.82 0.87 0.93 0.96
≤ 10−5 0.87 0.92 0.96 0.98

Table 6: Order of convergence in the monotone ADI scheme on mesh (38), (39) for τ =
T/N .

For the same set of parameters as in Table 5 but τ = (T/N)2, we present
the maximum numerical error and the order of maximum numerical error
in Tables 7 and 8, respectively. From the data in Tables 7 and 8, we can
conclude that the monotone ADI scheme converges µ-uniformly, for µ ≤ 10−3,
the numerical solution has the first-order accuracy in the space variables,
and the monotone lower sequences converge in a few iterations to the exact
solution.

Our numerical experiments confirm the theoretical results proved in The-
orem 6 that on meshes (36), (37) and (38), (39), the monotone ADI scheme
(11)–(13), (31), converges µ-uniformly to the solution of the nonlinear parabolic
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µ/N 64 128 256 512 1024
1 4.80e-6(2) 1.28e-6(2) 3.30e-7(2) 8.37e-8(2) 2.08e-8(2)

10−1 1.30e-4(3) 3.66e-5(3) 9.57e-6(3) 2.42e-6(3) 6.22e-7(2)
10−2 1.82e-3(3) 1.05e-3(3) 4.80e-4(3) 1.81e-4(3) 5.69e-5 (2)
10−3 2.62e-3(3) 1.66e-3(3) 9.53e-4(3) 5.32e-4(3) 2.89e-4(2)
10−4 1.94e-3(3) 1.12e-3(3) 6.25e-4(3) 3.39e-4(3) 1.78e-4(2)
≤ 10−5 2.23e-3(3) 1.26e-3(3) 6.85e-4(3) 3.62e-4(3) 1.86e-4(2)

Table 7: Errors in the monotone ADI scheme on mesh (38), (39) for τ = (T/N)2.

µ/N 64 128 256 512
1 1.91 1.96 1.98 2.01

10−1 1.83 1.94 1.98 1.96
10−2 0.79 1.13 1.41 1.67
10−3 0.75 0.80 0.84 0.88
10−4 0.79 0.84 0.88 0.93
≤ 10−5 0.83 0.88 0.92 0.96

Table 8: Order of convergence in the monotone ADI scheme on mesh (38), (39) for τ =
(T/N)2.

problem (1), (2). The numerical solutions have the first-order accuracy in
the time variable and for µ ≤ 10−3, the first order accuracy in the space
variables.
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