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a b s t r a c t

This paper is concerned with construction of a B-spline surface that interpolates a B-spline
curvilinear quadrilateral as boundary geodesics. The construction consists of two parts.
First, from the corner data (i.e., position, unit tangent vector and curvature at the end points
of each curve), a four-quartic B-spline curvilinear quadrilateral with minimum strain en-
ergy is constructed to satisfy the constraints of the crossing geodesics on a surface. Second, a
tensor-product B-spline surface of degree (5, 5) is constructed to interpolate the quadrilat-
eral as boundary geodesics. The control points of the interpolation surface are determined
by two steps, and the surfacewhich adheres to the NURBS standard and employs geometric
shape handles meeting the requirements of the design scenario. The method is illustrated
with several computational examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Geodesic on a surface is an intrinsic geometric feature that plays an important role in industrial design [1–3]. In recent
years, surface reconstruction from one or several geodesic curves has attracted the attention from many researchers, and
both independent and crossing geodesic curves have been considered. In the case of independent curves, several methods
have beenproposed for the surface interpolating these curves as isoparametric geodesics [4–8]. In the case of crossing curves,
Hagen [9] developed a triangular interpolation schemewhich results in a triangular surface with geodesic boundary curves.
Farouki et al. [10] identified the constraint conditions of the crossing geodesics on a surface, and proposed to construct
a quadrilateral and triangular patch interpolating a geodesic quadrilateral [11] and triangle [12] by the Coons method.
However, due to the restrictions of the crossing geodesic constraints and the Coons interpolation scheme, the degrees of
the geodesic curves and the interpolation patch all are very high. For example with polynomial Bézier geodesic curves,
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the degree 7 was considered in [11], and the interpolation surface patch is of degree (13, 13). As we know, high degree
of the curve/surface may lead inconvenience for curve/surface design, and the probability of success of data exchange will
be reduced between different systems, so the curves/surfaces with low degree are more welcomed in the design scenario.
Then, the immediate question is whether there are curves and surfaces with lower degree to satisfy the constraints of the
crossing geodesic interpolation and meet the requirements of CAD system.

In this paper, we focus on the construction of lower degree surface which has four geodesic boundary curves (boundary
geodesic quadrilateral). Particularly, the boundary curves and the interpolation surface all are represented in B-spline form,
and the boundary curves are constructed from the Morphosense measurements by the method described in [4]. Although
the boundary geodesic quadrilateral constructed by the method in [4] does not precisely satisfy the geodesic crossing
constraints, it does allow us to determine the corner data (position, unit tangent vector and curvature at the end points
of each curve). To achieve the goal of the paper, we split the construction process into two parts. First, from the corner data,
we construct a four B-spline curvilinear quadrilateral withminimum strain energy to satisfy the constraints required for the
crossing geodesics on a surface. Then a B-spline surface, whose control points are determined by two steps, is constructed
to interpolate the quadrilateral as boundary geodesic quadrilateral.

The remainder of this paper is organized as follows. Section 2 introduces some notations, and reviews the constraints
for the crossing geodesics on a surface. Section 3 then identifies the constraints for a four-quartic B-spline curvilinear
quadrilateral to be the boundary geodesic quadrilateral of a surface, and proposes an optimized geometric construction
of a four-quartic B-spline curvilinear quadrilateral. The B-spline surface, which interpolates the quadrilateral as boundary
geodesic quadrilateral, is constructed in Section 4. Finally, in Section 5 we summarize the results of this paper.

2. Preliminaries

2.1. Notations

In the following discussion, all curves are free of inflections, all surfaces are considered to be regular and oriented.
The inner and cross product of two vectors u, v is denoted by ⟨u, v⟩ and u×v. For a regular and oriented surface R(u, v),

the unit normal of each point is defined as N(u, v) =
Ru(u,v)×Rv(u,v)

∥Ru(u,v)×Rv(u,v)∥
. For linearly independent vectors u, v and n such

that n ⊥ u and n ⊥ v, we denote by (u, v)n the oriented angle between u and v in the sense of n, namely, n
∥n∥

=
u×v

∥u×v∥ ,
sin(u, v)n = det( u

∥u∥
, v

∥v∥ ,
n

∥n∥
) and cos(u, v)n = ⟨

u
∥u∥

, v
∥v∥ ⟩.

For a space curve r(t), we denote by e(t), n(t) and b(t) the tangent, principal normal and binormal vectors, by k(t) and
τ(t) the curvature and torsion of the curve at the point r(t), respectively. Namely,

e(t) =
r ′(t)

∥r ′(t)∥
, b(t) =

r ′(t) × r ′′(t)
∥r ′(t) × r ′′(t)∥

, n(t) = b(t) × e(t),

k(t) =
∥r ′(t) × r ′′(t)∥

∥r ′(t)∥3
, τ (t) =

det(r ′(t), r ′′(t), r ′′′(t))
∥r ′(t) × r ′′(t)∥2

.

(1)

2.2. Constraints for geodesic boundaries crossing on a surface

Consider, as illustrated in Fig. 1, four regular curves r1(u), r2(v), r3(u), r4(v)with u, v ∈ [0, 1], such that r1(0) = r2(0) =

P00, r1(1) = r4(0) = P10, r2(1) = r3(0) = P01, r3(1) = r4(1) = P11. Denote by ni(j), ki(j) and τi(j) (i = 1, . . . , 4, j = 0, 1)
the principal normal vectors, curvature and torsion at the two end-points of the curves ri, by A00 = (r ′

1(0), r
′

2(0))N(P00),
A01 = (r ′

3(0), r
′

2(1))N(P01), A10 = (r ′

1(1), r
′

4(0))N(P10), A11 = (r ′

3(1), r
′

4(1))N(P11) the oriented angles between the two tangent
vectors at the corner Plj (l, j = 0, 1), whereN(Plj) is the unit normal vector which defines the orientation of the interpolation
surface at each corner, i.e.,

N(P00) =
r ′

1(0) × r ′

2(0)
∥r ′

1(0) × r ′

2(0)∥
, N(P01) =

r ′

3(0) × r ′

2(1)
∥r ′

3(0) × r ′

2(1)∥
,

N(P10) =
r ′

1(1) × r ′

4(0)
∥r ′

1(1) × r ′

4(0)∥
, N(P11) =

r ′

3(1) × r ′

4(1)
∥r ′

3(1) × r ′

4(1)∥
.

(2)

For the above four curves, Farouki et al. identified the conditions for them to constitute geodesic boundaries of a surface
as follows.

Proposition 1 (See [10]). There exists a regular oriented surface R(u, v) interpolating the four curves as geodesic boundaries if
and only if these curves satisfy the following constraints (C1)–(C3):
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Fig. 1. Patch boundaries and the vectors at the corners.

(C1) The osculating constraints: The principal normals of the boundary curves that meet at each corner must agree modulo sign.
That is, there must exist σi(j) ∈ {−1, +1}, i = 1, . . . , 4, j = 0, 1, such that

N(P00) = σ1(0)n1(0) = σ2(0)n2(0), N(P01) = σ2(1)n2(1) = σ3(0)n3(0),
N(P10) = σ1(1)n1(1) = σ4(0)n4(0), N(P11) = σ3(1)n3(1) = σ4(1)n4(1).

(3)

(C2) The global normal orientation constraint: Along the boundary curves, a continuous unit normal vector N of the interpolation
surface must exist, such that N = ±n (n is the principal normal vector along the boundary curves).

(C3) Geodesic crossing constraints: At each corner, the curvature and torsion must satisfy

P00 : [σ1(0)k1(0) − σ2(0)k2(0)] cos A00 + [τ1(0) + τ2(0)] sin A00 = 0,
P01 : [σ3(0)k3(0) − σ2(1)k2(1)] cos A01 + [τ3(0) + τ2(1)] sin A01 = 0,
P11 : [σ3(1)k3(1) − σ4(1)k4(1)] cos A11 + [τ3(1) + τ4(1)] sin A11 = 0,
P10 : [σ1(1)k1(1) − σ4(0)k4(0)] cos A10 + [τ1(1) + τ4(0)] sin A10 = 0.

(4)

3. Quartic B-spline curvilinear geodesic quadrilateral

Based on the corner data, in this section, we consider the constraints and construction for a quadrilateral, composed of
four B-Spline curves with minimum strain energy, as boundary geodesics of a patch. Since the interpolation condition has
the expression of cross product r ′

× r ′′ of the geodesic curve r (see Section 4.1), in order to ensure the interpolation surface
of low degree and some continuity order, we choose quartic B-spline curves with C3 continuity. They are defined as follows:

ri(u) =

7
j=0

P i
jNj,4(u) (i = 1, 3) and ri(v) =

7
j=0

P i
jNj,4(v) (i = 2, 4) (5)

where P i
j are the control points, P1

0 = P2
0 = P00, P2

7 = P3
0 = P01, P3

7 = P4
7 = P11, P1

7 = P4
0 = P10. Nj,4(u) and Nj,4(v) are

the B-spline bases over the knot vector U = {u0, u1, . . . , u12} and V = {v0, v1, . . . , v12}, respectively, and u0 = · · · =

u4 = 0 = v0 = · · · = v4, u8 = · · · = u12 = 1 = v8 = · · · = v12, uk < uk+1 (k = 4, . . . , 7), vl < vl+1 (l = 4, . . . , 7).
Unless specially declared, the left and right end-knots of the knot vector, mentioned in the rest of this paper, are zero and
one, respectively, and their multiplicities are one greater than the degree of the B-spline curve. The strain energy of the four
curves is defined as follows (see [13]): 1

0
(∥r ′′

1 (u)∥2
+ ∥r ′′

3 (u)∥2)du +

 1

0
(∥r ′′

2 (v)∥2
+ ∥r ′′

4 (v)∥2)dv. (6)

3.1. Constraints for quartic B-spline curvilinear geodesic quadrilateral

(1) Osculating constraints
For example, at the corner P00, the osculating constraints are satisfied, that is, the principal normal vectorsn1(0) andn2(0)

are parallel to the orientation unit normal N(P00) =
r ′
1(0)×r ′

2(0)
∥r ′

1(0)×r ′
2(0)∥

of the interpolation surface at the corner P00 (see Fig. 2).

Then the osculating plane Π01 of r1(u) at the point P00 can be determined by r ′

1(0) (parallel to
−−→
P1
0P

1
1 ) and r ′

1(0) × r ′

2(0)

(parallel to
−−→
P1
0P

1
1 ×

−−→
P2
0P

2
1 ). Note that r

′

1(0)× r ′′

1 (0), namely,
−−→
P1
0P

1
1 ×

−−→
P1
1P

1
2 is orthogonal to Π01, so the control point P1

2 must be
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Fig. 2. The location of the control point P1
2 (σ1(0) = σ2(0) = −1).

located in the osculating planeΠ01. Similarly, the control point P2
2 is located in the osculating planeΠ02 determined by r ′

2(0)
and r ′

1(0) × r ′

2(0) at the corner P00. Then for all corners, osculating constraints are satisfied if and only if the control points
P i
2 and P i

5 are located in the osculating plane Π0i and Π1i of the curve ri at the two end-points, respectively. The osculating
plane is determined by the tangent vector of the curve ri and the orientation unit normal vector at the end-point.

Denote by d0i and d1i the distance of the control point P i
2 to the line P i

0P
i
1 and the control point P i

5 to the line P i
6P

i
7. Because

the corner data are fixed, according to [14], d0i and d1i are fixed. That is, the control points P i
2 and P i

5 are always located on
two fixed lines L0i and L1i, respectively. Line L0i is parallel to line P i

0P
i
1, the distance between them is d0i, line L1i is parallel to

line P i
6P

i
7, and the distance between them is d1i. Let t ij = uj for i = 1, 3, t ij = vj for i = 2, 4, j = 0, 1, . . . , 12, we have

d0i =
4t i6ki(0)

3t i5
∥
−−→
P i
0P

i
1∥

2, d1i =
4(1 − t i6)ki(1)

3(1 − t i7)
∥
−−→
P i
6P

i
7∥

2. (7)

Let Q i
0 = P i

0 + σi(0)d0iN(P i
0),Q

i
1 = P i

7 + σi(1)d1iN(P i
7), then the points Q i

0 and Q i
1 are located in the osculating plane Π0i

and Π1i, the point Q i
0 and P i

2 are located at the same side of the line P i
0P

i
1, and the distances of them to the line P i

0P
i
1 all are

d0i. The point Q i
1 has similar conclusion. So the lines L0i and L1i can be expressed as

L0i :

x − xQ i
0

X0i
=

y − yQ i
0

Y0i
=

z − zQ i
0

Z0i
,

L1i :

x − xQ i
1

X1i
=

y − yQ i
1

Y1i
=

z − zQ i
1

Z1i
,

(8)

where
−−→
P i
0P

i
1 = (X0i, Y0i, Z0i),

−−→
P i
6P

i
7 = (X1i, Y1i, Z1i),

Q i
0 = (xQ i

0
, yQ i

0
, zQ i

0
), Q i

1 = (xQ i
1
, yQ i

1
, zQ i

1
).

(2) Global normal orientation constraint
Due to the interpolating surface orientation and the curve ri free of inflections, both the unit normal N of the surface and

the principal normal n of each curve are globally continuous. Then the global normal orientation constraint shows such a
fact: For N = n or N = −n, only one of the two holds along each boundary curve. Therefore, the sudden reversal of the
principal normal can only occur at four corners, and the number of reversals is even. Namely,

i,j

σi(j) = 1, i = 1, . . . , 4, j = 0, 1. (9)

(3) Corner geodesic crossing constraints
Let

S i0 =
−−→
P i
0P

i
1 ×

−−→
P i
0Q

i
0, S i1 =

−−→
P i
6P

i
7 ×

−−→
P i
7Q

i
7,

hi
0 =

(t i5)
3

(t i6)2t
i
7k

2
i (0)

∥
−−→
P i
0P

i
1∥

6, hi
1 =

(1 − t i7)
3

(1 − t i6)2(1 − t i5)k
2
i (1)

∥
−−→
P i
6P

i
7∥

6,

g i
mn =

32cotAmn
9

(σi+1(m)ki+1(m) − σi(n)ki(n)), σ5(1) = σ1(1), k5(1) = k1(1).
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We then have

Theorem 1. Corner geodesic crossing constraints (4) are equivalent to

h1
0⟨S

1
0 ,

−−→
P1
0P

1
3 ⟩ + h2

0⟨S
2
0 ,

−−→
P2
0P

2
3 ⟩ = g1

00,

h3
0⟨S

3
0 ,

−−→
P3
0P

3
3 ⟩ + h2

1⟨S
2
1 ,

−−→
P2
4P

2
7 ⟩ = −g2

01,

h3
1⟨S

3
1 ,

−−→
P3
4P

3
7 ⟩ + h4

1⟨S
4
1 ,

−−→
P4
4P

4
7 ⟩ = g3

11,

h1
1⟨S

1
1 ,

−−→
P1
4P

1
7 ⟩ + h4

0⟨S
4
0 ,

−−→
P4
0P

4
3 ⟩ = −g4

10.

(10)

Proof. Because
−−→
P i
0P

i
1 ×

−−→
P i
0P

i
2 =

−−→
P i
0P

i
1 ×

−−→
P i
0Q

i
0, ∥

−−→
P i
0P

i
1 ×

−−→
P i
0P

i
2∥

2
=

16(t i6)
2

9(t i5)2
k2i (0)∥

−−→
P i
0P

i
1∥

6,

−−→
P i
6P

i
7 ×

−−→
P i
5P

i
7 =

−−→
P i
7Q

i
1 ×

−−→
P i
6P

i
7, ∥

−−→
P i
6P

i
7 ×

−−→
P i
5P

i
7∥

2
=

16(1 − t i6)
2

9(1 − t i7)2
k2i (1)∥

−−→
P i
6P

i
7∥

6.

Substituting these expressions into the torsion expression in (1) and constraint (4), by direct calculation, Eq. (10) is
obtained. �

When the global normal orientation constraint is satisfied and the corner data are fixed, the torsion, that is, the control
points P i

3 and P i
4 are not free, they should satisfy Eq. (10). Considering the four curves with minimum strain energy, the

control points P i
2, P

i
3, P

i
4 and P i

5 can be obtained by minimizing (6) with the linear constraints (8) and (10).

3.2. Construction of quartic B-spline curvilinear geodesic quadrilateral

According to the above analysis, we now propose an optimized geometric construction for a quadrilateral, composed
of four Quartic B-Spline curves with the constraints of the surface geodesic quadrilateral. The construction consists of the
following six steps.

(1) The magnitude of the tangent vectors at both ends are freely chosen, then from the corner data, the control points P i
0, P

i
1 and

P i
6, P

i
7 can be determined.

(2) According to Eqs. (2), the orientation unit normal vector N(Plj) of the interpolation surface is assigned at each corner, defining
the orientation of the surface.

(3) A sequence of signs σi(0) and σi(1) is chosen, compatible with the global normal orientation constraint (9).
(4) According to Eqs. (8), the straight line L0i and L1i are determined.
(5) Determining Eq. (10).
(6) Minimizing (6) with the linear constraints (8) and (10), the control points P i

2, P
i
3, P

i
4 and P i

5 are determined.

Fig. 3 shows three examples of the quartic B-spline quadrilateral with control polygon, constructed in the abovemanner.

4. B-spline surface interpolating the geodesic quadrilateral

Let t be either of the parametric variables u or v, Ti = {t i0, t
i
1, . . . , t

i
12}, i = 1, 2, 3, 4.We now construct a B-spline surface

that interpolates the above constructed quadrilateral as geodesic boundaries.

4.1. Compatibility of interpolation conditions

Along the boundary geodesic ri(t), the transverse tangent vector Di(t) of the interpolation patch is coplanar with the
vector r ′

i (t) and r ′

i (t) × r ′′

i (t), so there exist scalar functions xi(t) and yi(t) such that

Di(t) = xi(t)r ′

i (t) + yi(t)r ′

i (t) × r ′′

i (t), t ∈ [0, 1]. (11)

Due to a cancellation of leading coefficients, the actual degree of the cross product r ′

i (t)×r ′′

i (t) is of 4. Taking the compat-
ibility of the interpolation condition (11) at the corner and the degree and continuity of Di(t) into consideration, we choose
xi(t) =

5
j=0 a

i
jNj,2(t) and yi(t) = bi0(1−t)+bi1t =

1
j=0 b

i
jNj,1(t), B-spline basis functionsNj,1(t)defined on the knot vector

T0 = {0, 0, 1, 1}, and B-spline basis functions Nj,2(t) of xi(t) defined on the knot vector T ′

i = {0, 0, 0, t i5, t
i
6, t

i
7, 1, 1, 1}.

The interpolation condition (11) must satisfy the compatibility constraints of the corner, which limit the options of the
coefficients aij and bij. Consider, for example, the curve r1(t) at the corner P1

0 and P1
7 .
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Fig. 3. Four-quartic B-spline curvilinear quadrilateral with control polygon. (a) Principal normal vector with no reversal. (b) Principal normal vector with
two reversals. (c) Principal normal vector with four reversals.

(1) Compatibility of tangent vectors
As the transverse tangent vector D1(t) must interpolate the tangent vector of the curve r2(t) and r4(t) at the corner P1

0
and P1

7 , respectively. Let i = 1, t = 0 in (11), we have

a10
u5

−−→
P1
0P

1
1 +

12b10
u2
5u6

−−→
P1
0P

1
1 ×

−−→
P1
1P

1
2 =

1
v5

−−→
P2
0P

2
1 . (12)

Because r ′

1(0), r
′

2(0) and r ′

1(0) × r ′′

1 (0) are coplanar, Eq. (12) admits solutions as

a10 =
u5

v5

⟨
−−→
P1
0P

1
1 ,

−−→
P2
0P

2
1 ⟩

∥
−−→
P1
0P

1
1∥

2
,

b10 =
u2
5u6

12v5

det(
−−→
P1
0P

1
1 ,

−−→
P1
1P

1
2 ,

−−→
P2
0P

2
1 )

∥
−−→
P1
0P

1
1 ×

−−→
P1
1P

1
2∥

2
.

(13)

Let t = 1 in (11), in the same way, a15 and b11 are determined by

a15 =
1 − u7

v5

⟨
−−→
P1
6P

1
7 ,

−−→
P4
0P

4
1 ⟩

∥
−−→
P1
6P

1
7∥

2
,

b11 =
−(1 − u7)

2(1 − u6)

12v5

det(
−−→
P1
6P

1
7 ,

−−→
P1
5P

1
6 ,

−−→
P4
0P

4
1 )

∥
−−→
P1
6P

1
7 ×

−−→
P1
5P

1
6∥

2
.

(14)

Similarly solutions for i = 2, 3, 4 can be obtained, thus the coefficients ai0 and ai5 of xi(t) and all the coefficients of yi(t) are
determined.

(2) Compatibility of twist vectors
Denote by R(u, v) the interpolation surface. At the corner P1

0 , differentiate D1(u) and D2(v), and set u = 0 and v = 0, we
must have

D′

1(0) = Ru,v(0, 0) = D′

2(0). (15)

To compare D′

1(0) and D′

2(0), we consider their projections on the three linearly-independent vectors r ′

1(0), r
′

2(0) and
unit normal N(P1

0 ). Notice that

N(P1
0 ) = σ1(0)

(r ′

1(0) × r ′′

1 (0)) × r ′

1(0)
∥(r ′

1(0) × r ′′

1 (0)) × r ′

1(0)∥
= σ2(0)

(r ′

2(0) × r ′′

2 (0)) × r ′

2(0)
∥(r ′

2(0) × r ′′

2 (0)) × r ′

2(0)∥
,

σ1(0) =
∥r ′

1(0) × r ′

2(0)∥ ∥r ′

1(0) × r ′′

1 (0)∥
∥r ′

1(0)∥ det(r ′

1(0), r
′

2(0), r
′′

1 (0))
, σ2(0) =

∥r ′

1(0) × r ′

2(0)∥ ∥r ′

2(0) × r ′′

2 (0)∥
∥r ′

2(0)∥ det(r ′

2(0), r
′′

2 (0), r ′

1(0))
.
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Utilizing the curvature and torsion expressions in (1), (13) together with the identity (u× v) ×w = ⟨u,w⟩v − ⟨v,w⟩u, by
calculation, we have

• Projection on N(P1
0 )

⟨D′

1(0),N(P1
0 )⟩ = ∥r ′

1(0)∥ ∥r ′

2(0)∥ [σ1(0)k1(0) cos A00 + τ1(0) sin A00],

⟨D′

2(0),N(P1
0 )⟩ = ∥r ′

1(0)∥ ∥r ′

2(0)∥ [σ2(0)k2(0) cos A00 − τ2(0) sin A00].

As the corner geodesic crossing constraint is satisfied, ⟨D′

1(0),N(P1
0 )⟩ = ⟨D′

2(0),N(P1
0 )⟩ holds naturally.

• Projection on r ′

1(0)

⟨D′

1(0), r
′

1(0)⟩ =
2(a11 − a10)

u5
∥r ′

1(0)∥
2
+ a10⟨r

′

1(0), r
′′

1 (0)⟩

=
16
u5


2a11
u2
5

∥
−−→
P1
0P

1
1∥

2
+ c


.

⟨D′

2(0), r
′

1(0)⟩ =
16
u5


2
v2
5
⟨
−−→
P1
0P

1
1 ,

−−→
P2
0P

2
1 ⟩a

2
1 + d


,

where

c =
3a10
u5u6

⟨
−−→
P1
0P

1
1 ,

−−→
P1
1P

1
2 ⟩ −

5a10
u2
5

∥
−−→
P1
0P

1
1∥

2,

d =
3a20
v5v6

⟨
−−→
P1
0P

1
1 ,

−−→
P2
1P

2
2 ⟩ +


12(b21 − b20)

v2
5v6

−
24b20
v2
5v6


1
v5

+
1
v6


det(

−−→
P2
0P

2
1 ,

−−→
P2
1P

2
2 ,

−−→
P1
0P

1
1 )

−
5a20
v2
5

⟨
−−→
P1
0P

1
1 ,

−−→
P2
0P

2
1 ⟩ +

24b20
v2
5v6v7

det(
−−→
P2
0P

2
1 ,

−−→
P2
2P

2
3 ,

−−→
P1
0P

1
1 ).

• Projection on r ′

2(0)

⟨D′

1(0), r
′

2(0)⟩ =
16
v5


2
u2
5
⟨
−−→
P1
0P

1
1 ,

−−→
P2
0P

2
1 ⟩a

1
1 + e


,

⟨D′

2(0), r
′

2(0)⟩ =
16
v5


2
v2
5
∥
−−→
P2
0P

2
1∥

2a21 + f


,

where e can be obtained with v and superscript 1, 2 of d replaced by u and superscript 2, 1, f can be obtained with u and
superscript 1 of c replaced by v and superscript 2.

Thus, D′

1(0) = D′

2(0) holds if and only if the following linear system of equation admits solutions.
2
u2
5
∥
−−→
P1
0P

1
1∥

2
−

2
v2
5
⟨
−−→
P1
0P

1
1 ,

−−→
P2
0P

2
1 ⟩

2
u2
5
⟨
−−→
P1
0P

1
1 ,

−−→
P2
0P

2
1 ⟩ −

2
v2
5
∥
−−→
P2
0P

2
1∥

2



a11
a21


=


d − c
f − e


. (16)

Similar equations will come up at the other three corners, and the coefficients ai1, a
i
4 of xi(t) (i = 1, 2, 3, 4) can be deter-

mined from these equations, the other coefficients ai2 and ai3 can be freely chosen.

4.2. B-spline expression of the interpolation surface patch

In order to express the interpolation surface in B-spline form, firstly, Di(t) should be expressed in B-spline form. Let

1P i
j1

=
4(P ij1+1−P ij1

)

t ij1+5−t ij1+1
, ∆2P i

j2
=

3(1P ij2+1−1P ij2
)

t ij2+5−t ij2+2
. Using the product formula of B-spline [15], we have

r ′

i (t) × r ′′

i (t) =

17
k=0

H
i
kNk,5(t) and xi(t)r ′

i (t) =

17
k=0

F i
kNk,5(t), (17)

where B-spline basis functions Nk,5(t) defined on the knot vector T i,

T i = {0, . . . , 0  
6

, t i5, . . . , t
i
5  

4

, t i6, . . . , t
i
6  

4

, t i7, . . . , t
i
7  

4

, 1, . . . , 1  
6

} = {t i0, t
i
1, . . . , t

i
23},
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H
i
k =

1
5
3

 
P∈


j1


j2

αj1,3,T ′′
i ,tPi

(k)αj2,2,T ′
i ,t

Q
i
(k)1P i

j1 × ∆2P i
j2 ,

F i
k =

1
5
3

 
P∈


j1


j

1P i
j1αj1,3,T ′′

i ,tPi
(k)aijαj,2,T ′

i ,t
Q
i
(k),

tPi = {· · · , t ik, t
i
k+p1 , t

i
k+p2 , t

i
k+p3 , t

i
k+6, . . .},

tQi = {· · · , t ik, t
i
k+q1 , t

i
k+q2 , t

i
k+6, . . .}.

P = {p1, p2, p3} is a selection of three integers from the set I = {1, 2, . . . , 5}, and Q = {q1, q2} = I − P ,


is the set of all
subsets of I consisting of three elements. αj1,3,T ′′

i ,tPi
, αj2,2,T ′

i ,t
Q
i
and αj,2,T ′

i ,t
Q
i
are the discrete B-splines.

Notice that the actual degree of r ′

i (t) × r ′′

i (t) is of 4, that is,

r ′

i (t) × r ′′

i (t) =

13
m=0

H i
mNm,4(t).

Nm,4(t) defined on the knot vector T
′

i = {0, . . . , 0  
5

, t i5, . . . , t
i
5  

3

, t i6, . . . , t
i
6  

3

, t i7, . . . , t
i
7  

3

, 1, . . . , 1  
5

}, and H i
m can be obtained

through the following method (for more details, see [16]).

P j−1
k =


P j
k, 0 ≤ k ≤ lj − 5,

1

1 − ajk,4
P j
k −

ajk,4
1 − ajk,4

P j−1
k−1, lj − 4 ≤ k ≤ lj − 1,

P j
k+1, lj ≤ k ≤ 12 + j,

where j = 4, 3, 2, 1, l4 = 17, lj−1 = lj − 4, P4
k = H

i
k, k = 0, . . . , 17,H i

m = P0
m,m = 0, . . . , 13.

Then, using the product formula of B-spline again [15], we have

yi(t)r ′

i (t) × r ′′

i (t) =

17
k=0

Gi
kNk,5(t), (18)

where Gi
k =


P∈


j


m bijαj,1,T0,tPi
(k)H i

mαm,4,T ′

i,t
Q
i
(k)/


5
1


.

From (17) and (18), Di(t) can be expressed as

Di(t) =

17
k=0

(F i
k + Gi

k)Nk,5(t). (19)

Because Di(t) is of degree 5, we can define an interpolation B-spline patch with degree (5, 5) as

R(u, v) =

17
i=0

17
j=0

DijNi,5(u)Nj,5(v). (20)

Ni,5(u) defined on the knot vector T 1, Nj,5(v) defined on the knot vector T 2.
Using the degree elevation formula of B-spline curves [15], we rewrite ri(t) as

ri(t) =

17
k=0

d i
kNk,5(t),

where
d i
k =


j

P i
jΛj,4,5,Ti,T i

(k),

Λj,k1,k2,Ti,T i
(k) =

k1
k2

[ωj,k1,Ti(t
i
k+k2)Λj,k1−1,k2−1,Ti,T i

(k)

+ (1 − ωj+1,k1,Ti(t
i
k+k2))Λj+1,k1−1,k2−1,Ti,T i

(k)] +
k2 − k1

k2
Λj,k1,k2−1,Ti,T i

(k)

for k2 > k1, and Λj,0,k2,Ti,T i
(k) = αj,0,Ti,T i

(k), Λj,k1,k1,Ti,T i
(k) = αj,k1,Ti,T i

(k),

ωj,k1,Ti(t) =


t − t ij

t ij+k1
− t ij

, if t ij < t ij+k1 ,

0, otherwise.
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It is obvious that
Di0 = d1

i , Di,17 = d3
i , i = 0, 1, . . . , 17,

D0j = d2
j , D17,j = d4

j , j = 0, 1, . . . , 17.
(21)

By calculating directly the transverse tangent vector of R(u, v), and using (19) and (21), we have

Di1 = d1
i +

v5

5
(F 1

i + G1
i ),

D1j = d2
j +

u5

5
(F 2

j + G2
j ), i = 0, 1, . . . , 17,

Di,16 = d3
i −

1 − v7

5
(F 3

i + G3
i ), j = 0, 1, . . . , 17.

D16,j = d4
j −

1 − u7

5
(F 4

j + G4
j ).

(22)

Notice that, the twist points of R(u, v) are calculated twice in (22), but they are compatible when relation (15) holds.
We can now state the following result.

Theorem 2. For a four-quartic B-spline curvilinear quadrilateral constructed by the method in Section 3.2, if the first two lines
of control points of the surface (20) satisfy (21) and (22), then the surface interpolates the quadrilateral as boundary geodesic
quadrilateral.

Theorem 2 indicates that the geodesic interpolation conditions only influence the first two lines of control points, the
other inner control points being free. In order to smooth the surface, we choose the free control points by minimizing the
following thin plate spline energy.

min
Dij

E =

 1

0

 1

0
(∥Ruu(u, v)∥2

+ 2∥Ruv(u, v)∥2
+ ∥Rvv(u, v)∥2)dudv.

Let ∂E
∂Dij

= 0, i, j = 2, . . . , 15, we have
0≤k≤17,k≠i,


0≤l≤17,l≠j

DklMi,j,k,l + DijMi,j,i,j = 0, (23)

where

Mi,j,k,l =

 1

0

 1

0

 N ′′

i,5(u)Nj,5(v)N ′′

k,5(u)Nl,5(v)

+ 2N ′

i,5(u)N
′

j,5(v)N ′

k,5(u)N
′

l,5(v)

+Ni,5(u)N ′′

j,5(v)Nk,5(u)N ′′

l,5(v)

 dudv.

Then the free control points Dij (i, j = 2, . . . , 15) can be obtained by solving the linear equation (23).
Based on the above analysis, the B-spline surface, which interpolates the constructed quadrilateral as boundary geodesic

quadrilateral, can be constructed by the following steps.
(1) According to the compatibility of the tangent and twist vector at the corners in Section 4.1, xi(t) and yi(t) are determined.
(2) From (19), we can calculate the control points of Di(t).
(3) The control points of the interpolation patch, which are related with the geodesic interpolation condition, are calculated by

(21) and (22).
(4) The remaining control points of the interpolation patch are obtained by solving the linear equation (23).

Figs. 4–6 show three B-spline surfaces with degree (5, 5) interpolating the constructed quadrilaterals (Fig. 3(a–c)) as
boundary geodesic quadrilateral, respectively.

5. Conclusion

In this paper, we propose an optimized geometric method to construct a four-quartic B-spline curvilinear quadrilateral
satisfying the constraints of the crossing geodesics on a surface. For the constructed quadrilateral, a tensor-product B-spline
surface of degree (5, 5) can be constructed to interpolate these curves as boundary geodesic quadrilateral. The scheme incurs
the free control points, which can be used to smooth the interpolation surface. The interpolation surface patch adheres to
the NURBS standard and employs geometric shape handles, such as control points, which is compatible with commercial
CAD systems.
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Fig. 4. Principal normal vector with no reversal. (a) The first two lines of control points. (b) Interpolation surface.

Fig. 5. Principal normal vector with two reversals. (a) The first two lines of control points. (b) Interpolation surface.

Fig. 6. Principal normal vector with four reversals. (a) The first two lines of control points. (b) Interpolation surface.
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