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1. Introduction

In our days, delay modeling is an active and important research in Science and Engineering [ 1-8], thus it is very common
to find delay models in diverse areas such as Biology (e.g., population dynamics and epidemiology), Physics (e.g. Quantum
Dot Lasers and Solar physics), Chemistry (e.g., Chemical-kinetics and Chemical reactions) and Economics (e.g., Finance and
Cost) to name a few. Usually a delay or a lag term is used in a model when usual assumptions are replaced with more
realistic temporary assumptions or when the result of some phase or stage structure in the system is under study. Also, the
differences between systems of delay models and those without delay have been and remain an active area of research, see
for example [9,10].

In this paper, we consider the family of advection-reaction operators introduced in [11] for which a multiple delay term
is included. It has been shown that these operators appear in a natural way in partial differential equations and that their
iterates using a one delay system can be interpreted as an interpolation problem [12,13]. Moreover, it has been shown how
easily the pointwise convergence or non convergence of the system orbits can be achieved. Our goal is to present detailed
quantitative information of the multiple delay inclusion on the dynamics of discrete systems where the iteration functions
are given by the advection-reaction operators. To do this, we present in Section 2 an algorithm to show the equivalence of the
multiple delay system to several one delay systems and with a matrix representation of the advection-reaction operators
we explicitly find their iterates. Finally in Section 3 we will give sufficient conditions on the uniform convergence of the
iterates for some particular cases.

2. Family of discrete delay advection-reaction operators

Let us start by defining the class of dynamical systems of our interest:
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Definition. Given two real nonzero sequences A = {};}7°, and ¢ = {¢;}{°, and a fixed natural number k > 1, we define the
following bidimensional discrete k-delay dynamical system:

u _JAmUmn ifneNandm=1,2,3,...,k (1)
ML = N A g + CnklUm—kn  ifm,n € Nandm > k+ 1.

Our interest in this family of systems has several reasons. First, notice that system (1) is basically a linear system and
convergence of finite dimension linear systems is determined by their associated eigenvalues. In our case, the convergence
of (1) will be determined by the sequence {c¢;}{°,, which introduces the delay and by its eigenvalues, which are given by
sequence {A;}°,. Second, a sufficient condition for convergence of finite dimensional systems is that their eigenvalues
belong to the unit ball; for system (1) this is not the case, we have to impose extra conditions on the eigenvalues and also
on the sequence {c;}°,, which will play an important role as we will discover later on. Third, besides its intrinsic value, it is
important for their role in several applications for example by approximating the equation

u(x, t u(x, t ku(x, t
PED 4 o100 4,00 700D pguer, ),
via finite differences equations. For the higher order derivative one can construct approximations based on k-delay systems
by sampling a number of points to the left or to the right of the center point. In particular if we set k = 2, then the system
(1) can be viewed as a consistent discretization via finite differences on an infinite rectangular grid of the one dimensional
advection-diffusion-reaction equation with weak diffusion by setting u, , = u(mh,nk), € = h,cp_2 = —az(mh)h% and

Am = —0 (mh)’ﬁ‘ — o (mh) h% + B(mh)k with h and k being the step sizes and the indexes m and n correspond to the space
variable x and to the time variable t, respectively, see [11].

2.1. Decoupling

In many cases, delay ordinary differential equations are equivalent to systems of non-delay ordinary differential equa-
tions. In a previous work, [13], a discrete dynamical system with a bidiagonal structure was analyzed, which corresponds
to the problem studied here, in the special case of k = 1. Our next goal here will be to decouple system (1) obtaining the
equivalent representation of k discrete 1-delay dynamical systems as follows: Let £ be a fixed natural number satisfying
1 < ¢ <k, then for all m, n € N, we have the system:

_ Jri®v1n(6) ifm =1
Um,n+1(6) = {M;(g)vlm,"(g) + 1@ vpn_1.,(0) ifm > 2, ?)

where v n(£) = Ugt-m—1)k,n» Wm(€) = Agym—nk foralln, m € Nwithm > 1and ¢, (£) = coq-m—ok forallm e Nwithm > 2.
System (1) can also be written in the following matrix form

lpy1 = Aclln, (3)
where A ;. is the infinite lower matrix

A 0 O 0 0
0 A, O 0 0
0 . 0 0
Acy = 0O 0 O 0 (4)
C1 0 0 0 )"k+1
0 C 0
0

and i, is the real column sequence il, = (u1,5, Uz 5, - . .). The matrix formulation of the problem is of paramount importance
because it will allow us to show the development of the delay in the structure of the coefficient matrix for different iterations
of the system (1).

We can also restate in matrix notation each of the k 1-delay systems by using the following algorithm, which is illustrated
in an example below:

Algorithm 2.1 (Decoupling). Generation of k 1-delay discrete systems.
For each value of ¢ from 1, 2, 3, ..., k perform the following steps; each value of ¢ will give rise to a 1-delay discrete
system.

1. Replace the variable u; with u,. This amounts to interchanging rows 1 and ¢ and columns 1 and ¢ in matrix (4).
2. Move the ¢, value that is located at the entry k+ ¢, 1 to the entry 2, 1 by interchanging rows k+ ¢ and 2 and also columns
k 4+ ¢ and 2.
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This step alters the lower triangular structure of the matrix, since the value ¢, will be located in the entry k+ 2, k+ ¢,
which will be corrected in the next step.
3. (Intermediate step) Interchange rows k + 2 and k + 3 and columns k + 2 and k + 3 in order to recover the lower triangular
form of the coefficient matrix.
4. Continue moving all subsequent nonzero subdiagonal values as in steps 2 and 3. That is, form = 1, 2, 3, ... move the
Co+mk Value by interchanging rows m+2 and £ +mk+-3 and columns m+2 and £ +mk+-3 then perform the intermediate
step by exchanging rows m + 3 and ¢ 4+ mk + 3 and columns m + 3 and £ + mk + 3.

The following example with k = £ = 3 illustrates the steps of the algorithm.

Example (Decoupling algorithm).

A 0 0 0 0
0 » 0 0 O
0 0 A 0 0
cg 0 0 A O
A, = 5
ek 0 ¢ 0 0 A5 (5)
0 0 C3
0

After the first step (interchanging row 1 and row 3 and column 1 by column 3) matrix (5) becomes

X3 0 O 0 0
0 A O 0 0
0 0 A 0 O
0 0 C1 }\.4 0
0

A, = 6
€ & 0 0 As )
C3 0 0
0

After the second step (interchanging rows k + ¢ = 6 and 2) matrix (6) becomes

a3 0 0 0 0 O
3 Ag 0 0 0 0
0 0 », 0 0 O
0 0 ¢ A 0 0 --
0 0 0 0 A ¢ O
Ax=10 0 0 . 0 A 0] (7)
0 : ¢ - 0
0 0 Cs
Cs 0

Notice that the value c; is the upper half position of the matrix breaking the lower structure of the matrix. This is where
the intermediate step corrects the structure of the matrix, thus obtaining

x&3 0 0 0O 0 O
C3 )\5 0 0 0 0
0 0 » 0 0 O
0 0 C1 }\4 0 0
0 0 0 0 A O O
Ao=10 0 0 - o A 0] (8)
0 s -0
0 0 Cs
Cs 0
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Finally, step 4 moves all the values cg, cg, cq3 to its respective position giving rise to the coefficient matrix sought, namely

A3 00 0 0 0
C3 Ag 0 0 0 0
0 Ce )\9 0 0 0
0 0 Cg A2 0 0 s
0 0 0 C12 )\.]5 0 0
Ao=10 0 0 . ¢5 Ag O
0 0 C18
0 0 0
0 0

Algorithm 2.1 resembles the Gaussian elimination algorithm [14] in the sense that both deal with the entries below the
diagonal; in this algorithm by moving the nonzero values to its higher position below the diagonal and in the Gaussian
elimination by generating zeros under the diagonal. The main difference between both algorithms is in the intermediate
step in Algorithm 2.1. It is important to remark that there are several techniques to move the nonzero entries below the
diagonal to their right position but most of them destroy the geometry of the lower triangular matrix.

Remark. Although the algorithm was formulated for a matrix with the special structure as in (4), it is clear that an analogous
algorithm can be applied to decouple any system whose coefficient matrix is infinite lower triangular and has at most one
nonzero entry in each column and in each row of its main diagonal.

We can replace Algorithm 2.1 by a more precise procedure by performing the following change of variables in (3):

i, = FEv,(8), £=1,2,...,k, (9)
where
o0 o0
Fp = l_[ Epmk+1,mke+e and E = 1_[ (Em,m-+k—1Em-icmks1)
m=0 m=2

here E; ; denotes the identity infinity matrix with the columns s and t permuted. The reason for having a double row-column
interchange in each step (see the double factors in the product of the matrix E) is to keep the lower triangular structure on
the coefficient matrix. On the other hand, the matrix F, basically is used to change the ordered set of variables

(U, U, U3, Uy, .. .)
into the ordered set
(Tg, Uprks Ugyoks Uprsk, Uprak, -..) for€=1,2,... k.
Thus each 1-delay system, there are k of them, can be written as:
Unt1(€) = BeaoOn(®), €=1,2,3,...,k, (10)

where B, ¢ is the infinite lower matrix

Ae 0 0 0 0
Ce Aoyk 0 0 0
0 covk Aok O O
Bc,A,Z = 0 0 Coi2k 0 (11)
0 0 0
and v, (£) is the real column sequence
U (0) = (Ue,n> Uptkns -+ -)- (12)

Notice that in matrix (11), once that we fixed the values of ¢, the main diagonal elements form a subsequence of
A= {)Lj}]‘-’:o1 where the original generic subindex j has been replaced by £ 4 (j — 1)k. The previous results can be summarized
in the following result.
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Theorem 2.1. The discrete k-delay dynamical system

ﬁn+1 =Ac.Aﬁn» (13)
with A. ;. given as in (4), can be written as k discrete 1-delay dynamical systems of the form:
f)n+1(6) = BC,A,Zﬁn(Z)s (]4)

where £ is a fixed natural number satisfying 1 < £ < k, B, ¢ is given by (11) and the sequence v,(£) is given by (12).

Once we get written the family of systems (14) as in (10), then the value of each sequence v, is known since v, = BZ’ W Vo
where Dy is an initial sequence. Therefore we need to compute the powers of the infinite matrix B ;_¢. From [11] we get that:

Corollary 2.2. The entries of B! ¢.¢ are given by
0 ifi<j
)‘/+(1 Dk fi=j

HC(3+(m ok | Prcicg [Aetg—tks -0 Aok if 1>

where we have used the following notation (obtained from [12]): Given any three natural numbers ¢, m and n, let P;[\,,,
Am42, Amtds - - - » Amy2n—1)] denote the homogeneous polynomial of degree £ consisting of the sum of all possible mono-
mials with unitary coefficients in the n variables Ay, A2, - - ., Amt2m—1). By convention Po[A, Amya, .- ., Apgom—n] = 1
and P, [A.m, A.m+2, ey )Lm+2(n,1)] =0, forall¢ e N.

So in essence we have decomposed the system into k decoupled 1-delay discrete dynamical systems and theoretically
the solutions to each system can be computed and then integrate them into a general solution. When the value of k is small
the previous procedure is very practical but for larger values of k it is impractical. Thus, we have to find a different strategy
to compute the solutions for (14) as a complete set.

2.2. Entries of the operator (A} )

The previous result gives us an explicit suggestion for the functional form for the entries of the operator (A7 ), but we
need to take in consideration the delay. Thus we get the following result, which generalizes Theorem 3.5 of [ 13]. That result
was stated and proved only for the special case k = 1.

Theorem 2.3. The entries (A} A),]for i,j € Nare given by

0 ifi<j
’ ifi=j
0 if i > jandi s j mod(k)

s—1
(]_[ Cj+mk) Po_s [ Ajss -~ -, &) if i > jand i = jmod(k)
m=0

wheres = (i —j)/k.

Proof. The cases wheni < jor wheni > jandi % j mod (k) are straightforward. Fori > jandi = j mod (k) the proof is
achieved by induction over n. In this case i = j 4 ks for some natural number s > 1. When n = 1 we have that (A¢ »)ij = ¢;
and since P;_; is different than zero only if s = 1 then we get:

s—1
(l_[ Cj+km> . Plfs [)Ljs ce j+k <l_[ Cj+km> PO )‘]7 )L]Jrk] = Gj.
m=0

Suppose now that (A? );; = (]_[fn_:lo Cj+m,<) “Pa_s [Aj, Ajsks - - . Ai] is valid for a fixed n € N foralli,j € N, then

A = MAL)ij + Cik(ALicky

i—k=j 4

s—1 k
Ai |:<l_[ Cj+l> Pos[Aj, Ajgies -+ )»i]:| + ik 1_[ Gy | P_ 1ik—j) [y Ajies - oy Aii]
1=0

=0

s—1
(1_[ Cj+l> [APrs[y Aks - - -3 Ml 4 Pra—s[Ag, Ajes - - - Aicid ]
1=0

s—1
(1_[ Cj+l> Poiios[Aj, Ak, - os 2], W

=0
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Notice that Theorem 2.3 establishes the value of the entries of the powers of the infinite matrix Ac,. Therefore the
dynamics of the whole system is completely determined. Moreover the delay affects the entries of the matrix by setting
k — 1 zero subdiagonals in between each nonzero subdiagonal.

3. Particular cases

It is important to understand the theoretical implications of Theorem 2.3. So in order to obtain information of such
result we will analyze two particular cases. The first one is the case when the two defining sequences A and ¢ are constant
sequences. In the second one, we will consider general sequences ¢ but the A sequence will be required to have different
elements. For the first case we will show the iterates of the infinite matrix A, to show the effect of the delay and then we
will provide with sufficient conditions on uniform convergence to guarantee that the zero sequence becomes an attractor.
For the second case we will compute explicitly the entries of the powers of the infinite matrix A 5 with a different approach
as in the proof of Theorem 2.3 to show the direct connection of such entries with interpolation theory.

3.1. Constant case

Let us show a particular case with constant sequences given by {)Lj}](?:ol = {)\}j?’:"1 and {¢; j?’:"l = {c}]‘-’i1 for every j. Then the
matrix Ag" , (for simplicity we choose n = 3 and k = 3) takes the form:

A3 0 0 0 0 0 0 0
0 23 0 0 0 0 0 0
0 0 A3 0 0 0 0 0
3¢x2 0 0 23 0 0 0 0
0 3cA> 0 0 23 0 0 0
0 0 3cA2 0 0 A3 0 0
3¢’ 0 0 3cA* 0 o A 0 (15)

0 3% o0 0 3cx* 0 0o A3
0 0 3% o0 0 3cA®> 0 0
c3 0 0 3% o0 0 3cA? 0

0 i 0 0 i 0 0

Observe that in this particular case only four subdiagonals (including the main diagonal) are nonzero and each one
is equal to the terms in the binomial expansion of (A + c)>. Starting in the main diagonal with A3. Following with the
subdiagonals with the common entry given by 3A%c and 3Ac? and finishing with c. Therefore the ii; sequence consists in
the multiplication of such infinite matrix with a given initial condition iy. For general n € N, the matrix A7, willhaven +1
nonzero subdiagonals separated by k — 1 zero subdiagonals. Each nonzero diagonal has a common entry given by the term
corresponding to the development of (A + ¢)".

In the following we will provide some sufficient conditions on convergence to illustrate the use of the results from
Theorem 2.3. The convergence depends on the norm used, and for the sake of applicability we use the sup norm to guarantee
uniform convergence. Let S be the Banach space consisting of all convergent sequences together with the sup norm || - ||,
and Sy be its closed subspace formed by those sequences converging to 0. Taking an arbitrary sequence y € S, we have that

Ag 1 ¥lloo < Clel + 21" - [IY¥lloo-
Thus a sufficient condition for the limiting sequence (the limit is taken entry-wise) limn_chg,Ay to be in Sy is that

|c| + |1| < 1.Therefore the zero sequence becomes an attractor for all sequences in S.
For a general case if we assume that (]_[;io ch) < oo for all j with a uniform bound given by C and if A = {)»j}]?'; el

the subspace of all real sequences consisting of all sequences A satisfying ) ", |A| < 00, then taking an arbitrary sequence
y € S, we have that

Qn
1A ¥ lloo < cuynm; Py enos Do eyl

on
S s ezt (01— 2
n+1 n+1 1
<Gy Iy T o =aly | —— |,
p=1 1—alf
where C; = C||y||lc0, &n is the row where ||A2J\z||OO is achieved for the unitary sequencez = {1, 1, ...} and | - ||; denotes

the ¢! norm. Therefore assuming that ||A||; < 1 we have that the sequence {AZ’Ay} approaches the zero sequence as n goes
to infinity for any y € S.
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3.2. Different element case

As a next step we will consider another particular case: we will consider a special case where all the eigenvalues of A
are different, that is, the sequence A has different elements.

Theorem 3.1. Assume that all eigenvalues of A.  are different. Let (@ ;) denote the i, j entry of &, with

0
1

(Dcp)ij = . -

Ci+mk

ifi<j
ifi=]
if i >jandi = j mod (k)

ifi>jandi=jmod (k),

(A = A1) g Ajrmk —

Aj

where s = % Let $2,, be an infinite diagonal matrix with (£2,,)i = w(A;), where w : R — R is an arbitrary but fixed function.
Then the matrix @ is an invertible infinite lower triangular matrix such that (A} ;) = (®c 0 2, o D A),j for any natural
number n > 0, where the entries (P, o §2,, o d)cyk),-j are given by

0 ifi<j
() ifi=j
0 if i > jandi s j mod(k)

ifi >jandi=jmod (k)

( l_[ C]+mk) : c.C [)Lj, )Lﬁ—k, o Al(r)

where L,[Aj, A, - .., A
function w(w) [15].

i1(}) is the Lagrange polynomial in the variable  of degree s at the nodes {A;j, Aj«, ..., A;} for the

Proof. It is straightforward to verify that the matrix @_ ; exists. Moreover its entries are given by

0 ifi < j
1 ifi = j
0 ifi > jandi = j mod (k)
(@ )ij = o
_Gtmk i~ jandi=jmod (k).
m=0 )\i_)hj+mk

Now since all three matrices, @, §2 and @ ! are lower triangular, their product is also lower triangular. Thus there are
several cases to show, but the only one that is not straightforward is if i > jand i = j mod (k) then i = j + ks for some
s € N.Thus the @, ; o £2,, o <1>C_;U entries are given by

i

S

Z (Pci o QW)i,m ((pf_,)lh)m,j = Z (@ci o Q“’)i,j+mk ((DC_J]»)jﬂnk,j

m=j m=0

=w<A>1‘[

s—1

+

m
1

=0

wO‘j—}—km)

w()\j) T G
MPTEYS § vy

Citke

1 ]+k/é

Cit+km-+ke

=1 Ajrkm — A ( 10

()i

(h%k«) [imﬁkm)( 1_[ A%

-1 m—1
j 1—[ Citke
)Lj+kn1 — Ajtkm+ke =0 )Lj+km - )‘j+k/5

w(,\j) ﬁ 1
Aj—x A — Ajrke

=0 1_)L+k( ip—q

s—1 s—1 m—1
Z @ (Ajpkm) Citkm 1—[ Ci-+ke 1—[ Ci-+ki
= Ajkm — A\ S Arkm — A )\ g Ajkm — Ak

=)

m=0 0=0,0£m "J+km

(ﬁ ) 7
= Citke 7°Cw[)‘-ja }\-j+k» cees )\l](M)
=0 d’us
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Now let us prove that @, ; 0 §2,,0 & ; = (Ac»). We will prove such equality proving that equality is achieved entry-wise.
Let us notice that we only have to prove the equality for the entries i > j withi = j mod (k).

Since the polynomial p(x) = x interpolates at the nodes given by the eigenvalues of A. ; and by uniqueness of the
Lagrange polynomial, we conclude that &£,,[A;j, Ajk, ..., A;](1) is a polynomial of degree one. Therefore its s-derivative is
zero except when i — j = k. For these entries we have

4 0 d
(@cs0 20 Djwiy =[] Cj+k€@£w[)‘ﬁ A+l (1)
=0

=¢. N

. d (%’(M — Ajtk) N Ajre(pe — )»j)) —¢

T\ 2= A Atk — Aj

In general the eigenvalues of A, appear in the entries of Ag’ , as nodes of an interpolation polynomial for the function
w(x) = x" and the product of the subdiagonal elements can be interpreted as correction coefficients or weights. These two
facts show a direct connection with interpolation theory. Notice that we also obtain the following double identity:

Corollary 3.2. If A = {)Lj};’zol is a sequence with different elements and w(X) = A, thenVi, j,n € Nwithi > jand i = j mod (k)
SPa—s [ Mes - M) = LT Mg - A = Sl A -+ A4l

where fu[Aj, Ajyk, - . ., A;] denotes the divided differences (see [16]) of the function f,(x) = x" at the nodes Aj, Ajtk, ..., Aj,
see [12] for details on this last equality.

4. Conclusions

One goal of this study was to analyze the result of introducing a multiple delay in the advection-reaction operators. We
discovered that introducing a k multiple delay in a discrete dynamical system generated by such operators is equivalent to
introducing a delay in k dynamical systems. Moreover, we were able to compute explicitly the iterates of such operator with
two different approaches showing their dynamical behavior and their connection with interpolation theory.
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