
Journal of Computational and Applied Mathematics 313 (2017) 515–535

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Methods for verified stabilizing solutions to continuous-time
algebraic Riccati equations
Tayyebe Haqiri a,b, Federico Poloni c,∗
a Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
b Young Researchers Society of Shahid Bahonar University of Kerman, Kerman, Iran
c Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

a r t i c l e i n f o

Article history:
Received 7 September 2015
Received in revised form 23 August 2016

MSC:
65M32
35Kxx
65T60

Keywords:
Algebraic Riccati equation
Stabilizing solution
Interval arithmetic
Verified computation
Krawczyk’s method

a b s t r a c t

We describe a procedure based on the Krawczyk method to compute a verified enclosure
for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X + XA +

Q = XGX building on the work of Hashemi (2012) and adding several modifications to
the Krawczyk procedure. We show that after these improvements the Krawczyk method
reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015),
and surpasses it in some examples. Moreover, we introduce a new direct method for
verificationwhich has a cubic complexity in term of the dimension of X , employing a fixed-
point formulation of the equation inspired by the ADI procedure. The resultingmethods are
tested on a number of standard benchmark examples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the continuous-time algebraic Riccati equation (CARE)

A∗X + XA + Q = XGX, (1.1)

where A,G and Q ∈ Cn×n are given, G and Q are Hermitian, and X ∈ Cn×n is unknown. Here, the notation A∗ denotes the
conjugate transpose of a complex matrix A while AT shows the transpose of A. CAREs have a variety of applications in the
field of control theory and filter design, such as the linear–quadratic optimal control problem and Hamiltonian systems of
differential equations. We refer the reader to the books [1,2] for further information on the theoretical properties, solution
algorithms and applications of CAREs.

A solution Xs of (1.1) is called stabilizing if the closed loop matrix A − GXs is Hurwitz stable, i.e., if all its eigenvalues have
strictly negative real part. If a stabilizing solution Xs exists, it is unique andHermitian, i.e., Xs = (Xs)

∗. The stabilizing solution
is the one of interest in almost all applications.

The work presented here addresses the problem of verifying the stabilizing solution of (1.1), that is, determining an
interval matrix which is guaranteed to contain Xs. The main tool used for verified computation is interval arithmetic.
Following well-established principles (see e.g. [3, Section 1]), we do not implement a solution algorithm using interval

∗ Corresponding author.
E-mail addresses: Haqiri@math.uk.ac.ir, thaqiri@gmail.com (T. Haqiri), fpoloni@di.unipi.it (F. Poloni).

http://dx.doi.org/10.1016/j.cam.2016.09.021
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2016.09.021
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.09.021&domain=pdf
mailto:Haqiri@math.uk.ac.ir
mailto:thaqiri@gmail.com
mailto:fpoloni@di.unipi.it
http://dx.doi.org/10.1016/j.cam.2016.09.021


516 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

arithmetic, but rather we assume that an approximated solution X̌ ≈ Xs is available (computed, for instance, with a
traditional, non-verified numerical method in machine arithmetic), and we use interval arithmetic to prove that a suitable
interval matrix X ∋ X̌ contains Xs.

The problem of computing verified solutions to matrix Riccati equations (AREs) has been addressed before in the
literature: the algorithms in [4,5], based on the interval Newton method, are pioneering works in this context but their
computational complexity is O(n6). In [4], the authors apply Brouwer’s fixed point theorem to calculate verified solutions
of the ARE

ATX + XA + Q = XBR−1BTX, (1.2)
with real symmetricmatricesQ and R,Q positive semi definite and R positive definite. They find an intervalmatrix including
a positive definite solution of (1.2). The paper [6] decreases this cost to O(n5) by using the Krawczyk method, which is a
variant of the Newton method that it does not require the inversion of an interval matrix. A major improvement is the
algorithm in [7], which is applicable when the closed-loop matrix A − GX̌ is diagonalizable where X̌ denotes a numerical
computed solution of (1.1), and requires only O(n3) operations. The recent paper [8] describes a more efficient algorithm
based again on the diagonalization of A − GX̌, X̌ a Hermitian numerical solution of (1.1). The resulting method has cubic
complexity as well. An important feature of this algorithm is that does not require iteration to find a suitable candidate
interval solution, unlike the previous methods. Rather, it uses a clever mix of interval arithmetic and IEEE arithmetic with
prescribed rounding to determine the optimal radius of the interval X. Hence it is typically faster than the alternatives. The
same paper [8] also includes a method to verify the uniqueness and the stabilizing property of the computed solution.

We propose here a variant of the Krawczyk method suggested in [7], introducing several modifications. Namely:
• We use the technique introduced in [9], which consists in applying the Krawczyk method not to the original equation,

but to one obtained after a change of basis, in order to reduce the number of verified operations required, with the aim
to reduce the wrapping effects.

• We exploit the invariant subspace formulation of a CARE to make another change of basis, following a technique
introduced in [10] for the non-verified solution of Riccati equations. This technique employs a suitable permutation of
the Hamiltonian matrix to transform (1.1) into a different CARE whose stabilizing solution Ys has bounded norm.

• When applying the Krawczyk method, an enclosure for the so-called slope matrix is needed; the standard choice to
compute it is using the interval evaluation of the Jacobian of the function at hand. Instead, we use a different algebraic
expression which results in a smaller interval.

With these improvements, the Krawczyk method can be used to prove that a solution exists inside some interval matrix,
but not that this solution is unique or stabilizing. Our strategy for proving uniqueness is indirect: after having verified the
existence of a solution Xs ∈ X, we check if all the matrices inside the interval matrix A−GX are Hurwitz stable. If this holds,
then it is automatically verified that the interval matrix X contains only one solution, and that it is the stabilizing one.

In addition, we present a different algorithm, based on a reformulation of (1.1) as a fixed-point equation, which requires
O(n3) operations per step and does not require the diagonalizability of the closed-loop matrix A − GX̌ in which X̌ is the
computed approximate stabilizing solution of CARE (1.1). This algorithm is generally less reliable than the Krawczyk-based
ones, but it has the advantage of not breaking down in cases inwhich the closed-loopmatrix is defective or almost defective.

The techniques presented here can be adapted with minor sign changes to anti-stabilizing solutions, i.e., solutions Xas for
which all the eigenvalues of A − GXas have positive real part. The algorithms in [7,8], in contrast, do not restrict to verifying
stabilizing solutions only; however, solutions which are neither stabilizing nor anti-stabilizing have very few applicative
uses.

We conclude the paper by evaluating the proposed algorithms on a large set of standard benchmark problems [11,12]
for Riccati equations, comparing them with the algorithms in [7,8]. Using all the improvements described here, the gap
between the Krawczyk method and the current best method in [8] is essentially eliminated. The four methods each handle
satisfactorily a slightly different set of problems, and none of them is beaten by the alternatives in all possible experiments.

The paper is organized as follows. In the next section we introduce some notation and standard results in linear algebra
and interval analysiswhich are at the basis of ourmethods. In Section 3wediscuss various algorithms based on theKrawczyk
method to compute a thin intervalmatrix enclosing a solution of (1.1) while in Section 4, a fixed point approach is presented.
In Sections 5 and 6 we perform some numerical tests and draw the conclusions and outlook, respectively.

2. Preliminaries and notation

We try to follow the standard notation of interval analysis defined in [13]. Subsequently, we use boldface lower and
upper case letters for interval scalars or vectors and matrices, respectively, whereas lower case stands for scalar quantities
and point vectors and upper case represents matrices.

Complex intervals can be defined either as rectangles or as discs. We use here the definition as discs, i.e., ICdisc: a circular
complex interval x, or circular disc or simply a complex interval, is a closed circular disc of radius rad(x) ∈ Rwith rad(x) ≥ 0
and center mid(x) ∈ C, written as x = ⟨mid(x), rad(x)⟩. Operations on circular complex intervals can be defined (see
e.g. [14,3]) so that they provide inclusion intervals for the exact results, i.e.,

x ◦ y ⊇ {x ◦ y : x ∈ x, y ∈ y}, ◦ ∈ {+,−, ·, /}.



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 517

Operations between a complex interval and a complex number z ∈ C can be performed by identifying z with ⟨z, 0⟩ ∈ ICdisc.
We shall also use the notation x−1

= 1/x.
The interval hull of two intervals x and y is denoted by �(x, y) which is the smallest interval containing x and y. The

magnitude of x ∈ ICdisc is defined as mag(x) := max{|x| : x ∈ x}.
We denote by A = ⟨mid(A), rad(A)⟩ ∈ ICm×n

disc the m × n interval matrix A whose (i, j) element is the complex interval
⟨mid(Aij), rad(Aij)⟩, with rad(Aij) ≥ 0; 1 ≤ i ≤ m, 1 ≤ j ≤ n. For interval vectors and matrices, mid, rad,mag, and � will
be applied component-wise.

The Frobenius norm of a complexmatrix A = (Aij) is defined as ∥A∥F := (


i,j |Aij|
2)1/2. This definition can be extended to

complex interval matrices, providing an interval-valued function ∥A∥F defined as the smallest interval containing {x : x =

∥A∥F , A ∈ A}.
The Kronecker product A ⊗ B of an m × n matrix A = (Aij) and a p × q matrix B is an mp × nq matrix defined as the

block matrix whose blocks are A ⊗ B := [AijB]. For a point matrix A ∈ Cm×n, the vector vec(A) ∈ Cmn denotes column-wise
vectorization whereby the successive columns of A are stacked one below the other, beginning with the first column and
ending with the last. Moreover, A denotes the complex conjugate of A and if A is an invertible matrix, then A−T

:= (AT )−1

and A−∗
:= (A∗)−1. The element-wise division of a matrix A = (Aij) ∈ Cm×n by a matrix B = (Bij) ∈ Cm×n, also known as

the Hadamard division, denoted by A./B, results in an m × n matrix C = (Cij) whose (i, j) element is given by Cij = Aij/Bij

provided that Bij ≠ 0, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. For a given vector d = (d1, d2, . . . , dn)T ∈ Cn,Diag(d) ∈ Cn×n is
the diagonal matrix whose (i, i) entry is di. Conversely, given a diagonal matrix D, diag(D) is the vector whose elements are
the diagonal entries of D. Most of these notions and operations are analogously defined for interval quantities.

The definition of inverse of an interval matrix may be problematic in general, but if D = Diag(d) is diagonal, with
d = (d1, d2, . . . , dN)

T and 0 ∉ di for each i = 1, 2, . . . ,N , then we may define D−1
:= Diag((d−1

1 , d
−1
2 , . . . , d

−1
N )

T ).
The following lemmas contain simple arithmetical properties of the Kronecker product and the vec operator which we

will use in the following. Most of them appear also e.g. in [9] or [15].

Lemma 2.1. Assume that A = (Aij), B = (Bij), C = (Cij) and D = (Dij) be complex matrices with compatible sizes. Then,

(1) (A ⊗ B)(C ⊗ D) = AC ⊗ BD,
(2) A ⊗ (B + C) = (A ⊗ B)+ (A ⊗ C),
(3) (A ⊗ B)∗ = A∗

⊗ B∗,
(4) (A ⊗ B)−1

= A−1
⊗ B−1, if A and B are invertible,

(5) vec(ABC) = (CT
⊗ A) vec(B),

(6) (Diag(vec(A)))−1 vec(B) = vec(B./A), if Aij ≠ 0 for each (i, j).

Lemma 2.2. Let A = (Aij), B = (Bij) and C = (Cij) be complex interval matrices of compatible sizes. Then,

(1)

(CT

⊗ A) vec(B) : A ∈ A, B ∈ B, C ∈ C


⊆


vec

A(BC)


,

vec

(AB)C


,

(2)

Diag(vec(A))

−1
vec(B) = vec(B./A), if 0 ∉ Aij for all (i, j).

The interval evaluation f(x1, x2, . . . , xN) of a function f (x1, x2, . . . , xN) (defined by an explicit formula) is obtained by
replacing (1) the variables x1, x2, . . . , xN with interval variables x1, x2, . . . , xN and (2) each arithmetic operation in the
formula with the corresponding interval operation. The following inclusion property holds (see e.g. [14]):

f (x1, x2, . . . , xN) := {f (x1, x2, . . . , xN) : x1 ∈ x1, x2 ∈ x2, . . . , xN ∈ xN} ⊆ f(x1, x2, . . . , xN).

Note that, in principle, different equivalent formulas for the same ordinary function could give different interval evaluations
(for instance, x(x + 1) vs. x · x + x). Choosing the version which gives the tighter interval is an important detail.

In addition, one of the main difficulties in dealing with multivariate problems with interval arithmetic is the so-called
wrapping effect: the image of an interval vector under a map (even a simple one such as matrix–vector multiplication
x → Ax) is in general not an interval vector; hence, in our computations we have to replace it with an enclosing interval.
This may lead to a considerable increase of the size of the intervals, especially if it happens repeatedly during an algorithm.
We refer the reader to the review article [3] for a thorough introduction.

3. Modified Krawczyk’s methods

Enclosure methods using interval arithmetic are based on the following idea. Let g : CN
→ CN be some function of

which we wish to find a zero. First find a function h : CN
→ CN whose fixed points are known to be the zeros of g . Assume

that h is continuous and that an interval evaluation h is available. Then if h(x) ⊆ x we know that h(x) ⊆ x and so h has a
fixed point in x by Brouwer’s theorem [16].

In this paper, often the functions h are variants of the Krawczyk operator. To define this operator, we first need the
concept of a slope.



518 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

Definition 3.1 (See e.g. [14]). Suppose f : ψ ⊆ CN
→ CN and x, y ∈ CN . Then, a slope S(f ; x, y) is a mapping from the

Cartesian product ψ × ψ to CN×N such that

f (y)− f (x) = S(f ; x, y)(y − x).

We are now ready to state the result which is at the basis of all the modified Krawczyk-type algorithms used in the rest
of our paper.

Theorem 3.2 (See e.g. [17]). Assume that f : ψ ⊂ CN
→ CN is continuous. Let x̌ ∈ ψ and z ∈ ICN

disc be such that x̌ + z ⊂ ψ .
Moreover, assume that S ⊂ CN×N is a set of matrices such that S(f ; x̌, x′) ∈ S for every x′

∈ x̌ + z =: x. Finally, let R ∈ CN×N .
Denote by Kf (x̌, R, z, S) the set

Kf (x̌, R, z, S) := {−Rf (x̌)+ (IN − RS)z : S ∈ S, z ∈ z}.

If

Kf (x̌, R, z, S) ⊆ int(z), (3.1)

then the function f has a zero x∗ in x̌ + Kf (x̌, R, z, S) ⊆ x, in which int(z) is the topological interior of z.
Moreover, if S(f ; y, y′) ∈ S for each y, y′

∈ x, then x∗ is the only zero of f contained in x.

In computation, one defines the Krawczyk operator [18]

kf (x̌, R, z, S) := −Rf (x̌)+ (IN − RS)z, (3.2)

where S is an interval matrix containing all slopes S(f ; y, y′) for y, y′
∈ x. In many cases, a possible choice for S can be

obtained from f′(x), an interval evaluation of the Jacobian f ′ on the interval x. Indeed, in the case of real intervals it holds
that S(f ; x, y) ∈ f′(x) for all x, y ∈ x, because of the mean value theorem. In the complex case, though, this inclusion does
not always hold. By the inclusion property of interval arithmetic,

kf (x̌, R, z, S) ⊂ int (z) (3.3)

implies (3.1). So, if (3.3) is satisfied then f has a zero in x̌+kf (x̌, R, z, S). In practice, one attempts to make the terms−Rf (x̌)
and IN −RS as small as possible, to obtain the crucial relation (3.3). The typical choice is taking as x̌ a good approximation of a
zero of f and as R a good approximation of (f ′(x̌))−1, both obtained via a classic floating point algorithm, see for instance [9].

3.1. A residual form for the Krawczyk operator

We now introduce the concepts that are needed to apply themodified Krawczykmethod to solve amatrix equation such
as (1.1). The Fréchet derivative [19] of a Fréchet differentiable matrix function F : Cn×n

→ Cn×n at a point X ∈ Cn×n is a
linear mapping LF : Cn×n

→ Cn×n such that for all E ∈ Cn×n

F(X + E)− F(X)− LF (X, E) = o(∥E∥).

Since LF is a linear operator, we can write

vec(LF (X, E)) = KF (X) vec(E),

for a matrix KF (X) ∈ Cn2×n2 that depends on L but not E. One refers to KF (X) as the Kronecker form of the Fréchet derivative
of F at X .

In the case of the continuous-time algebraic Riccati equation (1.1), we apply the Krawczyk method to the function
F : Cn×n

→ Cn×n defined as

F(X) := A∗X + XA + Q − XGX,

which appeared before in [7]. For this function, one has

LF (X, E) = E(A − GX)+ (A∗
− XG)E.

Lemma 2.1 part 5 turns out that its Kronecker form is

KF (X) = In ⊗ (A∗
− XG)+ (A − GX)T ⊗ In.

When X = X∗, we can write this expression in an alternate form as

KF (X) = In ⊗ (A − GX)∗ + (A − GX)T ⊗ In. (3.4)

We wish to use the modified Krawczyk algorithm on the function obtained by regarding F as a vector map f : CN
→ CN ,

with N = n2, defined by

f (x) := vec(A∗X + XA + Q − XGX), x = vec(X). (3.5)



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 519

The following result, which is a slight variation of a theorem in [7], shows that the Fréchet derivative can be used to obtain
an enclosure for the slope in themodified Krawczykmethod.We report it, with a different proof from the one in [7], because
this presentation will be more convenient in the following development of our method. Due to this reformulation, we will
get a weaker result with respect to uniqueness.

Theorem 3.3. Let X be an interval matrix, and KF (X) = In ⊗ (A − GX)∗ + (A − GX)T ⊗ In be the interval evaluation of KF (X)
in (3.4). Then for each Y , Y ′

∈ X such that Y = Y ∗, it holds that S(f ; y, y′) ∈ KF (X), where y = vec(Y ), y′
= vec(Y ′).

Proof. We have

vec(F(Y )− F(Y ′)) = vec((A∗
− YG)(Y − Y ′)+ (Y − Y ′)(A − GY ′))

= vec((A − GY )∗(Y − Y ′)+ (Y − Y ′)(A − GY ′))

= (In ⊗ (A − GY )∗ + (A − GY ′)T ⊗ In) vec(Y − Y ′),

hence by the inclusion property of interval arithmetic

S(f ; y, y′) = (In ⊗ (A − GY )∗ + (A − GY ′)T ⊗ In) ∈ KF (X). � (3.6)

The next ingredient that we need to apply the Krawczyk algorithm is the matrix R. One would like to use R ≈ (KF (X̌))−1,
where X̌ = X̌∗ is an approximation of the stabilizing solution to the CARE (1.1) computed in floating point arithmetic.
However, this is the inverse of an n2

×n2 matrix, whose computation would cost O(n6) floating point operations in general.
Even considering the Kronecker product structure of KF (X̌), there is no algorithm in literature to compute R explicitly with
less than O(n5) arithmetic operations. The action of R, that is, computing the product Rv given a vector v ∈ Cn2 , can be
computed with O(n3) operations with methods such as the Bartels–Stewart algorithm [20]. However, this method cannot
be used effectively in conjunction with interval arithmetic due to excessive wrapping effects, as argued in [21].

The work [7] (and, earlier, on a similar equation, [9]) contains an alternative method to perform this computation with
complexity O(n3), in the case when A−GX̌ is diagonalizable, where X̌ is a numerical solution of CARE (1.1). Assume that an
approximate eigendecomposition of A − GX̌ is available, that is,

A − GX̌ ≈ VΛW with V ,W ,Λ ∈ Cn×n, (3.7a)
Λ = Diag(λ1, λ2, . . . , λn), VW ≈ In. (3.7b)

We write ≈ instead of = because V ,W ≈ V−1 and λi, i = 1, 2, . . . , n are computed numerically with a standard method
such as MATLAB’s eig. So, equality does not hold (in general) in the mathematical sense. Furthermore, we assume the
nonsingularity of

∆ = In ⊗Λ∗
+ΛT

⊗ In. (3.7c)

Once these quantities are computed, we can factorize KF (X̌) by replacing In in In ⊗ (A − GX̌)∗ with V−T InV T and in
(A − GX̌)T ⊗ In with W ∗InW−∗ and then using Lemma 2.1, so that

KF (X̌) = In ⊗ (A − GX̌)∗ + (A − GX̌)T ⊗ In

= (V−T
⊗ W ∗)(In ⊗ (W (A − GX̌)W−1)∗ + (V−1(A − GX̌)V )T ⊗ In)(V T

⊗ W−∗),

and choose R as

R = (V−T
⊗ W ∗)∆−1(V T

⊗ W−∗). (3.8)

Then, R ≈ (KF (X̌))−1 holds since if X̌ is close enough to the stabilizing solution of (1.1), then one can expect that
W (A − GX̌)W−1 and also V−1(A − GX̌)V to be close to Λ. So, the computation of an enclosure, vec(L), for l := −Rf (x̌)
in Kf (x̌, R, z, S) can be done using exclusively the matrix–matrix operations, as shown in Lines 1–9 of Algorithm 1.

For the latter term in each member of Kf (x̌, R, z, S), i.e., (In2 − RS)z, however, we get

u := (In2 − RS)z = (In2 − (V−T
⊗ W ∗)∆−1(V T

⊗ W−∗)(In ⊗ (A − GY )∗ + (A − GY ′)T ⊗ In))z

= ((V−T
⊗ W ∗)∆−1(∆− In ⊗ (W (A − GY )W−1)∗ − (V−1(A − GY ′)V )T ⊗ In)(V T

⊗ W−∗))z,

in which In2 has replaced by V−TV T
⊗ W ∗W−∗, and Y , Y ′

∈ X with Y = Y ∗. Then, Algorithm 2 Lines 2–7 will compute an
enclosure for this term as the interval matrix Uwhose vectorization contains u.

Another point to note is that we can transform the multiplication Γ −1 vec(M), for an n × n matrix M and a diagonal
matrix Γ , into M./N , where N is defined by Nij = Γ̄ii + Γjj, using point 6 of Lemma 2.1, and similarly for interval matrices
using point 2 of Lemma 2.2. This point will appear in, for example, Algorithm 1 Line 8, and Algorithm 2 Line 6.

The standard method [3] to obtain an interval vector z = vec(Z) that satisfies (3.3) is an iterative one. We start from the
residual matrix Z0 := F(X̌), that is, the interval evaluation of F(X̌), and proceed alternating successive steps of enlarging



520 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

this interval with a technique known as ε-inflation [3], applying the Krawczyk operator to it, zi+1 = kf (x̌, R, zi, S). This
procedure terminates when (and if) we find an interval for which (3.3) holds; it is ultimately a trial-and-error procedure,
which is not guaranteed to succeed: the operator kf may simply not contract its interval argument zi sufficiently. This may
be due to ill-conditioning of the original equation, to a bad choice of R, or to wrapping effects and other overestimations in
the interval computations.

As we will show in the numerical experiments in Section 5, in all cases our algorithms based on the Krawczyk method
either terminated after 1–2 steps or failed. So in practice the number of steps can be kept very small.

Several slightly different versions of the iterative procedure to obtain a valid interval for inclusion appear in literature;
some involve intersecting the intervals obtained in different steps [9,17,22], and some involve two attempts at inclusion in
each iteration [9,22]. We use here the simplest approach, following [7,3]. The exact strategy is shown in Algorithm 1 (and
its subroutine Algorithm 2). The algorithm with these choices coincides with the algorithm presented in [7], except for the
fact that [7] presents it for a generic Hermitian solution.

In all algorithms, whenever the evaluation order of an expression is not specified exactly due to missing brackets, we
evaluate from left to right.

Algorithm 1 Computation of an interval matrix X containing a solution of CARE (1.1).

1: Compute an approximate stabilizing solution X̌ of CARE (1.1) using any floating point algorithm
2: Compute approximationsV ,W ,Λ for the eigendecomposition ofA−GX̌ in floating point {For instance, using theMATLAB

command eig}
3: Compute with floating point arithmetic D := (Dij) such that Dij ≈ Λ̄ii +Λjj

4: Compute interval matrices IV and IW containing V−1 and W−1, respectively {For instance, using verifylss.m from
INTLAB} If this fails, or if D has any zero elements, return failure

5: X̌ = ⟨X̌, 0⟩ {To ensure that operations involving X̌ are performed in a verified fashion with interval arithmetic}
6: F = A∗X̌ + X̌A + Q − X̌GX̌ {Using verified interval arithmetic}
7: G = I∗WFV
8: H = G./D
9: L = −W ∗HIV

10: Z = L
11: for k = 1, 2, . . . , kmax do
12: Set Z = �(0, Z · ⟨1, 0.1⟩ + ⟨0, realmin⟩) {ε-inflation technique}
13: Compute K using Algorithm 2
14: if K ⊂ int(Z) {successful inclusion} then
15: Return X = X̌ + K
16: end if
17: Z = K
18: end for
19: Return failure {Maximum number of iterations reached}

Algorithm 2 Computation of an interval matrix K such that vec (K) = kf (x̌, R, z, S) encloses Kf (x̌, R, z, S).

1: Input A, G, Q , X̌ , Z
{Additionally, in this subfunction we use V ,W , IV , IW ,Λ,D, L which are already computed in Algorithm 1}

2: M = I∗WZV
3: N = W (A − G(X̌ + Z))IW
4: O = IV (A − G(X̌ + Z))V
5: P = (Λ− N)∗M + M(Λ− O)
6: Q = P./D
7: U = W ∗QIV
8: K = L + U
9: Return K

Notice the ε-inflation, which is performed by enlarging the computed interval by 10% and adding ⟨0, realmin⟩.
Throughout the paper, realmin denotes the smallest positive normalized floating point number.

All the operations in Algorithm 1 arematrix–matrix computations requiringO(n3) arithmetic operations, so its total cost
is O(n3s), where s is the number of steps needed before success.

In the following Sections 3.2–3.4, we describe threemodifications that improve the reliability of the Krawczyk algorithm
by temporarily neglecting the issue of uniqueness. We shall show later, in Section 3.5, how the uniqueness of the solution
inside X can be recovered a posteriori.



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 521

3.2. An affine transform enclosure

In this section we describe a technique for reducing the wrapping effect in the modified Krawczyk method, which has
already been successfully applied to several matrix equations [9,17]. The main idea is applying the verification algorithm to
amodified function f̂ obtained from f via an affine transformation; in this way, we reduce the number of interval operations
to perform inside the verification procedure.

Assuming again that V ,W and∆ defined in (3.7) are nonsingular, we define the function

f̂ (x̂) := (V T
⊗ W−∗)f ((V−T

⊗ W ∗)x̂). (3.9)

If x̌ = vec(X̌) is an approximate solution to f (x) = 0, then ˆ̌x := (V T
⊗ W−∗)x̌ is an approximate solution to f̂ (x̂) = 0. The

Kronecker form of the Fréchet derivative of F̂(X̂), matrix formulation of f̂ (x̂), is given by

KF̂ (X̂) = (V T
⊗ W−∗)KF (X)(V−T

⊗ W ∗), X = W ∗X̂V−1.

Moreover, let x̂ = vec(X̂) := ˆ̌x + ẑ, where ẑ = vec(Ẑ). A set of slopes for f̂ on x̂ can be defined as

Ŝ := {S(f̂ ; ŷ, ŷ′) : ŷ, ŷ′
∈ x̂}.

Defining y := (V−T
⊗ W ∗)ŷ, y′

:= (V−T
⊗ W ∗)ŷ′, we have

S(f̂ ; ŷ, ŷ′)(ŷ − ŷ′) = f̂ (ŷ)− f̂ (ŷ′)

= (V T
⊗ W−∗)(f (y)− f (y′))

= (V T
⊗ W−∗)S(f ; y, y′)(y − y′)

= (V T
⊗ W−∗)S(f ; y, y′)(V−T

⊗ W ∗)(ŷ − ŷ′).

Hence

S(f̂ ; ŷ, ŷ′) = (V T
⊗ W−∗)S(f ; y, y′)(V−T

⊗ W ∗).

In particular, if we combine this result with Theorem 3.3, we can take Ŝ in the Krawczyk operator kf̂ (
ˆ̌x, R̂, ẑ, Ŝ) as

Ŝ := In ⊗ (W (A − GX̌)W−1)∗ + (V−1(A − GX̌)V )T ⊗ In. (3.10)

where

X̌ = W ∗ ˆ̌XV−1,
ˆ̌X =

ˆ̌X + Ẑ,

as long as X̌ is Hermitian.
Observe that

In ⊗ (W (A − GX̌)W−1)∗ + (V−1(A − GX̌)V )T ⊗ In ≈ In ⊗Λ∗
+ΛT

⊗ In,

so a natural choice for R̂ is the diagonal matrix

R̂ = ∆−1,

in which∆ is defined as in (3.8).
Now, we compute an enclosure for Kf̂ (

ˆ̌x, R̂, ẑ, Ŝ) := {−R̂f̂ (ˆ̌x) + (In2 − R̂S)ẑ, S ∈ Ŝ, ẑ ∈ ẑ} which can be written as

kf̂ (
ˆ̌x, R̂, ẑ, Ŝ) in which ˆ̌x is an approximate solution for (3.9), R̂ is ∆−1, Ŝ = {S(f̂ ; ŷ, ŷ′), ŷ, ŷ′

∈ x̂ := (V T
⊗ W−∗)x̌ + ẑ},

and ẑ := vec(Ẑ). As in Algorithm 1, we also take care that the quantities which are not available exactly are enclosed into
computable quantities in interval forms, for instance IV and IW are interval matrices which are known to contain the exact
value of V−1 and W−1, appropriately. More details for computing the superset

kf̂ (
ˆ̌x, R̂, ẑ, Ŝ) = −R̂f̂ (ˆ̌x)+ (In2 − R̂Ŝ)ẑ

= −∆−1((V T
⊗ W−∗)f (x̌)− (∆− In ⊗ (W (A − GX̌)W−1)∗ − (V−1(A − GX̌)V )T ⊗ In)ẑ),

for Kf̂ (
ˆ̌x, R̂, ẑ, Ŝ), are displayed in Algorithm 4. The complete algorithm is shown in Algorithm 3.

Note that computing L̂ in Algorithm 3 requires fewer dense n × n interval matrix multiplications than computing L in
Algorithm 1 as well as computing Û in Algorithm 4 versus computing U in Algorithm 2, so the impact of the wrapping effect
is reduced. This is the reason why one expects Algorithm 3 to work in more cases than Algorithm 1.

An important observation is that the last transformation X = X̌ + W ∗K̂IV happens after the Krawczyk verification
procedure. So, while the procedure guarantees that only one zero x̂s of f̂ is contained inW−∗X̌V + K̂, when we return to the



522 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

Algorithm 3 Computation of an interval matrix X containing a solution of CARE (1.1).

1: Compute an approximate stabilizing solution X̌ of CARE (1.1) using any floating point algorithm
2: Compute approximationsV ,W ,Λ for the eigendecomposition ofA−GX̌ in floating point {For instance, using theMATLAB

command eig}
3: Compute with floating point arithmetic D := (Dij) such that Dij ≈ Λ̄ii +Λjj

4: Compute interval matrices IV and IW containing V−1 and W−1, respectively {For instance, using verifylss.m from
INTLAB} If this fails, or if D has any zero elements, return failure

5: X̌ = ⟨X̌, 0⟩ {To ensure that operations involving X̌ are performed in a verified fashion with interval arithmetic}
6: F = A∗X̌ + Q + X̌(A − GX̌)
7: F̂ = I∗WFV
8: L̂ = −F̂./D
9: Ẑ = L̂

10: for k = 1, 2, . . . , kmax do
11: Set Ẑ = �(0, Ẑ · ⟨1, 0.1⟩ + ⟨0, realmin⟩ {ε-inflation technique}
12: Compute K̂ using Algorithm 4 (or Algorithm 5)
13: if K̂ ⊂ int(Ẑ) {successful inclusion} then
14: Return X = X̌ + W ∗K̂IV
15: end if
16: Ẑ = K̂
17: end for
18: Return failure {Maximum number of iterations reached}

Algorithm 4 Evaluating K̂with vec(K̂) = kf̂ (
ˆ̌x, R̂, ẑ, Ŝ) encloses Kf̂ (

ˆ̌x, R̂, ẑ, Ŝ).

1: Input A, G, Q , X̌ , Ẑ
{Additionally, in this sub-function we use V ,W , IV , IW ,Λ,D, L̂which are already computed in Algorithm 3}

2: M̂ = W ∗ẐIV
3: N̂ = I∗W (A − G(X̌ + M̂))∗W ∗

4: Ô = IV (A − G(X̌ + M̂))V
5: P̂ = (Λ∗

− N̂)M̂ + M̂(Λ− Ô)
6: Û = P̂./D
7: K̂ = L̂ + Û
8: Return K̂

original setting and compute an enclosure for X = X̌ + W ∗K̂IV , other solutions of (1.1) may fall into this enclosure. Hence,
Algorithm 3 alone does not guarantee that there is a unique solution of (1.1) in X, nor that this solution is the stabilizing one.
We resolve with this issue in Section 3.5.

Another small improvement introduced in this algorithm is gathering X̌ in Line 6 of Algorithm 3, in order to reduce the
wrapping effect.

3.3. Verifying a different Riccati equation

Another possible modification to the verification process consists in modifying the equation into one with (possibly)
better numerical properties. The idea stems from the following classical formulation of a CARE as an invariant subspace
problem.

Lemma 3.4 (See e.g. [1]). The stabilizing solution Xs of CARE (1.1) is the only matrix Xs ∈ Cn×n such that

H

In
Xs


=


In
Xs


R, H =


A −G

−Q −A∗


∈ C2n×2n (3.11)

for some Hurwitz stable matrix R. Moreover, it holds that R = A − GXs.

We use this formulation to relate the solution Xs to the one of a different CARE. The following result is a natural result
of the literature on algebraic Riccati equations (see e.g. [1]), and the idea used here is certainly not original, but we prove it
explicitly because we do not have a reference with this exact statement.



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 523

Lemma 3.5. Let Xs be the stabilizing solution of (1.1). Suppose that P ∈ C2n×2n be a nonsingular matrix such that P−1HP has
the same structure as H, i.e.,

P−1HP =


AP −GP

−QP −A∗

P


∈ C2n×2n, (3.12)

for some matrices AP ,GP = G∗

P ,QP = Q ∗

P ∈ Cn×n. Let Ys be the stabilizing solution of the CARE

A∗

PY + YAP + QP = YGPY , (3.13)

and U1,U2 ∈ Cn×n be defined by

P

In
Ys


=


U1
U2


.

If U1 is invertible, then Xs = U2U−1
1 .

Proof. We have

P−1HP

In
Ys


=


In
Ys


RP ,

for the Hurwitz stable matrix RP = AP − GPYs. Multiplying both sides by P on the left we get

H

U1
U2


=


U1
U2


RP ,

and then multiplying on the right by U−1
1

H


In
U2U−1

1


=


In

U2U−1
1


U1RPU−1

1 .

Since U1RPU−1
1 is Hurwitz stable, Lemma 3.4 gives us the thesis. �

The paper [10] contains a convenient strategy to construct a matrix P with a particularly simple form (a permutation
matrix with some sign changes) for which all the required assumptions hold and in addition Ys is bounded. Define for each
k = 1, 2, . . . , n

Sk :=


In − Ekk Ekk
−Ekk In − Ekk


∈ C2n×2n,

where Ekk is the matrix which has 1 in position (k, k) and zeros elsewhere; in other words, Sk swaps the entries k and n + k
of a vector in C2n, and changes sign to one of them. The matrices Sk are orthogonal and commute with each other.

Theorem 3.6 ([10, Theorem 3.4]). Let I = {i1, i2, . . . , ik} be a subset of {1, 2, . . . , n}, and P = Si1Si2 . . . Sik . Then

(1) For each choice of I, the matrix P−1HP has the structure (3.12).
(2) For each τ ≥

√
2, one can find I such that U1 is nonsingular and Ys has all its elements bounded in modulus by τ (referring

to the definitions of U1 and Ys in Lemma 3.5).

These results suggest an alternative verification strategy:

(1) Compute P satisfying Theorem 3.6.
(2) Form the coefficients AP ,GP and QP , which can be obtained from the entries of H only using permutations and sign

changes.
(3) Using one of the various verification methods for CAREs, compute an interval matrix Y containing the stabilizing

solution Ys.
(4) Compute

U1
U2


= P


In
Y


,

which, again, requires only rearranging the entries and changing their signs, and hence can be done without wrapping
effects.

(5) Compute using interval arithmetic a solution X to the linear system XU1 = U2.

Then, clearly, X contains the true stabilizing solution Xs of (1.1). Again, since the interval matrix X computed in the last step
is only a solution enclosure and suffers from wrapping effect, it might be the case that other solutions of the CARE (1.1) are
contained in X in addition to Xs.



524 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

The MATLAB toolbox [23] contains algorithms to compute a subset I (and hence a matrix P) satisfying the conditions of
Theorem 3.6, for every τ >

√
2, in time bounded by O(n3 logτ n). The factor logτ n is a worst-case factor only, and in our

experience for most matrices fine-tuning the choice of τ does not have a big impact on neither performance nor stability.
Here, we always use the method with its default value τ = 3.

With this method, one transforms the problem of verifying (1.1) into the one of verifying (3.13); this latter Riccati
equationhas a stabilizing solutionYs whose entries are bounded inmodulus by τ , hence onemayexpect that less cancellation
can take place in the algorithms. While there is no formal guarantee that this must happen, in practice, in most cases the
eigenvector matrix VP of RP = AP − GPYs has a lower condition number than the one V of A − GXs, as we report in the
experiments (see Fig. 5 in the following), and verification of (3.13) is often easier than verification of (1.1). Ultimately, this
is only a heuristic approach, though.

Let us analyze the computational complexity of Algorithm 6.

Theorem 3.7. Algorithm 6 requires at most O(n3 logτ n+n3s) floating point operations, where s is the number of steps required
by the inner verification algorithm in Line 5 .

Proof. Computing X̌ in Line 2 requires O(n3) operations, using for instance the algorithm mentioned in [8] (based on
the ordered Schur form of H and an additional Newton step with the residual computation performed in emulated
quadruple-precision arithmetic). Forming P in Theorem 3.6 via the approach explored in [23] costs O(n3 logτ n) floating
point operations. Computing Y by using Algorithm 3 has costO(n3) per step (and the samewill hold for Algorithm 8 that we
will introduce later): the cost for the eigendecomposition and the enclosures IV and IW is again cubic in n, and all the other
matrix–matrix operations (including the Hadamard divisions) in Algorithms 3 and 5 have again cost O(n3) at most, as they
only involve n × nmatrices. �

3.4. A new superset

According to Theorem 3.2, the computed interval matrix is guaranteed to contain a unique solution if the set S contains
the slopes S(f ; y, y′) for all y, y′

∈ x. On the other hand, if we employ an interval matrix containing only the slopes S(f ; x̌, y′)
for all y′

∈ x, existence can be proved, but not uniqueness. Since we have already decided to forgo (for now) uniqueness, it
makes sense to let go of it also when choosing the superset S.

A simple modification to our proof of Theorem 3.3 gives a tighter inclusion for the slope superset by reducing the
wrapping effect.

Theorem 3.8. Let f be as in (3.5), X ∈ ICn×n be an interval matrix, and X̌ ∈ X be Hermitian. Then, the interval matrix

In ⊗ (A − GX̌)∗ + (A − GX)T ⊗ In

contains the slopes S(f , x̌, y′) for each Y ′
∈ X where x̌ = vec(X̌) and y′

= vec(Y ′).

Proof. We repeat the proof of Theorem 3.3, with y = x̌, and replace the term KF (X) in (3.6) with the tighter inclusion
(In ⊗ (A − GX̌)∗ + (A − GX)T ⊗ In). �

As a consequence of Theorem 3.8, we can replace (3.10) with

Ŝ = In ⊗ (W (A − GX̌)W−1)∗ + (V−1(A − GX̌)V )T ⊗ In (3.14)

in our modified Krawczyk algorithm applied to f̂ , and it will still yield an interval matrix containing a (possibly non-unique)
solution of (1.1).

Algorithm5 Evaluating K̂with vec(K̂) = kf̂ (
ˆ̌x, R̂, ẑ, Ŝ) enclosesKf̂ (

ˆ̌x, R̂, ẑ, Ŝ)with a tighter superset that does not guarantee
solution uniqueness.

{This algorithm is identical to Algorithm 4, apart from Line 3 which is replaced by the following}
3: N̂ = I∗W (A − GX̌)∗W ∗

3.5. Verification of uniqueness and stabilizability

As noted before, themodifications to the Krawczykmethod introduced here do not ensure that the found interval matrix
contains only one solution to (1.1). However, the following result holds.

Theorem 3.9 ([24, Theorem 23.3]). The CARE (1.1) has at most one stabilizing solution.



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 525

Algorithm 6 Computation of an interval matrix X containing a solution of (1.1) using permuted Riccati bases.
1: Input A, G, Q
2: Compute an approximate stabilizing solution X̌ of (1.1) using any floating point algorithm
3: Compute a matrix P satisfying approximately point 2 of Theorem 3.6 {For instance, using the function

canBasisFromSubspace in the toolbox [23] on the subspace Ǔ =


In
X̌


}

4: Compute AP ,GP ,QP satisfying (3.12)
5: Compute a verified solution Y to (3.13) using either Algorithm 3 o r Algorithm 8. If the verification fails, return failure

6: Set


U1
U2


= P


In
Y


7: Compute an enclosureX for the solution of the interval systemXU1 = U2 {For instance, using verifylss from INTLAB}

If this fails, return failure
8: Return X

A proof using the facts in [1] can be obtained by considering the eigenvalues ofH in (3.11). Let Xs be a stabilizing solution,
and let λ1, λ2, . . . , λn be the eigenvalues of A − GXs. Because of the formula (3.11), λ1, λ2, . . . , λn are also eigenvalues of
H (see [1, Section 2.1.1]). Moreover, the eigenvalues of H have Hamiltonian symmetry, (see [1, Section 1.5]), so there are n
more eigenvalues with positive real part. We have identified 2n eigenvalues of H , counted with multiplicity, and none of
them is purely imaginary; hence H has no purely imaginary eigenvalue and [1, Theorem 2.17] holds.

Theorem 3.9 gives a simple method to check the uniqueness of the solution in X.

Corollary 3.10. Let X ∈ ICn×n
disc be an interval matrix containing a solution X of the CARE (1.1). If every matrix in A − GX is

Hurwitz stable, then X = Xs, the stabilizing solution, and it is the only solution of (1.1) inside X.

To verify stability, we can use themethod described in [25], which is summarized in [8, Lemma2.4]. The resultingmethod
is described in Algorithm 7. In the algorithm, we use the notation ℜz to mean the real part of the complex number z.

Algorithm 7 Verifying the Hurwitz stability of an interval matrixM.
1: InputM
2: Compute approximations V ,W ,Λ for the eigendecomposition of mid(M) in floating point {For instance, using the MATLAB command

eig}
3: V = ⟨V , 0⟩
4: R = mag(W (MV − VΛ))
5: S = mag(In − VW )
6: e = the n × 1 matrix with ei,1 = 1 for each i
7: u = Re {This line and the successive ones are performed in floating point arithmetic, with rounding upward}
8: t = Se
9: µ = max(u./− (t − e))
10: r = u + µt
11: if (max(t) < 1 and r + max(ℜ(diag(Λ)))e < 0) then
12: Return success {Every matrixM ∈ M is Hurwitz stable}
13: else
14: Return failure
15: end if

Notice one subtle point: when we apply Algorithm 7 to A−GXwe recompute V ,Λ andW from the eigendecomposition
of mid(A − GX); this differs slightly from using the values computed previously, which came from the eigendecomposition
of A − GX̌ (because X was not available at that point). This choice gives better results in our experiments. The cost for this
verification is again O(n3) floating point operations.

Hence, if the verification in Algorithm7 succeeds for the solution enclosureX returned by either Algorithm1 or Algorithm
3, then X contains exactly one solution of (1.1), and it is the stabilizing one.

4. A direct fixed-point method

While the methods described in the previous sections work for many examples of Riccati equations, an essential
limitation is that all of them require the closed-loop matrix A − GX̌ to be diagonalizable. Products with the eigenvector
matrix V and its inverse are required along the algorithm, and if these are ill-conditioned then the wrapping effects are
more pronounced and the required inclusion K ⊂ int(Z) or K̂ ⊂ int(Ẑ) is less likely to hold. A striking example of this
phenomenon is the first example in the benchmark set [11]. This is a simple 2×2 problemwhich appears in [11] as nothing
more than a ‘‘warm-up example’’, and yet all the verification methods described here (including those from [7,8]) fail.



526 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

To solve this issue, we would like to propose a different method for verification. The procedure is based on some ideas
which appear in the context of ADI methods [26]. While this method is somehow more primitive and works on a lower
number of examples, it does not require that the closed-loop matrix be diagonalizable.

We rewrite the CARE (1.1) as follows. Given any Hermitian X̌ ∈ Cn×n, one can write the exact stabilizing solution Xs of
the CARE (1.1) as Xs = X̌ + Zs for an unknown Hermitian correction matrix Zs, and rewrite (1.1) as a Riccati equation in Z ,

Ã∗Z + ZÃ + Q̃ = ZGZ, with Ã = A − GX̌, Q̃ = A∗X̌ + X̌A + Q − X̌GX̌ . (4.1)

The stabilizing solution of this equation is Zs, since Ã−GZs = A−GXs is Hurwitz stable. Note that the degree-two coefficient
G is unchanged. For any s ∈ C such that Ã − sIn is nonsingular, (4.1) is equivalent to the fixed point equation

Z = (Ã − sIn)−∗(ZGZ − Q̃ − Z(Ã + sIn)).

Thus, if we find an interval Z such that (Ã − sIn)−∗(ZGZ − Q̃ − Z(Ã + sIn)) ⊆ Z, it follows from the Brouwer fixed-point
theorem that (4.1) has a solution Z∗ ∈ Z, and that (1.1) has a solution X∗ ∈ X̌ + Z.

This simple iterative method is effective when (Ã − sIn)−∗Z(Ã + sIn) does not suffer excessively from wrapping effects,
since we can expect Q̃ and the quadratic term ZGZ to be small.

Are there any preconditioning transformations that we can make to improve the method? A possibility is applying a
change of basis to the whole problem. Let V ∈ Cn×n be invertible; we set

ZV = V ∗ZV , AV = V−1ÃV , QV = V ∗Q̃ V , GV = V−1GV−∗, (4.2)

so that (4.1) is transformed into

A∗

V ZV + ZVAV + QV = ZVGV ZV .

Continuing as above, we obtain the fixed-point equation

ZV = (AV − sIn)−∗(ZVGV ZV − QV − ZV (AV + sIn)). (4.3)

If Ã is diagonalizable, we can set V as its computed approximate eigenvector matrix, as in (3.7). One can see then that the
resulting method has several steps in common with the Krawczyk method described in the previous sections. This time,
though, we are free to choose the matrix V without the risk of our method turning into a O(n6) one, since everything in
(4.3) is computable explicitly with standard linear algebra operations.

Some heuristic experimentation led us to the following choices: we take s equal to the approximation of −min{ℜλ :

λ is an eigenvalue of Ã} computed in floating-point arithmetic (motivated by the idea to make AV + sIn small and AV − sIn
large), and V as the orthogonal factor of the (computed) Schur factorization of Ã ≈ VTV−1 (motivated by the idea to
concentrate most of the ‘‘weight’’ of V−1ÃV on its diagonal). The matrix Ã is an approximation of A − GXs, which is Hurwitz
stable, so in exact arithmetic we would have s > 0 and AV − sIn = V−1(Ã− sIn)V invertible, since its eigenvalues are λi − s,
where λi are the eigenvalues of A − GXs, and thus have strictly negative real part. Hence these properties are likely to hold
also for its computed approximation Ã.

The resulting algorithm is described in Algorithm 8.

Theorem 4.1. Algorithm 8 has a cost of O(n3s) arithmetic operations, if the verification succeeds in s steps.

Proof. Again, all the required operations in every step are matrix–matrix operations between n × n matrices. The Schur
decomposition requires O(n3) operations as well, in practice [27]. �

Once again, uniqueness is not guaranteed, but it can be deduced a posteriori if the verification of the stabilizing property
of the computed inclusion interval X succeeds.

5. Numerical experiments

This section presents numerical experiments to validate the algorithms. We compare four different approaches:

(1) The modified Krawczyk approach described in [7] and in Section 3.1. This corresponds to Algorithm 1. When the
algorithm is successful, we check afterwards whether A−GX is Hurwitz stable using Algorithm 7.We call this approach
Method H in the following.

(2) The method described in [8] (using the MATLAB implementation Mn.m published by its author). The method already
includes running Algorithm 7 to check if the computed solution is Hurwitz stable, so we do not need any additional
steps. We call this procedureMethod M.

(3) Algorithm 6, choosing as its subroutine to solve the transformed CARE (3.13) the Krawczyk-based Algorithm 3 and the
modified superset trick used in Algorithm 5. This is a combination of all the improvements to Method H described in
Section 3. We call this procedureMethod K (where K stands for Krawczyk). When the algorithm is successful, we check
afterwards whether A − GX is Hurwitz stable using Algorithm 7.



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 527

Algorithm 8 Computation of an interval matrix X containing a solution of (1.1) using a simple fixed-point algorithm.
1: Input A, G, Q
2: Compute an approximate stabilizing solution X̌ of (1.1) using any floating point algorithm
3: Compute Ã (in floating point) as in (4.1)
4: Choose s and V in (4.3) {For instance, s ≈ −min{ℜλ : λ is an eigenvalue of Ã} and V as the (approximate) orthogonal

Schur factor of Ã}
5: Compute an interval matrix IV containing V−1 {For instance, using verifylss from INTLAB}
6: Compute interval matrices AV ,GV , QV containing AV , GV , QV , respectively {Replacing X̌ and V in (4.1) and (4.2) with

X̌ = ⟨X̌, 0⟩ and V = ⟨V , 0⟩, respectively}
7: Compute an interval matrix Is containing (A∗

V − sIn)−1 {For instance, using verifylss from INTLAB}
8: Set k = 0 and ZV = −IsQV
9: for k = 1, 2, . . . , kmax do

10: Set ZV = �(0, ZV · ⟨1, 0.1⟩ + ⟨0, realmin⟩) {ε−inflation technique}
11: Set Y = Is(−QV − ZV (AV + sIn − GVZV ))
12: if Y ⊂ int(ZV ) then
13: Return X = X̌ + I∗VZV IV
14: end if
15: end for
16: Return failure {Maximum number of iterations reached}

(4) Algorithm 6 again, but using the fixed-point Algorithm 8 to solve the transformed CARE (3.13). This is a combination of
the techniques described in Sections 3.3 and 4. We call this procedureMethod F (where F stands for fixed-point). When
the algorithm is successful, we check afterwards whether A − GX is Hurwitz stable using Algorithm 7.

The algorithms were tested in MATLAB 2015b with INTLAB v6, using unit round off u = 2−53
≈ 1.1 × 10−16, and run on a

computer with an Intel core Duo 2.66 GHz processor and 6 GB main memory.
The required stabilizing solutions of CAREs are computed using the method described in [8] (ordered Schur method

followed by one step of Newton refinement in simulated quadruple precision).
In order to assess the quality of the enclosures computed in each experiment we use the norm-wise relative error nre

and the geometric average relative precision garp. The first error measure is defined as

nre(X) := mag
∥rad(X)∥F

∥X∥F
.

This is the simplest possible bound for the (norm-wise) relative error
∥Xs − mid(X)∥F

∥Xs∥F

obtained by taking mid(X) as an approximation of the solution.
Following previous works (see e.g. [21]), we also report a component-wise error indicator garp based on the relative

precision of an interval, rp(x), defined as

rp(x) := min(relerr(x), 1),
where relerr is the relative error of the interval x = ⟨mid(x), rad(x)⟩ defined by

relerr(x) :=


 rad(x)mid(x)

 , if 0 ∉ x,

rad(x), otherwise.

We define our residual measure as the geometric average of rp(Xij)

garp(X) :=


n

i,j=1

rp(Xij)

 1
n2

, X = (Xij).

The quantity − log(rp(x)) can be interpreted as the number of known correct digits of an exact value contained in x; so,
loosely speaking, − log(garp(X)) represents the average number of known correct digits [17].

5.1. CAREX Benchmark problems

Weran these algorithmson all the equations from thebenchmark set described in [12],which contains experiments taken
from the test suite CAREX [11], run with both default and non-default arguments. The results are reported in Tables 1–4,
and a visualization of the results is in Fig. 6.



528 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

Table 1
Comparison between various proposed methods.

Experiment
number in [12]

Problem property Method H Method M Method K Method F

size nre k nre k nre k nre k
cond(V ) cond(VP ) garp time garp time garp time garp time

1 2 NaN * NaN – NaN * 3.75e−15 2
7.75e+07 3.17e+07 NaN * NaN * NaN * 4.18e−15 2.93e−02

2 2 9.67e−14 1 4.65e−15 – 1.21e−14 1 1.00e−14 3
1.01e+01 1.15e+00 1.04e−13 2.00e−02 4.97e−15 7.59e−03 1.27e−14 2.28e−02 1.06e−14 2.70e−02

3 4 3.93e−14 1 2.99e−15 – 3.70e−14 1 8.04e−14 6
9.73e+00 5.11e+00 2.80e−14 2.28e−02 2.12e−15 1.03e−02 5.02e−14 2.90e−02 1.05e−13 4.28e−02

4 8 1.02e−14 1 2.34e−15 – 7.76e−14 1 1.03e−13 15
1.23e+00 2.18e+00 1.49e−14 1.74e−02 3.42e−15 9.05e−03 1.05e−13 2.44e−02 1.38e−13 5.72e−02

5 9 6.73e−14 1 1.10e−14 – 4.34e−13 1 2.06e−12 42
7.54e+01 6.52e+01 4.34e−14 1.78e−02 1.05e−14 9.37e−03 7.57e−13 2.45e−02 4.70e−12 1.23e−01

6 30 4.79e−13 2 3.35e−14 – 9.20e−09 2 NaN *
1.11e+05 3.48e+03 2.92e−11 5.15e−02 1.87e−12 1.88e−02 1.15e−08 6.64e−02 NaN *

7 2 2.35e−16 2 2.12e−16 – 5.57e−16 1 7.47e−16 3
1.62e+00 3.31e+00 5.48e−16 2.18e−02 4.36e−16 7.58e−03 6.17e−16 2.27e−02 8.72e−16 2.69e−02

8 2 3.22e−08 1 1.78e−08 – 3.67e−16 1 8.55e−16 2
1.01e+00 2.42e+00 4.75e−10 1.68e−02 3.04e−10 1.08e−02 4.83e−16 2.34e−02 1.88e−10 2.52e−02

9 2 6.41e−16 1 1.92e−16 – 3.34e−10 1 2.25e−09 7
1.22e+00 6.99e+01 2.59e−15 1.69e−02 4.87e−16 8.31e−03 3.36e−10 2.28e−02 2.26e−09 3.64e−02

10 2 NaN * 5.36e−12 – 3.00e−08 1 1.59e−08 45
6.80e+01 1.11e+00 NaN * 5.36e−12 8.49e−03 3.00e−08 2.15e−02 1.59e−08 1.34e−01

11 2 9.65e−16 1 6.29e−16 – 2.45e−15 1 4.53e−15 2
3.74e+00 1.01e+00 1.04e−15 2.20e−02 6.75e−16 7.71e−03 2.63e−15 2.90e−02 4.87e−15 3.00e−02

The Experiment number follows the order used in [12]. Note that this set of problems is designed to be challenging
for non-verified CARE solvers in machine arithmetic, so it is not surprising that the verification algorithms cannot deal with
all of them with perfect accuracy.

When the algorithms are successful, we report in Tables 1–3 the number k of required iterations of the outer Krawczyk
loop. If an algorithm breaks down or does not converge within the maximum number of steps (which we took to be 50 for
the iterative Methods H, K and F), then wewrite a star in the corresponding column. MethodM is not iterative, therefore for
it we put − in the column containing the number of iterations.

The size of the problem (value of n) and the total time (in seconds, including the time required to verify the stabilizing
property) taken on our test machine are reported, as well as the norm-2 condition number of V (used by Methods H, M
and K) and the same quantity for the eigenvector matrix VP of the closed-loop matrix AP − GPYs used in the two Methods K
and F. All these details are given in Tables 1–3 in the column named Problemproperty.

Table 4 reports the result of checking the stabilization property; a plus sign means that the property is verified, a minus
sign means failure to verify the property, and a star means that the algorithm had already failed to compute an inclusion
interval. As one can see, there is only a very limited number of cases in which the stabilization procedure fails.

Remarks are in order on some of the problems.

Experiment 1: This is an example of the phenomenondescribed in the beginning of Section 4: the closed-loopmatrixA−GXs
is not diagonalizable. The coefficient matrices for this example are

A =


0 1
0 0


,G =


0 0
0 1


and Q =


1 0
0 2


.

The exact value of the closed loop matrix for the original and transformed equations are respectively

A − GXs =


0 1

−1 −2


and AP − GPYs =


−2/3 1/3
−1/3 −4/3


,



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 529

Table 2
Comparison between various proposed methods.

Experiment number
in [12]

Problem property Method H Method M Method K Method F

size nre k nre k nre k nre k
cond(V ) cond(VP ) garp time garp time garp time garp time

12 2 7.96e−16 1 3.22e−16 – 1.53e−15 1 3.90e−11 2
1.42e+03 1.01e+00 8.94e−16 2.20e−02 3.74e−16 7.50e−03 2.29e−15 2.82e−02 6.56e−11 2.95e−02

13 2 9.41e−09 1 2.23e−09 – 6.99e−16 1 NaN *
2.42e+00 1.01e+00 3.01e−10 1.69e−02 7.20e−11 8.29e−03 1.15e−15 2.28e−02 NaN *

14 2 1.65e−15 1 2.69e−16 – 9.49e−16 1 4.37e−15 3
1.01e+00 1.01e+00 1.92e−15 1.65e−02 3.14e−16 7.24e−03 1.09e−15 2.29e−02 5.09e−15 2.71e−02

15 2 4.72e−11 1 3.36e−12 – 2.92e−15 1 NaN *
1.01e+00 1.29e+00 4.72e−11 1.67e−02 3.36e−12 8.09e−03 2.39e−15 2.27e−02 NaN *

16 2 NaN * 5.87e−10 – 9.38e−12 1 NaN *
1.00e+00 1.29e+00 NaN * 5.87e−10 8.07e−03 5.63e−12 2.15e−02 NaN *

17 2 2.42e−15 1 2.23e−16 – 4.80e−15 1 1.25e−14 5
1.01e+00 2.62e+00 2.69e−15 2.23e−02 2.23e−16 9.29e−03 4.98e−15 2.83e−02 1.35e−14 3.92e−02

18 2 NaN * NaN – NaN * NaN *
1.01e+00 2.62e+00 NaN * NaN * NaN * NaN *

19 3 3.53e−15 1 2.73e−16 – 3.67e−15 1 6.64e−15 3
1.01e+00 1.01e+00 1.20e−14 1.98e−02 8.76e−16 7.88e−03 1.19e−14 2.29e−02 2.16e−14 2.72e−02

20 3 9.95e−05 3 3.87e−05 – 4.77e−15 1 1.73e−14 3
1.01e+00 1.00e+00 1.18e−04 2.78e−02 4.53e−05 8.36e−03 6.08e−12 2.30e−02 2.08e−14 2.70e−02

21 4 1.29e−14 1 4.76e−15 – 1.26e−13 1 3.81e−13 11
9.01e+00 3.58e+00 1.73e−14 2.25e−02 6.41e−15 8.79e−03 1.39e−13 2.92e−02 4.32e−13 5.84e−02

22 4 7.28e−05 2 3.52e−06 – 1.70e−04 1 NaN *
1.22e+01 5.94e+00 4.81e−06 3.02e−02 2.96e−07 1.04e−02 8.34e−06 2.90e−02 NaN *

both with a double (defective) eigenvalue in −1. The approximation X̌ computed with the Schur method satisfies
∥Xs − X̌∥ = 1.68e−15. Thematrix A−GX̌ is diagonalizable with two very close eigenvalues. Hence, the computed
condition numbers ofV andVP are both large, and the first three algorithms,which are based on the diagonalization
of an approximation of A−GXs, fail. On the other hand, the fixed-point algorithm does not encounter any difficulty
and returns a tight interval X containing the stabilizing solution. The condition number of the eigenvector matrix
of mid(A − GX) is 7.75e7, but the verification with Algorithm 7 succeeds nevertheless.

Experiments 30 and 31: In Method F for problem 30 and Method K for problem 31, we report termination in a finite
number of iterations, but NaN for the error. In these problems, the verification algorithm succeeds for the Riccati
equation (3.13), but the resulting intervalY cannot be converted into a solution intervalX for (1.1) using Lemma3.5,
because the interval matrixU1 computed as described in Section 3.3 contains singular matrices, hence the solution
set X is unbounded. So the method fails to produce a solution enclosure for (1.1).

Another interesting observation is that Method K needs only one iteration in all experiments when it works apart from
one case (Experiment 6), i.e., the crucial relation (3.3) is already fulfilled for k = 1 in all the other cases. So, while technically
it is an iterative algorithm, it seems that Method K can be safely used with a very small kmax.

When they are successful, Methods H and K are comparable with respect to execution time as well as with respect to the
quality of the enclosure. However, there are cases in which Method H is not successful, and this comprises cases with small
dimensions (e.g., 2 in Example 10) as well as cases with large dimensions (e.g., 397 in Example 27).

Method M is significantly faster than the other algorithms. We remark, though, that MATLAB, being an interpreted
language, is often not reliable in evaluating computational times. In particular, INTLAB is implemented entirely in MATLAB
code, and its running time does not always match the theoretical complexity, especially when dealing with small matrices.
For Methods K and F, which rely on Algorithm 6, another consideration is that the computation of the matrix P using the
toolbox [23] requires in its default implementation a tight double for loop on thematrix entries. MATLAB executes loops of
this kindmuchmore slowly than operations on fullmatrices; hence comparing running timesmay showa larger discrepancy
than the actual difference in performance between the algorithms.



530 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

Table 3
Comparison between various proposed methods.

Experiment
number in [12]

Problem property Method H Method M Method K Method F

size nre k nre k nre k nre k
cond(V ) cond(VP ) garp time garp time garp time garp time

23 4 3.25e−14 1 1.78e−15 – 3.43e−14 1 1.30e−13 11
1.43e+01 1.77e+00 3.00e−14 2.23e−02 1.71e−15 7.96e−03 4.61e−14 2.92e−02 1.73e−13 5.84e−02

24 4 NaN * NaN – NaN * NaN *
1.74e+00 1.74e+00 NaN * NaN * NaN * NaN *

25 77 4.08e−12 1 3.66e−13 – 4.70e−11 1 3.16e−10 12
4.98e+01 1.87e+01 3.50e−11 2.11e−01 3.14e−12 1.13e−01 2.64e−10 3.03e−01 1.63e−09 4.34e−01

26 237 4.75e−11 1 4.35e−12 – 2.27e−09 1 1.26e−08 17
2.41e+02 8.93e+01 8.89e−10 3.05e+00 8.21e−11 1.53e+00 1.41e−08 4.56e+00 7.09e−08 6.79e+00

27 397 NaN * 6.71e−12 – 8.73e−09 1 6.69e−08 19
1.31e+02 4.84e+01 NaN * 2.27e−10 5.26e+00 5.50e−08 1.82e+01 3.87e−07 2.87e+01

28 8 4.35e−15 1 1.67e−15 – 4.35e−15 1 1.30e−14 4
1.01e+00 1.01e+00 8.95e−15 1.74e−02 3.44e−15 7.72e−03 8.95e−15 2.37e−02 2.66e−14 3.04e−02

29 64 4.12e−13 1 4.99e−14 – 4.12e−13 1 7.12e−13 4
1.01e+00 1.01e+00 1.97e−07 4.56e−02 2.38e−08 3.63e−02 1.97e−07 7.01e−02 3.40e−07 8.96e−02

30 21 NaN * NaN – 3.90e−04 1 NaN 38
2.42e+09 2.78e+00 NaN * NaN * 3.79e−04 4.34e−02 NaN 2.08e−01

31 21 NaN * NaN – NaN 1 NaN *
2.42e+09 2.88e+02 NaN * NaN * NaN 5.06e−02 NaN *

32 100 6.57e−12 1 1.13e−12 – 6.57e−12 1 NaN *
1.01e+00 1.01e+00 2.27e−11 1.52e−01 3.90e−12 1.36e−01 2.27e−11 2.33e−01 NaN *

33 60 2.04e−14 1 2.67e−13 – 2.77e−10 1 NaN *
1.91e+01 1.55e+01 4.67e−14 1.12e−01 6.10e−13 4.97e−02 4.17e−10 1.58e−01 NaN *

Methods K and M are the most reliable, and fail only on very ill-conditioned examples. Interestingly, the errors obtained
by the two approaches differ by orders of magnitude on several problems, in both directions; there are also examples in
which either one fails while the other succeeds. So there is no clear winner among the two.

Method F has the largest number of failures. Despite that, it is useful in special cases (such as in Experiment 1) in which
the other algorithms have difficulties, particularly when the closed-loop matrix is not diagonalizable.

In many of the examples the performance of the methods based on diagonalizing the closed-loop matrix is (loosely) re-
lated to the condition number of V (or VP , when it is used). To visualize this relationship, we show in Figs. 1–4 scatter plots
of the obtained accuracy vs. the value of this condition number in the various examples. When the magnitude of cond(V ) is
moderate, cond(VP) has typically the same order of magnitude, but in some cases when cond(V ) is large cond(VP) seems to
be considerably lower, as shown in Fig. 5. There is only one case in which cond(VP) is considerably larger than cond(V ), that
is, Experiment 9 (1.22 vs. 69.8). This shows experimentally that switching from the formulation (1.1) to (3.13) is beneficial.

5.2. Experiments with varying sizes

In view of the fact that the three Methods H, K and F are iterative taking an unspecified number of steps, and that the last
two require a factorization whichmay require O(n3 logτ n) in the worst case, when n is the size of X in (1.1), the reader may
wonder how the time taken by the various algorithm scales with the dimension n in practice. We have tested all algorithms
on [11, Problem 15], which is a problem designed explicitly to check how Riccati solvers scale with the dimension of the
equation. We have generated the test problem in 30 different sizes equally distributed in logarithmic scale between 10 and
1000, and we have tested the four algorithms on these examples. The resulting CPU times are reported in Fig. 7.

Overall, the results show that all methods scale essentially withO(n3), and in particular thatMethods K and F staywithin
a moderate factor of the time taken by Method M. In the two largest experiments n = 853, n = 1000, Method K is the only
one to succeed: Method M fails, while Method F delivers a solution enclosure for which the stabilizing property cannot be



T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 531

Fig. 1. nre of Method H vs. cond(V ).

Fig. 2. nre of Method M vs. cond(V ).

Fig. 3. nre of Method K vs. cond(VP ).



532 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

Table 4
Results for stabilizing property in all methods.

Experiment number Method H Method M Method K Method F

1 * * * +

2 + + + +

3 + + + +

4 + + + +

5 + + + +

6 + + + *
7 + + + +

8 + + + +

9 + + + +

10 * + − −

11 + + + +

12 + + + +

13 + + + *
14 + + + +

15 + + + *
16 * + + *
17 + + + +

18 * * * *
19 + + + +

20 + + + +

21 + + + +

22 + − + *
23 + + + +

24 * * * *
25 + + + +

26 + + + +

27 * + + +

28 + + + +

29 + + + +

30 * * − −

31 * * − *
32 + + + *
33 + + + *

Fig. 4. nre of Method F vs. cond(VP ).

proved. Method H fails for each n ≥ 204. Verification of the stabilizing property succeeds in all other cases apart from the
two mentioned above for Method F.

The MATLAB code used for the experiments is available online on https://bitbucket.org/fph/verifiedriccati.

6. Summary and outlook

Wehave introduced several improvements to themethod in [7], borrowing ideas from both the verificationmethods and
the matrix equations literature. The resulting method has been tested on several standard benchmark experiments, and is

https://bitbucket.org/fph/verifiedriccati


T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 533

Fig. 5. cond(VP ) vs. cond(V ). Most of the points lie below the axes bisector (drawn in red), which means that the condition number of VP is generally
lower than the one of V .

Fig. 6. Values of garp for each experiment number. A full bar means that the method failed to compute an enclosure.

competitive with the one introduced in [8], returning a smaller solution enclosure in several of the experiments. Moreover,
the new fixed-point method described in Section 4 is a useful addition to the battery of existing verification methods; it is
especially useful in the cases in which the closed-loop matrix is not diagonalizable.

There is no single algorithm that beats all the others on all the benchmark problems; hence it is important to have
several methods available, each with its strengths and drawbacks. Overall, all but two of the problems in this challenging
set of experiments could be verified with success.

A number of open problems remain: first of all reducing to zero the number of remaining failures in the methods. Of
particular interest would be a method more effective than Method F that does not rely on the closed loop matrix being
diagonalizable. Other possible research lines are applying these approaches to discrete-time Riccati equations (DARE) or
more generally to non-symmetric algebraic Riccati equations (NARE).



534 T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535

Fig. 7. CPU times for verification on a scaled version of Experiment 15 vs. dimension n.

Acknowledgments

The authors thank Prof. Dr. Wolfram Luther for providing them the technical report related to the Ref. [4] and also the
paper [5]. They are also thankful to the anonymous referees for their remarks, which helped us improving the exposition of
these results.

T. Haqiri acknowledges the support by the Ministry of Science, Research and Technology of the Islamic Republic of Iran
(no. 42/1/301981) for her abroad research scholarship.

F. Poloni acknowledges the support of INDAM (Istituto Nazionale di Alta Matematica) and of the PRA 2014 project
‘‘Mathematical models for complex networks and systems’’ of the university of Pisa.

References

[1] Dario A. Bini, Bruno Iannazzo, Beatrice Meini, Numerical Solution of Algebraic Riccati Equations, in: Fundamentals of Algorithms, vol. 9, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.

[2] Peter Lancaster, Leiba Rodman, Algebraic Riccati Equations, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York,
1995.

[3] SiegfriedM. Rump, Verificationmethods: rigorous results using floating-point arithmetic, Acta Numer. 19 (2010) 287–449. http://dx.doi.org/10.1017/
S096249291000005X.

[4] W. Luther, W. Otten, H. Traczinski, Verified Calculation of Solutions of Continuous and Discrete Time Algebraic Riccati Equation, in: Schriftenreihe des
Fachbereichs Mathematik, Number 422, Universität Duisburg, Fachbereich Mathematik, 1998.

[5] Wolfram Luther, Werner Otten, Verified calculation of the solution of algebraic Riccati equation, in: Developments in Reliable Computing, Budapest,
1998, Kluwer Acad. Publ., Dordrecht, 1999, pp. 105–118.

[6] K. Yano, M. Koga, Verified numerical computation in lq control problem, Trans. Soc. Instrum. Control Eng. 45 (2011) 261–267.
[7] BehnamHashemi, Verified computation of symmetric solutions to continuous-time algebraic Riccati matrix equations, in: SCAN, 15’th GAMM-IMACS

International Symposium on Scientific Computing, Computer Arithmetic and Verified Numerical Computations, Russian Academy of Sciences, 2012,
pp. 54–56. With accompanying slides available online. URL: http://conf.nsc.ru/files/conferences/scan2012/139586/Hashemi-scan2012.pdf.

[8] ShinyaMiyajima, Fast verified computation for solutions of continuous-time algebraic Riccati equations, Jpn. J. Ind. Appl. Math. 32 (2) (2015) 529–544.
http://dx.doi.org/10.1007/s13160-015-0178-4.

[9] Andreas Frommer, Behnam Hashemi, Verified computation of square roots of a matrix, SIAM J. Matrix Anal. Appl. 31 (3) (2009) 1279–1302.
http://dx.doi.org/10.1137/090757058.

[10] Volker Mehrmann, Federico Poloni, Doubling algorithms with permuted Lagrangian graph bases, SIAM J. Matrix Anal. Appl. 33 (3) (2012) 780–805.
http://dx.doi.org/10.1137/110850773.

[11] P. Benner, A. Laub, V. Mehrmann, A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: the continuous-time
case. Technical Report SPC 95-22, Forschergruppe ‘Scientific Parallel Computing’, Fakultät fürMathematik, TU Chemnitz-Zwickau, 1995, Version dated
February 28, 1996.

[12] Delin Chu, Xinmin Liu, Volker Mehrmann, A numerical method for computing the Hamiltonian Schur form, Numer. Math. 105 (3) (2007) 375–412.
http://dx.doi.org/10.1007/s00211-006-0043-0.

[13] R.B. Kearfott, M.T. Nakao, A. Neumaier, S.M. Rump, S.P. Shary, P.V. Hentenryck, Standardized notation in interval analysis, in: Proc. XIII Baikal
International School-seminar — Optimization Methods and Their Applications, Vol. 4, 2005, pp. 106–113.

[14] Ramon E. Moore, R. Baker Kearfott, Michael J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2009, http://dx.doi.org/10.1137/1.9780898717716.

[15] Roger A. Horn, Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1994, Corrected reprint of the 1991 original.
[16] Andreas Frommer, Proving conjectures by use of interval arithmetic, in: Perspectives on Enclosure Methods, Karlsruhe, 2000, Springer, Vienna, 2001,

pp. 1–13.
[17] Andreas Frommer, Behnam Hashemi, Thomas Sablik, Computing enclosures for the inverse square root and the sign function of a matrix, Linear

Algebra Appl. 456 (2014) 199–213. http://dx.doi.org/10.1016/j.laa.2013.11.047.
[18] R. Krawczyk, Newton-algorithms for evaluation of roots with error bounds, Computing (4) 3, 187–201 http://dx.doi.org/10.1007/BF02234767.
[19] Nicholas J. Higham, Theory and computation, in: Functions ofMatrices, Society for Industrial and AppliedMathematics (SIAM), Philadelphia, PA, 2008,

http://dx.doi.org/10.1137/1.9780898717778.

http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref1
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref2
http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref4
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref5
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref6
http://conf.nsc.ru/files/conferences/scan2012/139586/Hashemi-scan2012.pdf
http://dx.doi.org/10.1007/s13160-015-0178-4
http://dx.doi.org/10.1137/090757058
http://dx.doi.org/10.1137/110850773
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref11
http://dx.doi.org/10.1007/s00211-006-0043-0
http://dx.doi.org/10.1137/1.9780898717716
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref15
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref16
http://dx.doi.org/10.1016/j.laa.2013.11.047
http://dx.doi.org/10.1007/BF02234767
http://dx.doi.org/10.1137/1.9780898717778


T. Haqiri, F. Poloni / Journal of Computational and Applied Mathematics 313 (2017) 515–535 535

[20] R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C [F4], Commun. ACM 15 (9) (1972) 820–826. http://dx.doi.org/10.1145/
361573.361582, URL: http://doi.acm.org/10.1145/361573.361582.

[21] Andreas Frommer, Behnam Hashemi, Verified error bounds for solutions of Sylvester matrix equations, Linear Algebra Appl. 436 (2) (2012) 405–420.
http://dx.doi.org/10.1016/j.laa.2010.12.002.

[22] BehnamHashemi,Mehdi Dehghan, Efficient computation of enclosures for the exact solvents of a quadraticmatrix equation, Electron. J. Linear Algebra
20 (2010) 519–536.

[23] Federico Poloni, PGDoubling — a MATLAB package to solve algebraic Riccati equations and optimal control problems using permuted graph bases,
2012. URL: https://bitbucket.org/fph/pgdoubling.

[24] R.W. Brockett, Finite Dimensional Linear Systems, in: Series in Decision and Control, Wiley, 1970.
[25] Shinya Miyajima, Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue problems, SIAM J. Matrix Anal. Appl. 35 (3)

(2014) 1205–1225. http://dx.doi.org/10.1137/140953150.
[26] Eugene L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett. 1 (1) (1988) 87–90. http://dx.doi.org/10.1016/0893-

9659(88)90183-8.
[27] GeneH. Golub, Charles F. Van Loan,Matrix Computations, fourth ed., in: JohnsHopkins Studies in theMathematical Sciences, JohnsHopkins University

Press, Baltimore, MD, 2013.

http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://doi.acm.org/10.1145/361573.361582
http://dx.doi.org/10.1016/j.laa.2010.12.002
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref22
https://bitbucket.org/fph/pgdoubling
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref24
http://dx.doi.org/10.1137/140953150
http://dx.doi.org/10.1016/0893-9659(88)90183-8
http://dx.doi.org/10.1016/0893-9659(88)90183-8
http://dx.doi.org/10.1016/0893-9659(88)90183-8
http://refhub.elsevier.com/S0377-0427(16)30441-1/sbref27

	Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations
	Introduction
	Preliminaries and notation
	Modified Krawczyk's methods
	A residual form for the Krawczyk operator
	An affine transform enclosure
	Verifying a different Riccati equation
	A new superset
	Verification of uniqueness and stabilizability

	A direct fixed-point method
	Numerical experiments
	CAREX Benchmark problems
	Experiments with varying sizes

	Summary and outlook
	Acknowledgments
	References


