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1 Introduction

In this paper, we are concerned with finding a solution of a nonlinear equation F (x) = 0,
where F is a nonlinear operator defined on a nonempty open convex subset Ω of a Banach
space X with values in a Banach space Y . The solutions of this kind of equations are rarely
found in closed form. That is why most solutions of these equations are approximated by
iterative methods. Between these, Newton’s method,

x0 ∈ Ω, xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0, (1)

is the most well-known, used and studied iterative method in order to approximate solu-
tions of the nonlinear equation F (x) = 0.

In this paper, we study the semilocal convergence of this method. The first semilocal
convergence result for Newton’s method in Banach spaces was given by Kantorovich [8]
under the following conditions:

(A1) There exists Γ0 = [F ′(x0)]−1 ∈ L(Y,X), for some x0 ∈ Ω, with ‖Γ0‖ ≤ β
and ‖Γ0F (x0)‖ ≤ η, where L(Y,X) is the set of bounded linear operators
from Y to X.

(A2) ‖F ′′(x)‖ ≤M for x ∈ Ω.

(A3) h = Mβη ≤ 1
2
.

Theorem 1. (The Newton-Kantorovich theorem, [8]) Let F : Ω ⊆ X −→ Y be a twice
continuously Fréchet differentiable operator defined on a non-empty open convex domain
Ω of a Banach space X with values in a Banach space Y . Suppose that conditions (A1)–

(A3) are satisfied. If B(x0, s
∗) ⊂ Ω, where s∗ = 1−

√
1−2h
h

η, then Newton’s sequence,
given by (1) and starting at x0, converges to a solution x∗ of the equation F (x) = 0 and
xn, x

∗ ∈ B(x0, s∗), for all n ∈ N.

As you can see in Theorem 1, the Newton-Kantorovich theorem, we use information
around the initial point x0, (A1), a condition on the operator involved F , (A2), and a
condition for the parameters introduced in the previous two conditions to give criteria
ensuring the convergence, (A3). A very important problem in the study of iterative
methods is to locate starting points x0 such that the sequence {xn} is convergent. The
set of this starting points is that we call the convergence domain, which is small in general,
so that it is important to enlarge the convergence domain without additional hypotheses.
Notice that the convergence domain of the method is connected with the domain of
parameters associated with the semilocal convergence conditions required to obtain the
convergence of the method. In this case, for each value of M that is fixed by condition
(A2), the condition required to the operator F in the domain of definition Ω, the domain
of parameters associated with conditions (A1)–(A3) is:

DK(M) =

{
x0 ∈ Ω : Mβη ≤ 1

2

}
. (2)
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On the other hand, Huang proposes in [6] an alternative to condition (A2) that does
not consist of relaxing the condition on the operator F and imposes a condition on F that
leads to a modification, not a restriction, of the the convergence domain. In particular,
Huang proposes that F ′′ is Lipschitz continuous in Ω and proves the semilocal convergence
of Newton’s method can be proved under the following conditions:

(B1) There exists Γ0 = [F ′(x0)]−1 ∈ L(Y,X), for some x0 ∈ Ω, with ‖Γ0‖ ≤ β
and ‖Γ0F (x0)‖ ≤ η; moreover, ‖F ′′(x0)‖ ≤M0.

(B2) ‖F ′′(x)− F ′′(y)‖ ≤ L‖x− y‖ for x, y ∈ Ω.

(B3) 3β2ηL2 + 3β2M0L+ β3M3
0 ≤ (β2M2

0 + 2βL)
3
2 .

In this case, for each value of L that is fixed by condition (B2), the domain of param-
eters associated with conditions (B1)–(B3) is:

DH(L) =
{
x0 ∈ Ω : 3β2ηL2 + 3β2M0L+ β3M3

0 ≤
(
β2M2

0 + 2βL
) 3

2

}
(3)

But, if we pay attention to the proof of Huang in [6], we see that it is not necessary
that F ′′(x) is Lipschitz continuous in the entire domain Ω, since it is enough that F ′′(x)
is Lipschitz continuous only at x0. This observation was made by Gutiérrez in [5], where
(B2) is replaced by

‖F ′′(x)− F ′′(x0)‖ ≤ L0‖x− x0‖ for x ∈ Ω,

which is a center condition at the starting point x0. Taking into account this, Gutiérrez
obtains a semilocal convergence result for Newton’s method under the following condi-
tions:

(B1) There exists Γ0 = [F ′(x0)]−1 ∈ L(Y,X), for some x0 ∈ Ω, with ‖Γ0‖ ≤ β
and ‖Γ0F (x0)‖ ≤ η; moreover, ‖F ′′(x0)‖ ≤M0.

(C2) ‖F ′′(x)− F ′′(x0)‖ ≤ L0‖x− x0‖ for x ∈ Ω.

(C3) 3β2ηL2
0 + 3β2M0L0 + β3M3

0 ≤ (β2M2
0 + 2βL0)

3
2 .

Notice that L0 ≤ L, so that Huang’s result is relaxed by Gutiérrez in [5] by using
condition (C2) instead of (B2). In this case, for each value of L0 that is fixed by condition
(C2), the domain of parameters associated with conditions (B1), (C2) and (C3) is:

DG(L0) =
{
x0 ∈ Ω : 3β2ηL2

0 + 3β2M0L0 + β3M3
0 ≤

(
β2M2

0 + 2βL0

) 3
2

}
(4)

Notice that, in this situation, from condition (C2), the convergence domain for Newton’s
method consists of a single point, x0, or it is an empty set, and Newton’s method is then
never convergent. Observe that condition (C3) is (B3) with L0 instead of L.

To avoid this problem that presents the last condition, we use in this paper a center
condition for the second Fréchet derivative of the operator F involved on an auxiliary
point x̃ in the following way:
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(D2) ‖F ′′(x)− F ′′(x̃)‖ ≤ L̃‖x− x̃‖ for x ∈ Ω,

once the point x̃ ∈ Ω is fixed. So, we obtain a convergence domain which is not reduced
to a point or to the empty set, since a nonempty set of possible starting points can be
found.

In this work, following the idea of extending the domain of starting points, we try to
reduce the value of parameter L̃ to obtain then a bigger convergence domain. For this, our
idea is to restrict the domain Ω by means of considering condition (D2) for x ∈ Ω0 with
Ω0 ⊂ Ω. Moreover, as condition on the starting point x0, we keep a condition centered at
x0, which allows us to sharpen the bounds to do and relax then condition (B3).

The paper is organized as follows. In Section 2, we establish the semilocal convergence
of Newton’s method using condition (D2) and the method of majorizing sequences of
Kantorovich. In addition, we see that the result obtained improves that given in [4],
which is the base of the new result. In Section 3, we give some a priori error bounds that
lead to the quadratic convergence of Newton’s method under the semilocal convergence
conditions proposed in this work.

Throughout the paper, we denote B(x, %) = {y ∈ X; ‖y−x‖ ≤ %} and B(x, %) = {y ∈
X; ‖y − x‖ < %}.

2 Semilocal convergence result

To prove the semilocal convergence of Newton’s method, we follow Kantorovich’s tech-
nique and use the concept of majorizing sequence. A scalar sequence {tn} is a majorizing
sequence of {xn} if ‖xn − xn−1‖ ≤ tn − tn−1, for all n ∈ N. From the last inequality,
it follows the sequence {tn} is nondecreasing. Moreover, it is easy to check that if {tn}
converges to t∗ < +∞, there exists x∗ ∈ X such that x∗ = limn xn and ‖x∗−xn‖ ≤ t∗−tn,
for n = 0, 1, 2, . . . Then, the interest of the majorizing sequence is that the convergence
of the sequence {xn} in the Banach space X is deduced from the convergence of the
scalar sequence {tn}. From the concept of majorizing sequence, Kantorovich proves the
Newton-Kantorovich theorem given in Theorem 1.

For the last, a majorizing sequence is constructed from conditions (A1)–(A2) of the
Newton-Kantorovich theorem, by applying Newton’s method,

s0 = 0, sn+1 = Np(sn) = sn −
p(sn)

p′(sn)
, n ≥ 0,

to Kantorovich’s polynomial

p(s) =
M

2
s2 − s

β
+
η

β
. (5)

Note that (5) has two positive solutions s∗ = 1−
√
1−2h
h

η and s∗∗ = 1+
√
1−2h
h

η such that
s∗ ≤ s∗∗ if h = Mβη ≤ 1

2
. Moreover, we consider p(s) in some interval [0, s′] taking into

account that s∗ ≤ s∗∗ < s′.
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2.1 Main result

Now, we present a semilocal convergence result for Newton’s method under a center con-
dition of type (D2) with restricted domain by using the technique of majorizing sequences,
such as it appears in [1]. For this, we suppose the following conditions:

(E1) There exists x̃ ∈ Ω such that ‖x0− x̃‖ = γ, where x0 ∈ Ω, and ‖F ′′(x̃)‖ ≤
δ. There exists the operator Γ0 = [F ′(x0)]−1 ∈ L(Y,X), with ‖Γ0‖ ≤ β
and ‖Γ0F (x0)‖ ≤ η. Moreover, there exists K0 > 0, such that ‖F ′(x) −
F ′(x0)‖ ≤ K0‖x− x0‖ for x ∈ Ω.

(E2) ‖F ′′(x)− F ′′(x̃)‖ ≤ L̃1‖x− x̃‖ for x ∈ Ω0 := Ω ∩B
(
x0,

1
βK0

)
.

(E3) Define the scalar function ψ1 by

ψ1(t) =
L̃1

6
t3 +

δ0
2
t2 − t

β
+
η

β
, (6)

where δ0 = max{δ + γL̃1, K0}. There exists α1, unique positive root of
ψ′1(t) = 0 with ψ1(α1) ≤ 0.

Next, we construct a majorizing sequence from conditions (E1)–(E3) by applying
Newton’s method

t0 = 0, tn+1 = Nψ1(tn) = tn −
ψ1(tn)

ψ′1(tn)
, n ≥ 0, (7)

Note that (6) has two positive zeros t∗ and t∗∗ such that t∗ ≤ t∗∗ if ψ1(α1) ≤ 0, where
α1 is the unique positive root of ψ′1(t) = 0. Moreover, we consider ψ1(t) in some interval
[0, t′] taking into account that t∗ ≤ t∗∗ < t′.

Theorem 2. Let F : Ω ⊆ X −→ Y be a twice continuously Fréchet differentiable operator
defined on a nonempty open convex domain Ω of a Banach space X with values in a
Banach space Y . Suppose that conditions (E1)–(E3) are satisfied and B(x0, t

∗) ⊂ Ω,
where t∗ is the smallest positive zero of polynomial (6). Then, Newton’s sequence, defined
in (1) and starting at x0, converges to a solution x∗ of the equation F (x) = 0 and xn, x

∗ ∈
B(x0, t∗), for all n ∈ N. In addition, ‖x∗− xn‖ ≤ t∗− tn for n ≥ 0, where {tn} is defined
in (7). Moreover, the solution x∗ is unique in B(x0, t

∗∗) ∩ Ω if t∗ < t∗∗ or in B(x0, t∗) if
t∗∗ = t∗.

Proof . From 2δ0 < δ0 +

√

δ0 +
2L̃1

β
, it follows 2K0 < δ0 +

√

δ0 +
2L̃1

β
and

α1 =
2

β

(
δ0 +

√
δ0 + 2L̃1

β

) <
1

βK0

.
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So, B(x0, t
∗) ⊆ B

(
x0,

1
βK0

)
, since t∗ ≤ α1.

The point x1 is well-defined, since the operator Γ0 = [F ′(x0)]−1 exists by condition
(E1). Moreover, taking into account t0 = 0 and (E1), we also have

‖x1 − x0‖ = ‖Γ0F (x0)‖ ≤ η = −ψ1(0)

ψ′1(0)
= −ψ1(t0)

ψ′1(t0)
= t1 − t0 < t∗

and x1 ∈ B(x0, t
∗) ⊆ B

(
x0,

1
βK0

)
, so that x1 ∈ Ω0.

Let x ∈ Ω satisfy ‖x− x0‖ ≤ t ≤ t∗. It follows from (E1), (E2), (6) and the definition
of δ0 that

‖I − Γ0F
′(x)‖ ≤ ‖Γ0‖‖F ′(x)− F ′(x0)‖

≤ βK0‖x− x0‖
≤ βK0t

≤ βδ0t+
βL̃1

2
t2

= − 1

ψ′1(t0)
(ψ′1(t)− ψ′1(t0))

= 1− ψ′1(t)

ψ′1(t0)

< 1,

By the Banach lemma on invertible operators, the operator [F ′(x)]−1 exists and

‖[F ′(x)]−1‖ ≤ − 1

ψ′1(t)
. (8)

In particular, Γ1 = [F ′(x1)]−1 exists and therefore x2 is well-defined.
Besides, from

F (x1) = F (x0) + F ′(x0)(x1 − x0) +

∫ x1

x0

F ′′(z)(x1 − z) dz

=

∫ 1

0

(F ′′(x0 + τ(x1 − x0))− F ′′(x̃)) (x1 − x0)2(1− τ) dτ

+
1

2
F ′′(x̃)(x1 − x0)2,

(E1), (E3), (6) and ‖x1 − x0‖ ≤ t1 − t0, it follows

6



‖F (x1)‖ ≤
∫ 1

0

‖F ′′(x0 + τ(x1 − x0))− F ′′(x̃)‖ (1− τ) dτ‖x1 − x0‖2

+
1

2
‖F ′′(x̃)‖ ‖x1 − x0‖2

≤
∫ 1

0

ψ′′1(t0 + τ(t1 − t0))(t1 − t0)2(1− τ) dτ

=

∫ t1

t0

ψ′′1(ξ)(t1 − ξ) dξ

= ψ1(t1).

Therefore,

‖x2 − x1‖ = ‖Γ1F (x1)‖ ≤ ‖Γ1‖‖F (x1)‖ ≤ −
ψ1(t1)

ψ′1(t1)
= t2 − t1,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ (t2 − t1) + (t1 − t0) = t2 − t0 < t∗

and x2 ∈ B(x0, t
∗) ⊆ B(x0,

1
βK0

), so that x2 ∈ Ω0.

As with the previous estimate for inverse operator (8), for x = x2, and again by the
Banach lemma on invertible operators, the operator Γ2 = [F ′(x2)]−1 exists and is such
that

‖Γ2‖ ≤ −
1

ψ′1(t2)
.

If we now assume

xn ∈ Ω0, (9)

‖Γn‖ ≤ −
1

ψ′1(tn)
, (10)

‖F (xn)‖ ≤ ψ1(tn), (11)

‖xn+1 − xn‖ ≤ −
ψ1(tn)

ψ′1(tn)
= tn+1 − tn, (12)

‖xn+1 − x0‖ ≤ tn+1 − t0 < t∗, (13)

where the operator Γn = [F ′(xn)]−1 exists, it follows in the same way that the operator
Γn+1 = [F ′(xn+1)]

−1 exists and

xn+1 ∈ Ω0,

‖Γn+1‖ ≤ −
1

ψ′1(tn+1)
,

‖F (xn+1)‖ ≤ ψ1(tn+1),

‖xn+2 − xn+1‖ ≤ −
ψ1(tn+1)

ψ′1(tn+1)
= tn+2 − tn+1,

‖xn+2 − x0‖ ≤ ‖xn+2 − xn+1‖+ ‖xn+1 − x0‖ ≤ tn+2 − t0 < t∗,
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so that (9), (10), (11), (12) and (13) are true for all positive integers n by mathematical
induction. As a consequence, the sequence {xn} is well-defined and xn ∈ B(x0, t

∗), for
n ≥ 0.

Since limn tn = t∗, {tn} is a Cauchy sequence, then {xn} is also a Cauchy sequence
and thus convergent. So, limn xn = x∗ and ‖x∗ − xn‖ ≤ t∗ − tn, for n ≥ 0. Moreover,
as ‖F (xn)‖ ≤ ψ1(tn), for n ≥ 0, then, by letting n → +∞, it follows F (x∗) = 0 by the
continuities of F and ψ1.

To prove the uniqueness of x∗, we suppose that t∗ < t∗∗ and y∗ is a solution of F (x) = 0
in B(x0, t

∗∗) ∩ Ω different from x∗. Then, taking into account that t0 = 0, we have

‖y∗ − x0‖ ≤ ρ(t∗∗ − t0) with ρ ∈ (0, 1).

We now suppose ‖y∗ − xi‖ ≤ ρ2
i
(t∗∗ − ti) for i = 0, 1, . . . , n. In addition,

‖y∗ − xn+1‖ = ‖−Γn (F (y∗)− F (xn)− F ′(xn)(y∗ − xn))‖

=

∥∥∥∥−Γn

∫ 1

0

F ′′(xn + τ(y∗ − xn))(y∗ − xn)2(1− τ) dτ

∥∥∥∥

=

∥∥∥∥−Γn

∫ 1

0

(F ′′(xn + τ(y∗ − xn))− F ′′(x̃)) (y∗ − xn)2(1− τ) dτ

+
1

2
F ′′(x̃)(y∗ − xn)2

∥∥∥∥

≤ ‖Γn‖
∫ 1

0

‖F ′′(xn + τ(y∗ − xn))− F ′′(x̃)‖(1− τ) dτ‖y∗ − xn‖2

+
1

2
‖F ′′(x̃)‖‖y∗ − xn‖2

≤ − µ

ψ′1(tn)
‖y∗ − xn‖2,

where µ =
∫ 1

0
ψ′′1 (tn + τ(t∗∗ − tn)) (1− τ) dτ .

On the other hand, we also have

t∗∗ − tn+1 = − 1

ψ′1(tn)

∫ t∗∗

tn

ψ′′1(ξ)(t∗∗ − ξ) dξ = − µ

ψ′1(tn)
(t∗∗ − tn)2.

Therefore, it follows

‖y∗ − xn+1‖ ≤
t∗∗ − tn+1

(t∗∗ − tn)2
‖y∗ − xn‖2 ≤ ρ2

n+1

(t∗∗ − tn+1),

so that y∗ = x∗.
If t∗∗ = t∗ and y∗ is another solution of F (x) = 0, different from x∗, in B(x0, t∗∗),

then ‖y∗− x0‖ ≤ t∗− t0 = t∗. Proceeding similarly to the previous case, we can prove by
mathematical induction on n that ‖y∗ − xn‖ ≤ t∗∗ − tn. Since t∗∗ = t∗ and limn tn = t∗,
the uniqueness of the solution is now easy to follow. �
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2.2 On the convergence domain

Following to Huang [6] and Gutiérrez [5], a sufficient condition to satisfy (E3) is:

3β2ηL̃2
1 + 3β2δ0L̃1 + β3δ30 ≤

(
β2δ20 + 2βL̃1

) 3
2
.

As a consequence, we obtain the following domain of parameters

D(L̃1) =

{
x0 ∈ Ω : 3β2ηL̃2

1 + 3β2δ0L̃1 + β3δ30 ≤
(
β2δ20 + 2βL̃1

) 3
2

}
(14)

associated with Theorem 2. In this case, once parameter L̃1 is fixed, it is obvious that we
can find different starting points for Newton’s method, such as we can see in the following
example. So, by keeping a condition centered on the second derivative of the operator
involved, we obtain that the convergenc domain is not reduced to a single point, or the
empty set, as in the case of Gutiérrez in [5]. Observe that we obtain Gutiérrez’s result as
a particular case of our result if the auxiliary point x̃ is chosen as the starting point x0.

2.3 Example

We illustrate Section 2.1 with the following nonlinear Fredholm integral equation

x(s) =
1

2
sin(πs) +

∫ 1

0

cos(πs) sin(πt)x(t)5 dt, (15)

where s ∈ [0, 1] and x(s) is a solution to be determined.
Observe that solving equation (15) is equivalent to solving F(x) = 0, where F : Ω ⊆

C([0, 1]) −→ C([0, 1]) is such that

[F(x)](s) = x(s)− 1

2
sin(πs)−

∫ 1

0

cos(πs) sin(πt)x(t)5 dt.

In addition, a solution x∗(s) of equation (15) always satisfies

‖x∗(s)‖ − 1

2
‖ sin(πs)‖ − 2

π
‖x∗(s)‖5 ≤ 0,

which is true provided that ‖x∗(s)‖ ≤ ρ1 = 0.5255 . . . or ‖x∗(s)‖ ≥ ρ2 = 0.9203 . . ., where
ρ1 and ρ2 are the two real positive roots of the scalar equation deduced from the last
expression and given by 2

π
t5 − t+ 1

2
= 0. Thus, we can consider the domain

Ω = {x ∈ C([0, 1]) : ‖x‖ < ρ} ,

with ρ ∈ (ρ1, ρ2), as domain for the operator F .
Besides, as

[F ′(x)y](s) = y(s)− 5

∫ 1

0

cos(πs) sin(πt)x(t)4y(t) dt,

9



[F ′′(x)(yz)](s) = −20

∫ 1

0

cos(πs) sin(πt)x(t)3z(t)y(t) dt,

we have

‖F ′(x)−F ′(x0)‖ ≤
10

π

(
3∑

i=0

ρi‖x0‖3−i
)
‖x− x0‖,

‖F ′′(x)−F ′′(x̃)‖ ≤ 40

π

(
2∑

i=0

ρi‖x̃‖2−i
)
‖x− x̃‖,

so that F ′(x) is center Lipschitz continuous at x0 with constant K0 = 10
π

(∑3
i=0 ρ

i‖x0‖3−i
)

and F ′′(x) is center Lipschitz continuous at x̃ with constant L̃1 = 40
π

(∑2
i=0 ρ

i‖x̃‖2−i
)

and
we can then apply Theorem 2 for guaranteeing the convergence of the method.

Hence, if we consider, as it is usually done, the starting point x0(s) = 1
2

sin(πs) for
Newton’s method, then β = 1.1061 . . ., η = 0.0108 . . .. If we now choose ρ = 3/5 and
x̃(s) = x0(s), then γ = 0, δ0 = 15

16
,

ψ1(t) = (0.0097 . . .)− (0.9040 . . .)t+ (0.4687 . . .)t2 + (1.9310 . . .)t3,

α1 = 0.3223 . . ., ψ1(α1) = −0.1682 . . . < 0 and B(x0, s
∗) ⊂ Ω, where s∗ = 0.0108 . . . is

the smallest positive zero of ψ1(t). Therefore, the convergence of Newton’s method is
guaranteed by Theorem 2 and taking into account the point x̃(s), where F ′′(x) is center
Lipschitz continuous, as starting point for the method.

In addition, we can also guarantee the convergence of Newton’s method starting at
other points different from the point x̃(s) where F ′′(x) is center Lipschitz continuous, so
that the domain of starting points is then increased when center conditions are required.
For example, if we choose the starting point x0(s) = 9

20
sin(πs), then γ = ‖x̃(s)−x0(s)‖ =

1
20

, β = 1.0696 . . ., η = 0.0061 . . ., δ0 = 1.5168 . . .,

ψ1(t) = (0.0057 . . .)− (0.9349 . . .)t+ (0.7584 . . .)t2 + (1.9310 . . .)t3,

α1 = 0.2916 . . ., ψ1(α1) = −0.1544 . . . < 0 and B(x0, t
∗) ⊂ Ω, where t∗ = 0.0061 . . . is the

smallest positive zero of the last ψ1(t). Thus, the convergence of Newton’s method can
be also guaranteed when the method starts at x0(s) 6= x̃(s). Moreover, the domains of
existence and uniqueness of solution are respectively

{ν ∈ Ω : ‖ν(s)− x0(s)‖ ≤ 0.0061 . . .} and {ν ∈ Ω : ‖ν(s)− x0(s)‖ < 0.5226 . . .} .

After that, we apply Newton’s method from x0(s) = 9
20

sin(πs) to approximate a
solution x∗(s) of integral equation (15) and obtain the approximation

x∗(s) = (0.0097 . . .) cosπs+
1

2
sin πs

after three iterations with stopping criterion ‖xn(s) − xn−1(s)‖ < 10−16. In Table 1, we
show errors ‖x∗(s) − xn(s)‖ and sequence {‖[F(xn)](s)‖}. From the last, observe that
x∗(s) is a good approximation of a solution of equation (15).
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n ‖x∗(s)− xn(s)‖ ‖[F(xn)](s)‖
1 8.0297 . . .× 10−4 8.0179 . . .× 10−4

2 5.0494 . . .× 10−8 5.0417 . . .× 10−8

Table 1: Absolute errors and {‖[F(xn)](s)‖} for (15)

2.4 Remark

Note that Theorem 2 is reduced to the theorem given in [4] if the center condition for the

first Fréchet derivative on the starting point is dropped, since δ0 = δ + γL̃1 and L̃1 = L̃.
In [4], condition (D2) is used instead of (E2), the center condition for the first Fréchet
derivative of F on the starting point x0 given in (E1),

‖F ′(x)− F ′(x0)‖ ≤ K0‖x− x0‖ for x ∈ Ω,

is dropped and polynomial

ψ(t) =
L̃

6
t3 +

1

2

(
δ + γL̃

)
t2 − t

β
+
η

β

is used instead of ψ1(t). Observe then that

L̃1 ≤ L̃

holds in general, since Ω0 ⊆ Ω. Moreover, the iterates {xn} lie within Ω0, which is a more
precise location than Ω. Furthermore,

α1 =
2

β


δ0 +

√
δ20 +

2L̃1

β




and the smallest positive root of ψ′(t) = 0 is

α =
2

β


δ + γL̃+

√
(
δ + γL̃

)2
+

2L̃

β



.

In addition, if
δ0 ≤ δ + γL̃,

then
α ≤ α1, ψ1(t) ≤ ψ(t)

and
ψ(α) ≤ 0 ⇒ ψ1(α1) ≤ 0.

Hence, we obtain weaker sufficient semilocal convergence conditions than in [4] for the
semilocal convergence of Newton’s method.

11



2.5 Example

Now, we illustrate the idea written in the previous remark on the following chemical
equilibrium problem from [10], that describes the fraction of the nitrogen-hydrogen feed
that gets converted to ammonia, called fractional conversion [2]. For 250 atm and 500◦C,
this equation takes the form:

f(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674 = 0. (16)

If we choose x0 = 0.5 and Ω = B(x0, 0.75), then β = 0.0839 . . . and η = 0.1978 . . .

Moreover, if x̃ = 0.31, then γ = 0.19, δ = 16.1514 . . . and L̃ = 46.0245 . . ., so that

ψ(t) = (2.3562 . . .)− (11.9124 . . .)t+ (12.4480 . . .)t2 + (7.6707 . . .)t3,

α = 0.3592 . . ., ψ(α) = 0.0389 . . . > 0 and, as a consequence, the main condition of Theo-
rem given in [4] is not satisfied and we cannot then guarantee the semilocal convergence
of Newton’s method from that work. However, we can do it if we apply the present work,
as we can see below.

Indeed, for the last values, we also obtain K0 = 24.3959 . . ., so that the restricted
domain Ω0 = Ω∩B(x0,

1
βK0

) = (0.0117 . . . , 0.9882 . . .) allows us to guarantee the semilocal

convergence of Newton’s method from Theorem 2, since L̃1 = 42.8841 . . ., δ0 = K0,

ψ1(t) = (2.3562 . . .)− (11.9124 . . .)t+ (12.1979 . . .)t2 + (7.1473 . . .)t3,

α1 = 0.3687 . . ., ψ1(α1) = −0.0194 . . . < 0 and B(x0, t
∗) ⊂ Ω, where t∗ = 0.3375 . . . is the

smallest positive zero of ψ1(t). In addition, the domains of existence and uniqueness of
solution are respectively

{s ∈ Ω : |s− x0| ≤ 0.3375 . . .} and {s ∈ Ω : |s− x0| < 0.3996 . . .} .

Finally, we apply Newton’s method from x0 = 0.5 and approximate the solution
x∗ = 0.2777 . . ., which is the only solution physically meaningful, since, by definition, the
fractional conversion is a number between 0 and 1. In Table 2, we show errors |x∗ − xn|
and sequence {|f(xn)|}. From the last, observe that x∗ is a good approximation of a
solution of equation (16).

3 A priori error bounds and quadratic convergence

of Newton’s method

Finally, from the following theorem which provides some a priori error estimates for New-
ton’s method, we deduce the quadratic convergence of the method under conditions (E1)–
(E3). The proof of the theorem follows from Ostrowski’s technique [9] and is analogous
to that given in [3].
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n |x∗ − xn| |f(xn)|
1 2.4440 . . .× 10−2 2.2469 . . .× 10−1

2 5.3328 . . .× 10−4 4.7937 . . .× 10−3

3 2.7537 . . .× 10−7 2.4740 . . .× 10−6

4 7.3561 . . .× 10−14 6.6090 . . .× 10−13

5 5.2494 . . .× 10−27 4.7162 . . .× 10−26

6 2.6731 . . .× 10−53 2.4016 . . .× 10−52

Table 2: Absolute errors and {|f(xn)|} for (16)

Notice first that if ψ1(t) has two real zeros t∗ and t∗∗ such that 0 < t∗ ≤ t∗∗, we can
then write

ψ1(t) =

(
L̃1

6
t+ ε

)
(t∗ − t)(t∗∗ − t)

with t∗ 6= 6ε

L̃1

and t∗∗ 6= 6ε

L̃1

.

Theorem 3. Suppose that conditions (E1)–(E3) are satisfied and ψ1(α1) ≤ 0, where α1

is a positive root of ψ′1(t) = 0 and ψ1 is given in (6).

(a) If t∗ < t∗∗ and t∗ > 6ε

L̃1
, then

(t∗∗ − t∗)θ2n

P − θ2n ≤ t∗ − tn ≤
(t∗∗ − t∗)∆2n

Q−∆2n
, n ≥ 0,

where θ = t∗
t∗∗P , ∆ = t∗

t∗∗Q, P = L̃1t∗∗−6ε
L̃1t∗+6ε

, Q = L̃1(2t∗−t∗∗)+6ε

L̃1t∗+6ε
and provided that θ < 1

and ∆ < 1.

(b) If t∗ = t∗∗ and t∗ > 12ε

L̃1
, then

(
L̃1t
∗ − 6ε

L̃1t∗ − 12ε

)n

t∗ ≤ t∗ − tn ≤
t∗

2n
, n ≥ 0.

Proof . Let t∗ < t∗∗ and denote an = t∗ − tn and bn = t∗∗ − tn for all n ≥ 0. Then

ψ1(tn) =
1

6

(
L̃1tn + 6ε

)
anbn, ψ′1(tn) =

L̃1

6
anbn −

1

6

(
L̃1tn + 6ε

)
(an + bn)

and

an+1 = t∗ − tn+1 = t∗ − tn +
ψ1(tn)

ψ′1(tn)
=

a2n

(
L̃1bn − 6ε− L̃1tn

)

L̃1 anbn −
(
L̃1tn + 6ε

)
(an + bn)

.
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From
an+1

bn+1

=
a2n

(
L̃1 bn −

(
L̃1tn + 6ε

))

b2n

(
L̃1 an −

(
L̃1tn + 6ε

)) and taking into account function d(t) = L̃1t∗∗−6ε−2L̃1t

L̃1t∗−6ε−2L̃1t
,

P ≤ min{d(t); t ∈ [0, t∗]} = d(0) and Q = max{d(t); t ∈ [0, t∗]} = d(t∗) it follows

P

(
an
bn

)2

≤ an+1

bn+1

≤ Q

(
an
bn

)2

.

In addition,

an+1

bn+1

≤ Q2n+1−1
(
a0
b0

)2n+1

=
∆2n+1

Q
and

an+1

bn+1

≥ P 2n+1−1
(
a0
b0

)2n+1

=
θ2

n+1

P
.

Taking then into account that bn+1 = (t∗∗ − t∗) + an+1, it follows:

(t∗∗ − t∗)θ2n+1

P − θ2n+1 ≤ t∗ − tn+1 ≤
(t∗∗ − t∗)∆2n+1

Q−∆2n+1 ·

If t∗ = t∗∗, then an = bn and

an+1 =
an

(
L̃1 an −

(
L̃1tn + 6ε

))

L̃1 an − 2
(
L̃1tn + 6ε

) .

As a consequence,
(
L̃1t∗−6ε
L̃1t∗−12ε

)
an ≤ an+1 ≤ an

2
and

(
L̃1t
∗ − 6ε

L̃1t∗ − 12ε

)n+1

t∗ ≤ t∗ − tn+1 ≤
t∗

2n+1
.

The proof is complete. �

From the last theorem, it follows that the convergence of Newton’s method is quadratic
if t∗ < t∗∗ and linear if t∗ = t∗∗.
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