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1. Introduction

A standard option is a financial contract which gives the owner of the contract the right, but not the obligation, to buy or
sell a specified asset at a prespecified time (maturity) for a prespecified price (strike price). The specified asset (underlying
asset) can be for example stocks, indexes, currencies, bonds or commodities. The option can be either a call option, which
gives the owner the right to buy the underlying asset, or it can be a put option, which gives the owner the right to sell
the underlying asset. There are several types of options that are traded in a market. American option allows the owner to
exercise his option at any time up to and including the strike date. European options can be exercised only on the strike
date. European options are also called vanilla options. Their payoffs at maturity depend on the spot value of the stock at the
time of exercise. There are other options whose values depend on the stock prices over a predetermined time interval. For
an Asian option, the payoff is determined by the average value over some predetermined time interval. The average price
of the underlying asset can either determine the underlying settlement price (average price Asian options) or the option
strike price (average strike Asian options). Furthermore, the average prices can be calculated using either the arithmetic
mean or the geometric mean. The type of Asian option that will be examined throughout this research is geometric Asian
option.

Over the past three decades, academic researchers and market practitioners have developed and adopted different
models and techniques for option valuation. The most popular model on option pricing was introduced by Black and Scholes
(BS)[1]in 1973. In the BS model it has been assumed that the asset price dynamics are governed by a geometric Brownian
motion. However, a large number of empirical studies have shown that the distributions of the logarithmic returns of
financial asset usually exhibit properties of self-similarity, heavy tails, long-range dependence in both auto-correlations
and cross-correlations, and volatility clustering [2-4]. Actually, the most popular stochastic process that exhibits long-range
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dependence is of course the fractional Brownian motion. Moreover, the fractional Brownian motion produces a burstiness
in the sample path behavior, which is the important behavior of financial time series. Since fractional Brownian motion is
neither a Markov process nor a semi-martingale, we cannot use the usual stochastic calculus to analyze it. Further, fractional
Brownian motion admits arbitrage in a complete and frictionless market. To get around this problem and to take into account
the long memory property, it is reasonable to use the mixed fractional Brownian motion (mfBm) to capture the fluctuations
of the financial asset [5-7].

The mfBm is a linear combination of the Brownian motion and fractional Brownian motion with Hurst index H € (%, 1),
defined on the filtered probability (£2, .7, P) for any t € R* by:
M[H(a, b) = aB(t) + bB(t), (1.1)

where B(t) is a Brownian motion, and B"(t) is an independent fractional Brownian motion with Hurst index H. Cheridito [7]
proved that, for H € (%, 1), the mixed model is equivalent to the Brownian motion and hence it is also arbitrage free. For
H e (%, 1), Mishura and Valkeila [8] demonstrated that the mixed model is arbitrage free. Rao [9] discussed geometric Asian
power option under mfBm. To see more about the mixed model, one can refer to Refs. [6,7,10,11].

Analysis of various real-life data shows that many processes observed in economics display characteristic periods in which
they stay motionless [ 12]. This feature is most common for emerging markets in which the number of participants, and thus
the number of transactions, is rather low. Notably, similar behavior is observed in physical systems exhibiting subdiffusion.
The constant periods of financial processes correspond to the trapping events in which the subdiffusive test particle gets
immobilized [13]. Subdiffusion is a well known and established phenomenon in statistical physics. Its usual mathematical
description is in terms of the celebrated Fractional Fokker-Planck equation (FFPE). This equation was first derived from the
continuous-time random walk scheme with heavy-tailed waiting times [14,15,10], and since then became fundamental in
modeling and analysis of complex systems exhibiting slow dynamics. Following this line, and to model the observed long
range dependence and fluctuations in the financial price time series, we introduce a time-changed mixed fractional BS model
to value Asian power option when the underlying stock is

St = X(To(1))

a a 2H
_ Soe(r—q)Ta(tHM"j(t)(a.a)—%azﬁ—%oz(m) Sy =X(0) > 0, (12)

where MY(t)(o, o) = 0 B(To(t)) + oBH(T,(t)), @ € (3, 1), 2a — aH > 1and T,(t) is the inverse a-stable subordinator.

We then apply the result to price geometric Asian power options that pay constant dividends when the payoffis a power
function. We also provide some special cases and lower bound for the Asian option price. The rest of the paper is organized
as follows. In Section 2, some useful concepts and theorems of time changed mixed fractional process are introduced. In
Section 3, a brief introduction of Asian options is given. Analytical valuation formula for geometric Asian options is derived
in Section 4 and then applied to geometric Asian power options in Section 5. The lower bound on the price of the Asian option
is proposed in Section 6.

2. Auxiliary facts

In this section, we recall some definitions and results about mixed fractional time changed process. More information
about mixed fractional process can be found in [16,10].
The time-changed process T,(t) is the inverse «-stable subordinator defined as below

To(t) = inf{z > 0, Uy(t) > t}

here U,(t ),>0 is a strictly increasing «-stable Lévy process [ 17] with Laplace transform: IE( ~ula(r)y = ,o € (0, 1).
U,(t)is 1 self-similar and T,(t) is « self-similar, that is, for every h > 0, U,(ht) 2 )Ta( ) £ h*T,(t), here £
indicates that the random variables on both sides have the same distribution. Specially, when o 1 1, Tu(t) reduces to the

physical time t. You can find more details about subordinator and its inverse processes in [18,19].
Consider the subdiffusion process

MH(t)(a, b) = aW,(t) + bW (t) = aB(T,(t)) + bB (T, (t)),

where B(t) is a Brownian motion, B(7) is a fractional Brownian motion with Hurst index H and T,(t) is inverse «-
subordinator which are supposed to be independent. Whena = 0,b = 1, then it is the process considered in [20] and
if b =0, a = 1, then it is the process considered in [21]. In this research, we assume that H € (%, 1)and (a, b) = (1, 1).

Remark 2.1. When « 1 1, the processes W, (t) and W!(t) degenerate to B(t) and B"(t), respectively. Then, M (t)(a, b)
reduces to the mfBm in Eq. (1.1).
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Remark 2.2. From [20,21], we know that E(T,(t)) = % Then, by applying «-self-similar and non-decreasing sample
path of T,(t), we have

tDt
27 _
E[(B(Ta(£)))] = XCEEY (2.1)
¢ 2H
H 27
E[(B"(T,(t)))] = <7F(a+ 1)> . (2.2)

3. Asian options

The payoff of an Asian option is based on the difference between an asset’s average price over a given time period, and a
fixed price called the strike price. Asian options are popular because they tend to have lower volatility than options whose
payoffs are based purely on a single price point. It is also harder for big traders to manipulate an average price over an
extended period than a single price, so Asian option offers further protection against risk. The Asian call and put options
have a payoff that is calculated with an average value of the underlying asset over a specific period. The payoff for an Asian
call and put option with strike price K and expiration time T is (S(T) — K); and (K — §(T))+ respectively, where S(T) is
the average price of the underlying asset over the prespecified interval. Since Asian options are less expensive than their
European counterparts, they are attractive to many different investors. Apart from the regular Asian option there also exists
Asian strike option. An Asian strike call option guarantees the holder that the average price of an underlying asset is not
higher than the final price. The option will not be exercised if the average price of the underlying asset is greater than the
final price. The holder of an Asian strike put option makes sure that the average price received for the underlying asset is not
less than what the final price will provide. The payoff for an Asian strike call and put option is (S(T)—S(T)); and (S(T)—S(T))
respectively, where S(T) is the value of underlying stock at maturity date T.

Asian options are divided into two different types, when calculating the average, the geometric Asian option

1 T
G(T) = exp {T / lnS(t)dt} ,
0

and the arithmetic Asian option.

We assume that the prespecified interval [0, T] is fixed, then will price the geometric Asian option in the continuous average
case under time changed mixed fractional Brownian motion environment.

4. Pricing model of geometric Asian option

In order to derive an Asian option pricing formula in a time changed mixed fractional market, we make the following
assumptions:

(i) The price of underlying stock at time t is given by Eq. (1.2).

(ii) There are no transaction costs in buying or selling the stocks or option.

(iii) The risk free interest rate r and dividend rate g are known and constant through time.
)

(iv) The option can be exercised only at the maturity time.

From Eq. (1.2), we know that InS; ~ N(u, v), where

= InS(0) + (r — T, (t)—] L Y (R S " (4.1)

= T TS ey 27 r(a+1)) '
2 t* 2 t* H

v=o Flat D) +o (F(oz—i—])) . (4.2)

Let C(S(0), T) be the price of a European call option at time 0 with strike price K and that matures at time T. Then,
from [16], we can get

C(5(0), T) = S(0)e™ " (d1) — Ke™"" p(d>),

where

dy = dy =dy — 6~/T,
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Tot71 Toz—l 2H
§2 =0’ +o° :
I'(a) I'(a)

and ¢(.) denotes cumulative normal density function.
Under the above assumptions (i)-(iv), we obtain the value of the geometric Asian call option by the following theorem

Theorem 4.1. Suppose the stock price S; satisfied Eq. (1.2). Then, under the risk-neutral probability measure, the value of geometric
Asian call option C(S(0), T) with strike price K and maturity time T is given by

ceoLn = S(O)eXp{_rT T Q)F(aT: 2" 2(;“2((01_?;)
272aH
— 4(2aH + 1)((161-17:1- (M (o + 1))H }fﬁ(dl) — Ke 9 p(d,), (4.3)
where
dy = LM! d; = dy + oc,
e
ue = InS(0)+ (r —q — (’:) T o?T%H

2 'T(a@+2) 2QaH+ 1)(I(o+ 1))2H°
5 O.ZToz 0,2(_7-)0( UZTZ(xH
% = Tat2) T Twt3)  QeH+ 2@t P
the interest rate r and the dividend rate q are constant over time and ¢(.) denotes cumulative normal density function.

Proof. Suppose

Then
G(T) = KD, (4.4)

We know that InS; >~ N(u, v), then it is clear that the random variable L(T) has Gaussian distribution under the risk-neutral
probability measure. We will now compute its mean and variance under the risk-neutral probability measure. Let E denote
the expectation and, u¢ and O'G denote the mean and the variance of the random variable E under the risk-neutral probability
measure. Note that

1 T
po = BT = 1 / EllnS(t)ldt
0

; T ta 0‘2 T ta t2aH
= 1n$(o)+?/0 (T—Q)mdt_ﬁfo [p(a+1)+(r(a+l))2*']dt

T® O,ZTot O,2T2aH
Fa+2) 2MN(a+2) (4aH+2) (I (a+1)2H°

= In5(0) +(r —q)

and
o2 = Var[L(T)] = E[((T) — p¢ )]

= Tz/ / E[Wo(6)We(0)] + EIW, (W (2)]) dedz,

by independence of the processes B(t), B"(t) and T,(t), we obtain

_ T (f—‘[)a
_TZ//( ot (a+1)| lF(a—i—l)l)dtdr

2H ¢ 2H (f—f)a 2H
— dtd
+T2//< a+] Lt rery TTern ) ’

2T(x T) N O_ZTZaH
(o +2) (a +3) | (20H + 2)(I(a + 1))2H

From (4.4), we know that the random variable G(T) is log-normally distributed, then In G(T) >~ N(ug, aG) Let] = {x :
e* > K} and ¢(.) be the probability density function of a standard normal distribution, then the price of geometric Asian call
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option is given by the following computations

C(S(0), T) = e E[(G(T) — K)*]
_ 1 (x — pe)? }
T X K _ d
e /’(e ) Sros exp{ 2%2 X

1 _ 2
—rT /(euc+z<rc _ K)T exp {_(leéc)} (p(Z)dZ
V2mog 96

o0 —0o0
,rT+,uG+ UG (Z (rg) dz — KefrT‘/. (p(Z)dZ

7d2

dy
= e THHcty "G/ dz—Ke_rT/ o(z)dz
d2 D'(; —00

dy+og dy
@(z)dz — Ke™ TT/ o(z)dz

—0o0

8&

—rT+;LG+2rrG
9]
= e eIl g(dy) — Ke T g(dy),

T 2 (_T)Dt
S(0)expq —1T + (r — q)l"((x +2) to 2N (a + 3)

20H
) T

-0
4(2aH 4 1)(aH + 1)(I(a + 1))2H

]¢(d1) — Ke™ ¢(dy),

here
I = {x:6"> K} ={z:el'ct% > K}
={z:uc+zoc>InkK}={z:z > —dy},
thus we obtain the pricing formula. O

Moreover, using the put-call parity, the valuation model for a geometric Asian put option under time changed mixed
fractional BS model can be written

L o?(—T)
I'ae+2) 2r(a+3)

P(S(0), T) = Ke T ¢p(—d,) — S(O)exp{ —1T 4+ (r —q)
O.ZTZD(H

" 4Q2aH + 1)(aH + 1)(I'(a + 1))

}¢(—d1 ), (4.5)

where d; and d, are defined previously.
Letting o 1 1, then the stock price follows the mfBm shown below

S, =S, exp{(r — q)T + oB(t)+ oB(1)
1

1
——c%t— fGZtZH], O0<t<T, (4.6)
2 2

and the result is presented below.

Corollary 4.1. The value of geometric Asian call option with maturity T and strike K, whose stock price follows Eq. (4.6), is given

by
C(5(0), T) =
S(O)exp] —2(r + q)T = T T () — ke T g(dy) (4.7)
expy —=(r _—— —Ke , :
P2 Y T "o yE D [P 2
where
—InK
dy = L, di = dy + og,
[efe

1 0.2 O.ZTZH
=InSO)+-(r—-q— =T — ———,
K 0+ r—a-=) 20H T 1)
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O_ZT (TZTZH
—-—
3 (2H +2)

which is consistent with result in [9].

2 _
o; =

5. Pricing model of Asian power option

In this section, we consider the pricing model of Asian power call option with strike price K and maturity time T under
time changed mixed fractional BS model where the payoff function is (G*(T) — K)* for some constant integer n > 1.

Theorem 5.1. Suppose the stock price S; satisfied Eq. (1.2). Then, under the risk-neutral probability measure the value of geometric
Asian power call option C(S(0), T) with strike price K, maturity time T and payoff function (G*(T) — K)* is given by
nT¢ (n—n®)o?T* nc?(—T)

CS(0). 1) = SO)expy =T + (1 =) = = Sra +2) T 2@+ 3)

no 2T2eH 2 2T20H
" (4aH +2) (e + 1P (4aH + 4) (o + 1))2H o)
— Ke™ 2)s 5.
Th(f) (5.1
where
1
MG — = InK
o= —"—, fi=f+nog,
oG
0.2 T® O.ZTZotH

#e =InSO)+(r =4 = ) F 5y ~ 22eH + (e 7 1))

) O,ZTa O,Z(_T)a N O,ZTZOcH
O~ = s
C T Iaw+2) I(a+3) (2aH+2)(I'(«+ 1)
the interest rate r and the dividend rate q are constant over time and ¢(.) denotes cumulative normal density function.

Proof. The payoff function for Asian power option is (G*(T) — K)* = (e"{T) — K)*, then applying similar computation in
Theorem 4.1, we obtain

C(5(0), T) = e TE[(G™(T) — K)*]

_ 1 (x — pg)
—e rT/(e“"—K) exp{— dx
I V2mog 202

2
— e—TT /(en(/.l,g+20'6) _ I() (X - I'LC)
I

1
exp{—
v 2mog { 20¢
—00
e~ 2196 {7 _ e ' / o(z)dz
—f2

} ¢(z)dz

o0

_ e—rT+nug+%nzag /
—f
f2

(o)
— e—rT+n/LG+%n2(r§[ (p(z)dz _ KefrT/\ (ﬂ(z)dz

fo—nog —00

1.5 o ffatnoc fo
= e TTHMGcTN oG f o(z)dz — Ke " f o(z)dz
—00 —00

— e—rT+n;LG+%n2(rg¢(f1) _ Ke—rT(z)(fz)7

T® 12 ZTa 2 Z_Ta
=S(0)exp{—rT+(r—q)rn _(n—n*)o n“o*(—T)

(¢ +2) 2I'(a + 2) 2 (a + 3)

no 2720 2o 2T2eH
 (4aH +2)(F(a+ V)P (4aH + 4) (a4 1) o)

— Ke™¢(f),
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here
[ = {x:e™ > K} ={z:e"Het296) 5 K}
1
={z:uc+zoc>-InK}={z:z > —f,},
n

thus the proof is completed. O

The time changed mixed fractional BS model includes the jump behavior of price process because the subordinator
process is a pure jump Levy process so it can capture the random variations in volatility. Also, it can be used for data with
long range dependence and visible constant time periods characteristic for processes delayed by inverse subordinators.

6. Lower bound of the Asian option price

The aim of this section is to obtain the lower bound on the price of the Asian option. The next theorem shows that the
normal distribution is stable when the random variables are jointly normal.

Theorem 6.1 ([22]). The conditional distribution of InS;, given In G(T) is a normal distribution

Ai A2
(InSy|InG(T) = z) > N(pi + (2 — pe) .00 — —5), i=1,....n,
9 9c
where
InS(O) 4+ (r — T(t) — ot T Tg2( & )T
i = In r— i)——0"——— — —0°| ————
Hi D)= ra 1~ 2° \Flat 1)
t o 2H
2 2 i 2 i
= T T ° (r(a+1)) ’
Ai = Cov(InS;,,InG(T)), 0 < t; < tp < --- < ty < T, T,(t)is inverse a-stable subordinator and, . and ag are defined in
Theorem 4.1.
Moreover, (S| In G(T)) has a lognormal distribution and
E[S,|InG(T) = 7]
Mool , A2 )
=expui+(z—uc)— + (o7 — =) i=1,...,n (6.1)
o 2 ot

Now, we condition on the geometric average G(T) in the pricing expression of the Asian option

C(5(0). T) = e TE[(A(T) — K)*] = e TE[EIA(T) — K)*|G(T)]]
— el / E[(A(T) — K)TIG(T) = zlg(z)dz,
0

where g is the lognormal density function of G. Let
K
¢ = [ Bram - 016 = zigtz)tz,
0

(o]
G = [ AT - 10%16T) = 2lgte),
K
then C(5(0), T) = e~ (C; + C,). Since the geometric average is less than arithmetic average A(T) > G(T),
oo
G = / E[A(T) — K|G(T) = z]g(z)dz, (6.2)
K

from Theorem 6.1, we can calculate C,. Applying Jensen’s inequality we obtain a lower bound on C;
a=| BT - K716 = Zlg(a)iz
0
- [ * EAT) - K1) = 2)) gz
= fK E[A(T) — K|G(T) = z]g(z)dz = C; (6.3)
K

where K = {z|E[A(T)|G(T) = z] = K}.
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Eq. (6.1) enables us to obtain K, then we calculate the following expectation

1 ¢ 1 ¢
E[AT)G(T)=2] = E [n ;&ilG(T) = z:| = ;IE [S:1G(T) = 7]

1< YR Y
=~ ) exp i+ (logz — pe)—5 + (o7 = °5) ).
g %

Theorem 6.2. A lower bound on the price of the Asian option with strike price K and maturity time T is given by

C(8(0).T) = e”(C1 + C2) _
(1 1 e —InK + y;
)~ X _ _2 7~ et

e{nszw+2qm< -

_K¢ (“G ;GIHK>},

where all parameters are defined previously.

Proof. Collecting Egs. (6.2) and (6.3) gives

Ci+GC = fo E[A(T) — K|G(T) = z1g(z)dz

’OO o]
:/f E[A(T)|G(T):z]g(z)dz—1<f g(z)dz
K K
00 1 n 00
=ﬁ E| =Y S,IG(T) =2 g(z)dz—K/: g(z)dz
K n3 K
o q n 00
= / =Y E[S,IG(T) = z] g(z)dz — Kﬁ g(z)dz
1K nn = ¢ N
= 72/ E[S[i|lnG(T)=lnz]g(z)dz—1(/ g(z)dz.
n=Jk ¢
From the proof of Theorem 4.1, we obtain
oo —InK
1</ g(2)dz = K¢ <“G“> ,
K oG
and from Eq. (6.1)
/: E[S;|InG(T) = Inz] g(z)dz
K
*© Ao 1 A2
=] exp (Mz‘ +(lnz - MG);IZ + 5(03 - ;’2)) g(z)dz

K G G
1,\ (™ Ao 122

=exp | ui+ -oj _exp|(Inz — ug)— — - — | 8(z)dz.
2 K 0, 2 UG

G
Using the density of the lognormal distribution, we have

©° 1 Mo 1a2 1 pg—Inz,
———exp|(nz—pug)— — =— — =(———)" ) dz.
& 2mocz ( ¢ ol 20 2 oc
Making the change of variables y = %CZH' and % = —a]?, then we have
- 1 Li Moo1Aar 1 Ai o
———ex — —y)— —=— — = - —))d
/ﬂc(‘jlﬂx V27 p((oc y)ac 207 Z(y O'G) Y
fg—Inz+x;

e 1 ep( yx,-+1x,? 1y2 m%ﬂ/}\,-)dy
= X -y — —_——— - —_——_—— _—
—00 o N2 og 205 2 20’62 oG

pg—Inz+ag

G 1 1 2) uc —InK + y;
= —=exp| -5y |Jdy=¢| ——— ],
/;oo \/27’[ < 2 ( oG

by collecting C; and G, the proof is completed. O
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