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1. Introduction

The Schrodinger equation is one of the most important equations of quantum physics for describing nonrelativistic
quantum mechanical behavior. Feynman and Hibbs derived the standard Schrédinger equation from the path integrals
over Brownian paths. A natural generalization of the Brownian motion is Lévy stochastic process. Recently, Laskin [1]
derived the space fractional Schrédinger equation by extending the Feynman path integral to Lévy one, which contains
the standard Schrédinger equation as its special case.

The fractional partial differential equations can describe some real physical phenomena better than integral partial
differential equations, especially in optics and hydrodynamics. Guo and Xu [2] discussed the physical applications of
fractional Schrodinger equation and obtained the exact solutions with several kinds of potentials. Guo, Han and Xin [3]
proved the existence of the global smooth solution of fractional nonlinear Schrédinger equation with periodic boundary
conditions. Hu, Xin and Lu [4] further studied the existence and uniqueness of the global solution of fractional coupled
nonlinear Schrédinger equations.

However, the exact solutions of fractional differential equations often contain some special functions, such as Fox
functions, which are still not easily to simulate. The numerical methods for fractional differential equations become
important tools to understand the behaviors of the equations [5,6]. A number of numerical methods including the
finite difference methods [7-9], pseudo-spectral methods [10], and multi-symplectic methods [11,12] are developed
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for discretizing the nonlinear Schrédinger equations. For instances, Wang, Xiao and Yang [8,9] discussed the stability
and convergence of some difference schemes for coupled nonlinear Schrodinger equations. Sun and Zhao [13] studied a
second-order-convergent conservative difference scheme in L., norm.
In this paper, we consider the following coupled nonlinear Schrédinger equations
iue + y(=AYu+ p([ul® + v/ Ju =0,
ive +y(=AY2v + p(jv* + Bluf*)v  =0.
with the initial boundary value conditions

{ u(x, 0) = u(x), v(x, 0) = vo(), a<x<b,

a<x<b0<t<T (1.1)

u(a,t)=u(b,t)=0, v(a,t)=vb,t)=0, 0<t<T.

where i = +/—1, 1 < o < 2 and the parameters y, p > 0, 8 > 0 are constants. When « = 2, the system (1.1) is reduced
to the classical coupled nonlinear Schrédinger equations, which describe a wide class of physical nonlinear phenomena,
such as the hydrodynamics, the nonlinear optics and the dynamics of the two-component Bose-Einstein condensate.

As the coefficient matrix of the discretized linear system is the sum of a complex scaled identity matrix, a diagonal
matrix and a symmetric Toeplitz matrix, the fast algorithms such as fast Fourier transform (FFT) for Toeplitz matrix-vector
multiplication, the fast solvers for the circulant linear system, could be fully taken into account for designing the effective
and efficient iterative methods. In addition, the linear system is ill-conditioned so that it leads to the slow convergence
of the Krylov subspace methods. Ng and Pan [14] proposed approximate inverse circulant-plus-diagonal preconditioners
for solving Hermitian positive definite Toeplitz-plus-diagonal systems. They use circulant matrices to approximate the
inverses of Toeplitz matrices and combine these circulant matrices together. Motivated by this idea, Lei and Sun [15] and
Pan et al. [16] presented circulant preconditioners and approximate inverse preconditioners for diagonal-times-Toeplitz
matrices in fractional diffusion equations. We refer to [17,18] and [19] for the efficient solvers and preconditioners for the
Toeplitz-like systems. It is noted that the Hermitian and skew-Hermitian parts of the coefficient matrix are the diagonal-
plus-Toeplitz matrix and the complex scaled identity matrix respectively, Ran, Wang and Wang [5] proposed the HSS-like
iteration method as well as the corresponding preconditioning technique for the discretized linear system of (1.1) on the
basis of Hermitian and skew-Hermitian splitting(HSS) method [20]. The primary computing in the methods is solving
a complex diagonal linear system and a Toeplitz linear system which is performed by fast solver. Moreover, an inexact
version of HSS-like method and a new preconditioner are studied in [6,21] respectively.

In order to avoid the complex value arithmetic, we transform the original complex linear system into its equivalent
two-by-two block real linear system, then solve the real linear system by the preconditioned modified Hermitian and
skew-Hermitian splitting iteration (PMHSS) method [22]. Theoretical analyses show the convergent performance of the
proposed method. Moreover, the theoretical optimal parameter is analyzed in detail by minimizing an upper bound of the
spectral radius of the iteration matrix. The numerical experiments show that the theoretical optimal parameter is very
close to the interval containing the experimental optimal parameters. The convergence of PMHSS iteration method is very
stable in the neighborhood of the optimal parameter. An important phenomenon is that the convergence of the proposed
iterative scheme and the corresponding preconditioned GMRES method is independent of not only the discretizing mesh
size but also the parameters in the fractional nonlinear Schrédinger equations.

This paper is organized as follows. The discretization of the fractional Schrédinger equations and the sequent complex
Toeplitz-like linear system is briefly introduced in Section 2. The PMHSS iteration method and its optimal parameter are
studied in Section 3 as well as the preconditioning technique. In Section 4, the numerical experiments are presented to
demonstrate the efficiency of the proposed methods. Finally, conclusions are drawn in Section 5.

2. Discretization of the fractional Schrédinger equations

The fractional Laplacian operator in (1.1) can be characterized as
(—A)3ulx, ) = F (€1 Flux, ) ,

where F is the Fourier transform acting on the spatial variable x. Furthermore, it is shown that the Riesz fractional
derivative can also be defined as
0 o 1
(x,t)=—(=4)2u(x,t) = —

—u — | _ooD%u(x, t D% _u(x,t)|,
ax|* ZCOS%[ oD U, ) + XDt )]

where _,.Df and (D% are the left and right Riemann-Liouville derivatives, respectively.
Let M and N be the numbers of the discrete points in spatial and temporal dimensions respectively. Accordingly,
denoted by r = T/N and h = (b —a)/(M + 1) the temporal step size and the spatial step size, t, = nt forn=20,1,...,N
andx;=a+jhforj=0,1,.... M+ 1.
Let u]'7 ~ u(xj, t,) and v =~ v(x;, t,) denote the corresponding numerical solutions. The fractional Laplacian (—A)

. . J . . .
discreted by the fractional centered difference in the truncated bounded domain as

]
2

is

80[

M
1
—WU(Xj, t)= he ch_kuk + o(h?),

k=1

(—4)2 u(x;j, t) =
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where the coefficient
_ (=1 +1)
T I(e/2—k+ DM (a/2+k+1)

with I'(-) being the gamma function. The coefficients c; satisfy the following properties

Ci

co >0,
Gg=c,<0,k=12,...,

+o00
2 ke oo 0 |G| = Co.

By applying the linearly implicit difference scheme proposed in [8], the following discretized scheme of the space
fractional coupled nonlinear Schrédinger equations (1.1) is obtained

u{l+17 n—1

. u; M A 2 2\~
it — 4 i Yl Gl + o] 1 4 Bl = 0, o)
.vyH—l_vp—l M R ) _ .
i+ ke G 4 p(v] 7 + Bluf|)D) =0,
N A P i i
where u=t—"—="——j=12...,Mn=12,... N-1Itis proved that the scheme (2.1) conserves the

discrete mass and energy, and is unconditional stable and convergent with order O(z? + h?) in the discrete > norm [8,9].
By the initial boundary value conditions, we have

uj(.’ = up(x)), vf =v(%), j=12,..., M,
and

ug=1uy,; =0, vg=vy,; =0, n=1,2,...,N.
In addition, the first step can be obtained by some second or higher order temporal integrators. The two difference
equations in (2.1) have the same algebraic structure. Denote u™! = [uf*!, ... ult'T and b™! = [bIF!, ... bpH'T,
where

M
DI =ib T — Y g Ay j=1,2,. M,
k=1

with
YT
p=1g and &= pr(ul + BT,
Consequently, the first difference scheme in (2.1) is rewritten as

Ay — ptl =12, ... N =1, (2.2)
where the coefficient matrix is of the form

AT =il + D" 4+ T,
Here, I is the identity matrix, D"*! is the nonnegative diagonal matrix defined by

D™ = diag(di™', dy, ..., ),

and T is the Toeplitz matrix

Co C1 : C-mM Ci-m

€ Co L G-m C-m

T=pu (2.3)
-2 CmM-3 : Co G
CM-1 CM—2 : C—q Co

From the facts that y, p > 0, 8 > 0 and the properties of the coefficients cy, it is seen that the Toeplitz matrix T is
symmetric and strictly diagonally dominant, hence symmetric positive definite. Thus, the matrix D"*! 4+ T is symmetric
positive definite, which results in the fact that the coefficient matrix A"*! is complex symmetric and non-Hermitian
positive definite. It is clear that the second equation in (2.1) could be written as a complex linear system in the same
way. The coefficient matrix has the same structure as A™! in (2.2).
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3. Preconditioned modified HSS iteration method and preconditioning
In this section, we consider the iteration method and preconditioners for the complex linear systems of equations in
the form of
Au=b, (3.1)

where A = D 4+ T + il is a Toeplitz like matrix, with D € R™" a positive diagonal matrix and T € R™" a symmetric
positive definite Toeplitz matrix; u = y + iz and b = p + iq are complex vectors while y, z, p, q are real vectors in R".
(2.2). The symmetric complex linear system could be transformed into the following real two-by-two block linear system
equivalently

e (1) (2)-(1)

where W = D + T is its real part and T = [ is its imaginary part. W is a symmetric Toeplitz-plus-diagonal matrix since
T is a symmetric Toeplitz matrix and D is a diagonal matrix. The PMHSS iteration method [22,23] is proved to be a very
efficient iterative method for solving (3.2). It is stated as follows:

Method 3.1 (PMHSS Iteration Method for Solving (3.2)). Let (y'®", 29"} € R" be an arbitrary initial guess. Fork = 0, 1,2, ...,
until the sequence of iterates {(y®", 20" )}~ R converges, compute the next iterate (y**", z-+0") according to the
following procedure:

aV+W 0 y(k+1/2) _ oV T y(k) N p
0 aV+W k172 =\ T aV Al q )’
aV +T 0 y(k+1) oV W y(k+1/2) q
0 av+T JLzen )T\ w v J| Zwr2 )T o )
where « is a positive parameter and V is a symmetric positive definite matrix.

To take full advantage of the Toeplitz matrix, we take aV = wl — D. Denote the diagonal elements of D by d;,i =
1,...,n. Then ® > max;|d;|, so that wl — D is positive definite. Then, we get the PMHSS iteration scheme for solving
linear system (3.2) as follows:

Method 3.2 (The Special Case of the PMHSS Iteration Method). Let (y®',z®") e R" be an arbitrary initial guess. For
k = 0,1,2,..., until the sequence of iterates {(y(")T,z”‘)T)},fi0 C R" converges, compute the next iterate (y*k+1", z(k+1T)
according to the following procedure:

ol +T 0 yk+1/2) ol —D I y® p
0 Wl +T k12 JZ o ul-D 20 )T g
(w+1)I—D 0 ye N wl-D -D-T ylk+1/2) N
0 (w+ 1 =D 20 T\ DT wl—D 2(k+1/2) —p
In every iteration step, the primary computing is solving two Toeplitz linear systems of wl + T and two diagonal linear

systems (w + 1) — D. The method is considerable efficient since the Toeplitz systems could be solved by fast solvers.
The PMHSS sequence generates in Method 3.2 could be reformulated as

XD = Yo + F (),

with x®) = (y®" | 20T o = (pT gT)T,
L) — @+ DI=D 0 [ wl-D —-D-T
w) = 0 (w+ DI =D D+T ol —D
(wl+T 0 \ '[w-D I
0 Wl +T I wl-D )
-1
1 _ (o+ 1) —D 0
F W-( 0 (w+ 1) —D

0 1\, (w-D -D-T ol +T 0 !
U= o D+T wl —D 0 W 4T

and
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_{(@+1I-D 0 ' wl-D @l -D ol +T 0 \ '
- 0 (o+ DI =D —wl+D wl—D 0 ol +T

:(a)I—i-T)_l(wI—D)(a)I—i-T)_]( —11 ;)

Thus, it is obtained that

o) = 1( 5 _1' )(a)I—i-T)_](a)I — D)l +T).

2
Actually, the PMHSS iteration method in Method 3.2 implies a matrix splitting as follows
R =Fw) — G(w),
where

1 1 = wl—D —(D+T) wl —D [
G(a)):i(wl—D)](l I )( D+T wl — D )( —I a)I—D)'

so that the iteration matrix L(w) can be denoted by F(w)™ 'G(w).

(3.3)

We should point out that the splitting matrix F(w) plays an important role in the PMHSS iteration method and can be
served as the preconditioner for the Krylov subspace method. We call it PMHSS preconditioner in the following page. In

actual implementations, the action of the preconditioning is solving a sequence of generalized residual equations

F(w)z® = r®,

where r® is a current residual vector. Therefore, the primary cost is solving two diagonal linear systems with (w+ 1) —D
and two linear systems with wl + T. Since wl + T is a Toeplitz matrix, it could be solved by the fast solvers introduced

by [17-19,24].

According to Theorem 2.1 in [23], the sequence generated by Method 3.2 converges to the unique solution when wl —D

is symmetric positive, which is equivalent to @ > maxj<j<p{d;}.
Denote K; = (wl — D)"V%(D + T)(wl — D)~'/? and K; = (wl — D)7, it follows that

oy — (@ —D+I 0 ' wl-D —(D+T)
)= 0 ol —D+1 D+T wl —D
(wol+T 0 \ '[w-D I
0 w4T I wl-D
wl—D —(D+T) ol +T 0 \ '
"\ D4+T I -D 0 ol +T
wl—D 1 ol —D+1 0 !
' —I wl — D 0 wl —D+1
I —K I+K, 0 \ '
TVUK I 0 I+K

I K I+K, 0 \ '
g N 0 I+K ’
and thus

-1 -1
I K I+K; 0 I K I+K, 0
) = ”( Ki I )( 0 I+K ) ””( K, I ) ( 0 I+K ) I-

Taking the 2-norm of the matrix, we obtain the upper bound of spectral radius of L(w) as follows:

[14 22 1+ u?
o(w) = max — _

- max .
igizn 1424 igi=n 14,

Here, A; and w;, j = 1, ..., n, are the eigenvalues of (wl — D)"Y(D 4 T) and (wl — D)™, respectively.
Let £ be the eigenvector corresponding to the eigenvalue A; and satisfy

(wl — D) YD +T)& = Ajt.

Consequently, we obtain

§*DE | &'TE

§*§ §*§
)"J = = 5

w — &DE

33

(3.4)
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which is lower and upper bounded by

dn+'€n <}\,'<d1+‘[1
S A=

Amin = =Amax» J=1,...,1,

w —dy w —dq
where 77 and t, are the largest and smallest eigenvalues of Toeplitz matrix T, d; and d, are the largest and smallest
elements of diagonal matrix D, respectively. Similarly, u; lower and upper bounded by

1 1
S <

=fmax» J=1,..., 1

Mmin = a)—d1 =

w —dy

We define the functions f(x) = ”114:;"2 with x € Rt and

V1A 1+ p?

oA, w)=fAf(n) = 1+ 1+u

with A € [Amin, Amax] and @ € [min, Mmax]- It is clear that

)

p(L(w)) < o(w) < 6(w),
where

o(w) = max max o(w, A, ).

A€[Amin. Amax] HE[Lmin, Mmax]

In the following, instead of analyzing the optimal parameter w to minimize the spectral radius of L(w), we are looking
for the optimal parameter w for the following continuous optimization problems:
min J(w).
we(dy, o0)

It is clear that f(x) is a decreasing function when x < 1 and increasing function when x > 1. It reaches its minimum at
x = 1. Therefore,

J(Xmax), when d; < w < wq;
max L) =
A€[Amin. lmax]f( ) { S (Xmin), when v < w,

where w; = 3(d; +dn) + 3/(dy + dn)2 + 4(d1 Ty + dyT1) + 47175, and

S (tmax), when dy < o < w;y;

max =
HE[Lmin, l’-max]f(u) { f(:u'min)’ when wy; < w,

where w, = %(d1 +d, + /(dy + d,)? + 4). By straightforward calculation, we obtain

w1 > wy, if dyty+ditg + 1T — 1> 0;
w1 <wy, if dyti+ditg+ 1T —1<0.

Therefore, we show the explicit expression of 6(w) in the following theorem.

Theorem 3.1. Let A be a complex symmetric matrix defined as in (3.1) with D and T being positive diagonal matrix and
symmetric positive definite Toeplitz matrix respectively. Denote that t, and t, are the largest and smallest eigenvalues of matrix
T, dy and d, are the largest and smallest elements of matrix D respectively, and let v > d; be a positive parameter. The PMHSS
iteration converges to the unique solution of the block two-by-two linear system for any initial guess, for the spectral radius of
iterative matrix L(w) is bounded by

p(lw)) =o(®) <6(w) <1,
where the upper bound &(w) has piecewise definition:
(a) When dyt1 +ditp + 17071 — 1 > 0,
Viw—di)? +di + 1P Ve-—d)P+1

, Wwhen o < wy;

w+ 1 w—d;+1

« —d1)?+(d 2 —dy)?+1

o(w) = Vw—diP +{di+ 0P Viw—d)+ , when w; < w < wq;
w+ T w—d, +1

V@ —dn)? + (dn + 1)? V(0 — dn)* + 1

when o > wq.
w+ T w—d, +1
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It obtains its minimum at
wopt = arg min & (wy),
i=1,2,3

with w3 is a solution of a quartic equation and also the minimum point in [w,, w1];
(b) When d,t1 + ditp + th11 — 1 <0,

v 2 —di)?+1
V(w—di)?+(di + 1) V(w—di 2 + , when w < wq;
o+ ®—di+1
A~ _dnz dn nZ _d ’ 1
)= Yo—dPtlbrulVo-—d2+l
w+ Ty w—di +1
\/(a) dn)? + (dn + 1) \/(w dn)* +1 when w > w,.
w+ T @ —dp +1

It obtains its minimum at

Wopt = aI'g iirllizn30(wi)’

with w3 is a solution of a quartic equation and also a minimum point in [wq, w;].

Proof. We analyze 6 (w) with several differentiated cases:
(a) When d,tq + dyty + 7471 — 1 > 0, then wq > ws,

(a1) In the case of w < wy,

Vo —di2+(di + 12 (w—d)?+1
a)+T1 w—d]+1

6 (@) = f(Amax)f (max) =

Since f(Amax) and f(max) are all monotonically decreasing functions with respect to w, 6 (w) gets its minimum
at w = wy, and

di + 1 1 )

wy — d] wy — d] ’

6(@2) = f(Amax )f (lmax) = f(

(a2) In the case of w; < w < wy,

Vo —di? +(di + 1) V(o —d)? + 1
w+T1 w—d+1

6 (@) = f(Amax ) (min) =

It can be verified that f(Amax) is monotonically decreasing but f(pmin) is monotonically increasing with respect
. . . o(w .
to w, respectively. The stationary points of 6(w), which satisfy e = 0 are ought to be the solution of the
w

following quartic equation:
aow4 + a1w3 =+ 020)2 + asw+ a4 =0, (35)

where

= n+di+1,

ay = —t+(=3d; — 3dy + 2)71 — 2d3 — 3dydy — dy — dy — 1,

ay = 3dnt? +(9d1dy + 3d2 — 3d; — 3dy)T1 + 6d%d, + 3d1d? + 3d;,

a3 = 1+ (=3d2 +2d; +dy — 2)t¥ + (—9d1d% — d2 + 2d3 + 6dydy + d? — 3d; — dp + 1)1y
—6d2d? — did3 + 2d%d,, + did2 — 4d3 — dyd, + di,

ag= (—dy — 1)1 + (&3 — 2dydy — &2 — 2d; + dy — 1)1
+(3d1d? — 2d%d, — 3d1d? — 2d? + 3d1d, — 3d1)T
+2d3d3 — 2d3d?% + 2d3d, — 2d3.

(a3) In the case of w > wy,

V(@ —dnl? + (dn + 1)? (@ — dn)* + 1
w+ T, w—d, +1

6’((0) :f()\min)f(u«min) =
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since f(Amin) and f(umin) are all monotonically increasing with respect to w, 6(w) gets its minimum at w = w;,
and

V(@1 —dn)? + (dy + ) V(o1 — dp) + 1

6(w1) = f(min ) (emin) = o+ 1 w d +1
1 n 11— Yn

If Eq. (3.5) has solutions in the interval [w;, @], then we denote the one which has the minimized value of 5 (w)
as ws. then the optimal w is the solution of

Wopt = arg ig}j2r}3&(wi);
If Eq. (3.5) has no solution in the interval [w;, w1], the optimal w is the solution of

Wopt = arg mir% o(w;).
i=1,

(b) When d,tq + dq7, + tht1 — 1 < 0, then w; < w,. The analysis is similar with case (a).

(b1) In the case of w < wq,

Vo —=di? +(di+1)? Jo—di)?+1
w+ 1 w—d;+1

Since f(Amax) and f(umax) are all monotonically decreasing functions with respect to w, 6(w) gets its minimum
at w = w1, and

(}(w) :f()“max)f(ﬂmax) =

d]+‘L’1 1 .
w1—d1 a)1—d]’

6(w1) = f(rmax )f (max) = f(

(b2) In the case of w1 < @ < w;,

V(o —diP + (i + 1P V(0 —di P + 1
o+ T, w—di+1
It can be verified that f(Amax) is monotonically decreasing but f(imin) is monotonically increasing with respect

6’(6{)) = f(Amin )f (max) =

to w, respectively. The stationary points of 6(w), which satisfy % = 0 are ought to be the solution of the
following equation: @

aw* + a10° + e? +azo+a, =0 (3.6)

where

= T,+dy+1,
—12 4+ (=3dy — 3d, + 2)t, — 3dqdy — 2d% —dy —d, — 1,
ay 3di7? + (3d2 + 9dydy — 3dy — 3dn)ty + 3d2d, + 6d1d2 + 3dy,
a3 = 12+ (=3d +dy + 2d, — 2)t} + (—d3 — 9d%d, + d? + 6dd, + 2d% — dy — 3d, + 1)1,

— d3d, — 6d%d? + d*d, + 2dd? — dyd, — 4d? + dy,
ag= (—dy — 152 +(d® — d? — 2ddy + dy — 2d, — 1)7?2

+ (3d3d, — 3d%d, — 2d1d? + 3did, — 2d2 — 3d,,)7,

+2d3d? — 2d%d? + 2d,d? — 2d2.

aq

(b3) In the case of w < w»,

V(@ = dnl? + (dn + 1)* V(0 — dn)? + 1
o+ 1 w—d; +1

gets its minimum at @ = w,. since f(Amin) and f(umin) are all monotonically increasing with respect to w, 6(w)
gets its minimum at w = w,, and

V@2 —dn)? + (dy + w2 (@ — dy 2 + 1
wy + Ty a)z—dn+l

If Eq. (3.6) has solutions in [wy, @;], then we denote the one which has the minimized value of 6(w) as ws. then
the optimal w is the solution of

a(a)) zf()\min)f(ﬂmin) =

C}(wZ) :f()‘min)f(,umin) =

Wopt = arg_ 3}121130(wf);
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If Eq. (3.6) has no solution in [wy, w,] the optimal w is the solution of
Wopt = aAI'g mllg 6(w;). W
i=1,

We should give some remarks before going on for better understanding and making use of the optimal parameters in
practical implementation.

Remark 3.1. In Theorem 3.1, we give the optimal parameter w,p; to minimize the upper bound of the spectral radius of
L(w). It holds that
p(L(w*)) =< P(L(wopt)) = &(wopt),

where * is the practical optimal parameter to minimize p(L(w)). In the actual implementation, we use wqpc as the
theoretical optimal parameter. In the next section, we get the practical optimal parameter w* experimentally with line
search. We will compare the numerical behavior of PMHSS with these two parameters by numerical experiments.

Remark 3.2. To simplify the process of choosing of the optimal parameter, we can choose @ to minimize a coarse upper

bound of p(L(w)), saying,
1+

J1+2
max f(Aj) = ———, or maxf(u;) = max

1<j<n 1+ 1<j<n igi<n 1+ p;

alternatively. Consequently, we have that max;(f(};j(w))) obtains its minimum at
Wopt = W1,

and
min max(f(4j(®))) = f(Amax(@1)) = f(Amin(@1));

o

while max;(f uj(w)) obtains its minimum at
Wopt = W2,

and

min mjax(f(uj(w))) = fumax(@2)) = f(pmin(@2)).

4. Numerical experiments

In this section, we perform PMHSS iteration method, PMHSS preconditioned GMRES method, HSS-like iteration
method [5] and HSS-like preconditioned GMRES method [5] to solve the linear systems arising from two fractional
nonlinear Schrédinger equations. We compare the numerical performance of these methods in terms of the number of
iterations (denoted by ‘IT’) and elapsed CPU time (denoted by ‘CPU’). In this section, the theoretical optimal parameter
of PMHSS iteration method (denoted by ‘wq’) is calculated by Theorem 3.1. In addition, the experimental optimal
parameters of PMHSS iteration method which minimize the iterative counters, (denoted by ‘@*’) is sought in (0, 3] with
step size 0.1 while the experimental optimal parameters of HSS-like iteration method (denoted by ‘@*’) is sought in the
interval (0, 1] with the step size 0.001. In PMHSS preconditioned GMRES method (denoted by ‘PMHSS-GMRES’), we fix
w = 1 in PMHSS preconditioner F(w). In HSS-like preconditioned GMRES method (denoted by ‘HSS-like-GMRES’), the
preconditioner is defined in [5] as

1 ~ ~ .
Phss-like = ﬁ(al + T)al +D+il),

with the experimental optimal parameters.

In all numerical experiments, the initial vector is set to be the zero vector and the iterations are terminated if the
current iterations satisfy ||ri|l2/|Irollz < 107%, where ry is the residual vector of the kth iteration and r is the initial
residual vector. In all the tested methods, we solve the Toeplitz linear systems by preconditioned CG method with Tony
Chan'’s preconditioner in [24].

Example 4.1. Lety =1, p=2, =0, 1 <a <?2.
ity + (—A)fu+2Mufu=0 —20<x<20, 0<t<2, (4.1)
subjected to the initial boundary value conditions

u(x, 0) = sech(x) - e**, u(—20, t) = u(20, t) = 0. (4.2)
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Fig. 1. The curves of IT versus @ for PMHSS iteration method when « = 1.2 (left) and « = 1.7 (right) for Example 4.1 when m = 800.

Table 1

The optimal parameters in Example 4.1 when o = 1.2.
m 800 1600 3200 6400
Wopt 1.025 1.025 1.025 1.025
w* [0.8, 0.9] [0.8, 0.9] [0.8,1.1] [0.8, 1.1]
@* 0.007 0.006 0.004 0.003

Table 2

The optimal parameters in Example 4.1 when o = 1.7.

m 800 1600 3200 6400
Wopt 1.025 1.025 1.025 1.025
w* [0.8,1.0] [0.8,1.0] [0.8,1.0] 0.8
o* 0.01 0.009 0.008 0.007

In Fig. 1, we plot the curves of the iterative counters of PMHSS iteration method versus different w when the number
of the spatial discrete points m is 800. The blue star labels the iterative counter of PMHSS with the wop theoretical optimal
parameter calculated by the formula in Theorem 3.1; The dotted line labels the iterative counters of PMHSS with the w
in different test points. The plot demonstrates that PMHSS iteration method with wq,c uses a few more iterations than
that with experimental optimal parameter w*.

In Tables 1 and 2, we list the theoretical optimal parameters, experimental optimal parameters for PMHSS iteration
method and the experimental optimal parameters for HSS-like iteration method for the linear systems with different
scales. The optimal parameters calculated in Theorem 3.1 are very close to or included in the intervals contain the
experimental optimal parameters. The optimal parameters of PMHSS iteration method are close to 1 while that of HSS-
like iteration method are tend to O with the refined mesh. It indicates that w = 1 should be a good estimator of optimal
parameters in practical choice. In addition, both wep: and w* are independent of not only the scale of the problems but
also the fractional differential order «.

In Fig. 2, we plot the curves of the spectral radius p(L{w)) of iteration matrix and the upper bound & (w) for versus
o in the case of different fractional differential parameters «. It demonstrates that 6 (w) approximates p(L(w)) closely,
especially when @ > 1. Therefore, wop; which minimizes &(w) is a reliable and proper approximation for the optimal
parameter to minimizing p(L(w)).

In Tables 3 and 4, the number of iterations and the CPU time are reported for each tested methods when a = 1.2
and 1.7 for Example 4.1. It is shown that the theoretical optimal parameters and experimental optimal parameters yield
the similar performance. The PMHSS iteration method outperforms HSS-like method in terms of both the number of
iterations and the CPU time. PMHSS-GMRES method is more efficient than two iteration methods when o = 1.2. The
PMHSS-GMRES method is the most efficient method. The iterative counters of PMHSS preconditioned GMRES method
and PMHSS iteration method are all independent of either the mesh size or the parameter «.

In Fig. 3, we draw the iteration history of the relative residual for the tested methods for Example 4.1 with m = 800,
when @ = 1.2 and 1.7 respectively. It is clear that, preconditioned GMRES methods with PMHSS preconditioner is the
fastest method among all the tested method. The curves of PMHSS iteration methods with parameters wop and o* are
almost overlapped since they have the similar convergent performance.



Z.-Q. Wang, J.-F. Yin and Q.-Y. Dou / Journal of Computational and Applied Mathematics 367 (2020) 112420 11

1 . . . . . 1 . . . . .
£ = = = The spectral radius of iteration matrix: p(®) £ = = = The spectral radius of iteration matrix: p(®)
© 0.95F ; . . 1 © 0.95 . ) A 1
£ The upper bound of iteration matrix: o(w) £ The upper bound of iteration matrix: o(w)
= c
% 0.9 -% 0.9
9] 9]
= 0.85 = 085}
o [s]
° ©
S 08 S 08f
8 8
g 0.75 g 0.75 |
Q Q.
S 07 S 07r
g 0.65 1 g 0.65 b
(2] N 1] N
2 e
B o6} 1 ® osf 1
I ®
g 0.55 1 g 0.55 b
% 0 5 L L L L L % 0 5 L L L L L

o 0.5 1 15 2 2.5 3 o 0.5 1 15 2 25 3

parameter o parameter ®

Fig. 2. The spectral radius p(L(w)) of iteration matrix and the upper bound 6(w) for different v when o = 1.2 (left) and o« = 1.7 (right) for
Example 4.1.

Table 3
Numerical results for Example 4.1 when o = 1.2.
m 800 1600 3200 6400
IT CPU IT CPU IT CPU IT CPU
PMHSS(wopt) 34 4.44e—1 34 1.11 34 4.11 35 1.54e+1
PMHSS(w™*) 33 4,08e—1 33 1.08 34 4.18 35 1.53e+1
HSS-like(@*) 127 1.97 165 7.45 216 4.06e+1 280 2.01e+2
PMHSS-GMRES 13 1.96e—1 13 4.65e—1 13 1.89 13 5.99
HSS-like-GMRES 36 4.88e—1 39 4.22 44 7.24e+1 50 7.19e+2
Table 4
Numerical results for Example 4.1 when o = 1.7.
m 800 1600 3200 6400
IT CPU IT CPU IT CPU IT CPU
PMHSS(wopt) 33 4.38e—1 33 1.15 33 4.18 34 1.50e+1
PMHSS(w™) 33 5.20e—1 33 1.16 33 422 33 1.45e+1
HSS-like(@*) 256 4.05 278 1.33e+1 303 5.77e+1 357 2.54e+42
PMHSS-GMRES 15 2.22e—1 15 5.90e—1 15 1.97 15 6.61
HSS-like-GMRES 50 7.03e—1 51 1.83 53 1.99e+1 56 3.33e+42

Example 4.2. For the following coupled system withy =1, p=2, =1, 1 <a < 2.

i 4+ (—A)7u + 2(Ju)? + [v/2u = 0,
ive + (—A)2v + 2(Jv)? + [u/*)v = 0,

we take the initial boundary value conditions of the form

u(x, 0) = sech(x + 1) - exp(2ix), v(x,0) = sech(x — 1) - exp(—2ix),
u(—20,t) =u(20,t) =0, v(—20,t) =v(20,t)=0.

This is a coupled fractional nonlinear Schrédinger equations. In every temporal step, we solve two Toeplitz-like system
of equations. In Table 5, we report the theoretical optimal parameters and the experimental optimal parameters of the
PMHSS iteration method, as well as the experimental optimal parameters of the HSS-like iteration method when o = 1.2
and 1.7 for Example 4.2. w, and is the parameter for the linear system of u while w, is the parameter for linear system
of v.

It is observed that the optimal parameters of the PMHSS iteration method are nearly around 1, which are independent
of the mesh size. This is similar with the result in Example 4.1. On the other hand, the experimental optimal parameters
of the HSS-like iteration method is very small, which is independent of not only the mesh size, but also the fractional
differential parameter «. In Tables 6 and 7, numerical results including in the number of iteration steps and the CPU time
are reported for the tested methods.

—20<x<20,0<t<2, (4.3)

(4.4)
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Fig. 3. The curves of the relative residual versus the iteration steps for Example 4.1 when « = 1.2 (left) and o = 1.7 (right).

Table 5
The optimal parameters for Example 4.2.
o 1.2 1.7
m 1600 3200 6400 1600 3200 6400
Dopt wy 1.0135 1.0135 1.0135 1.0135 1.0135 1.0135
Wy 1.0276 1.0276 1.0276 1.0279 1.0279 1.0279
o wy [0.7, 0.9] [0.6, 0.9] [0.7, 1.0] [0.6, 1.0] [0.7, 1.0] [0.7, 0.9]
Wy [0.7, 0.9] [0.6, 0.9] [0.7, 1.0] [0.6, 1.0] [0.7, 1.0] [0.7, 0.9]
P wy 0.006 0.004 0.003 0.009 0.008 0.007
Wy 0.006 0.004 0.003 0.009 0.008 0.007
Table 6
Numerical results for Example 4.2 when o = 1.2.
m 1600 3200 6400 12800
IT CPU IT CPU IT CPU IT CPU
PMHSS(wopt) 33 2.62 33 8.48 34 3.23e+1 35 1.08e+2
PMHSS(w™*) 32 242 33 8.65 34 3.23e+1 35 1.05e+2
HSS-like(&*) 166 1.81e+1 224* 9.05e+1 289* 4.37e+2 414 1.49e+3
PMHSS-GMRES 13 1.02 13 3.63 13 1.23e+1 13 3.92e+1
HSS-like-GMRES 11 7.28e—1 11 2.72 11 1.04e+1 11 2.63e+1
Table 7
Numerical results for Example 4.2 when o = 1.7.
m 1600 3200 6400 12800
IT CPU IT CPU IT CPU IT CPU
PMHSS(wopt) 32 2.65 32 8.81 33 3.15e+1 33 9.66e+1
PMHSS(w*) 32 2.52 32 8.83 32 3.04e+1 33 9.96e+1
HSS-like(&*) 281* 3.25e+1 308* 1.26e+2 340* 5.26e+2 397* 1.38e+3
PMHSS-GMRES 15 1.28 15 4.29 15 1.53e+1 15 4.68e+1
HSS-like-GMRES 15 1.08 15 3.88 15 3.38e+1 15 3.62e+2

According to the listed data in Tables 6 and 7, HSS-like preconditioned GMRES method is the fastest method when
a = 1.2, while PMHSS preconditioned GMRES method is the fastest one for large scale problems when o = 1.7. For
all listed methods, we report only one value of IT in each case, even though we solve two linear systems of equations
with u and v. Actually, except for HSS-like iteration, all the methods find the satisfactory u and v in the same numbers
of iterative steps. However, the iterative counter of HSS-like for solving u are a slight different with that for solving
v. We label * on the corresponding data. A notable phenomenon is that even with the similar numbers of iterative
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steps, HSS-like preconditioned GMRES method takes much more CPU time than PMHSS preconditioned GMRES method,
especially, when m = 6400 or m = 12800 and o = 1.7. The primary reason is HSS-like method contains complex
value arithmetics, therefore, it generates the complex sequence. The operation of complex value arithmetics is much
more expensive than that of real value arithmetics. In every iteration, HSS-like preconditioned GMRES method solves a
linear system with @I + T. Even though the coefficient matrix is symmetric positive definite, the right hand side vector
is complex. The complex version preconditioned CG method is performed. Thus when the problem size becomes larger,
the complex arithmetics in preconditioned GMRES method with HSS-like preconditioner are more consuming. Also, the
PMHSS iteration method outperforms HSS-like method considerably in terms of the number of iterations and CPU time.
The PMHSS iteration method is still independently of not only the mesh size but also the fractional differential parameter.

5. Conclusion

A preconditioned modified Hermitian and skew-Hermitian splitting iteration method is proposed for the discrete space
fractional coupled nonlinear Schrédinger equations by taking advantage of the Toeplitz structure of the coefficient matrix.
We characterize the optimal parameters for the iteration scheme by writing the upper bound of the spectral radius
piecewise explicitly. The numerical experiments show that the achieved parameter is very close to the optimal parameter
for minimizing the spectral radius. The iteration method yields an efficient preconditioner also. Both PMHSS iteration
method and the PMHSS preconditioned GMRES method are effective and efficient for solving the Toeplitz-like complex
linear system arising from the discrete space fractional nonlinear Schrédinger equations. The numerical results indicate
that the convergence of these methods are independent of both the mesh size of the discretization and the fractional
differential parameter.
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