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Abstract

The method of the fundamental solutions (MFS) is used to construct an approximate solution for a
partial differential equation in a bounded domain. It is demonstrated by combining the fundamental
solutions shifted to the points outside the domain and determining the coefficients of the linear sum
to satisfy the boundary condition on the finite points of the boundary. In this paper, the existence of
the approximate solution by the MFS for the Neumann problems of the modified Helmholtz equation
in disk domains is rigorously demonstrated. We reveal the sufficient condition of the existence of
the approximate solution. Applying the Green formula to the Neumann problem of the modified
Helmholtz equation, we bound the error between the approximate solution and exact solution into
the difference of the function of the boundary condition and the normal derivative of the approximate
solution by boundary integrations. Using this estimate of the error, we show the convergence of the
approximate solution by the MFS to the exact solution with exponential order, that is, N2a™ order,
where a is a positive constant less than one and N is the number of collocation points. Furthermore,
it is demonstrated that the error tends to 0 in exponential order in the numerical simulations with
increasing number of collocation points V.

Key words: Method of fundamental solutions, Neumann problems of the modified Helmholtz
equation, Numerical analysis, Error analysis
AMS subject classifications. 65N12, 65N35, 65N80

1. Introduction

The method of fundamental solutions (MFS), also known as the charge simulation method, is used
to construct an approximate solution for a partial differential equation in a bounded domain. It is based
on combining the shifted fundamental solutions of the partial differential equation and controlling the
coefficients of the linear sum of the fundamental solutions to satisfy the boundary condition on the
finite points of the boundary. More precisely, the approximate solution by the MFS is constructed by
the following procedure. The points outside the domain, called the charge points, are first introduced
and, thereafter, the fundamental solutions for the partial differential equation are shifted to each charge
point. This renders the singular point of each fundamental solution laid outside the domain. If the
differential operator of the equation is invariant to the shift, the approximate solution is given by
the linear sum of the shifted fundamental solutions. Next, a number of points on the boundary of
the domain, called the collocation points, greater than or equal to the number of charge points are
prepared. The coefficients of the linear sum of the fundamental solutions are determined to satisfy
the boundary condition on the finite collocation points. As the number of collocation points increases,
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the approximate solution possesses more points to satisfy the boundary condition. As a result, we can
construct the approximate solution, which is expected to converge to the exact solution for the partial
differential equation if the number of collocation points increases.

The arrangement of both charge and collocation points generally depends on the shape of the
domains. The conditions of these arrangements have been studied mathematically. There are several
ways to determine the coefficients of the linear sum of the fundamental solutions, for example, the
collocation method [7, 8, 11, 15], the collocation Trefftz method [13], and the hyperinterpolation
method [12]. The relationship between the coefficients of the linear sums in the MFS and the Trefftz
method for the Laplace equation in disk domain is addressed in [3]. From the analytical studies, it has
also been reported that the approximate solutions by the MFS for some partial differential equations
converge to the exact solutions with exponential order with respect to the number of the collocation
points [7, 8, 15]. Most results for the convergence of the approximate solution in the MFS are for
the Dirichlet boundary problems. The convergence results of the approximate solution by the MFS
for the Dirichlet boundary problem of the Laplace equation have been shown in the disk domain,
Jordan regions with analytic boundary, and the doubly connected regions in [7, 8, 15], respectively.
The convergence results for the Dirichlet boundary problem of the Helmholtz equation in the disk
domain and other analytic domains have been reported in [1]. The numerical simulations of the MFS
for Dirichlet problems of the Laplace and Helmholtz equations in the exterior region around one or two
cylinders have been performed in [2, 4]. The convergence results for the Dirichlet boundary problem
of the modified Helmholtz equation in the disk domain and sphere domain have been reported in
[11, 12]. For the Neumann boundary problem of the Laplace equation, the convergence result of the
approximate solution by the MFS has been reported in the simply connected domain except for disk
domains [13]. According to these earlier studies of the MFS, the approximate solutions are often
constructed in the disk domain, and thereafter the results are extended to the general shape of the
domain.

As an application of the Neumann boundary problem of the modified Helmholtz equation, its
solution is used to investigate the interactions between the domain shape and the motion of the inside
traveling spot and standing pulse solution of a reaction diffusion system [5]. The traveling spots and
the standing pulse are the solutions that allow spatially localized patterns to propagate. They are
often observed in reaction diffusion systems. The influence of the shape of the domain on the motion
of the inside traveling spots and the standing pulse is analyzed by deriving the equation of motion
[5]. However, this theory requires the explicit form of the solution of the modified Helmholtz equation
to be obtained with the Neumann boundary condition for the various domain shapes. Although the
existence of the solution of this modified Helmholtz equation is simply shown, the explicit form of the
solution has not been obtained except for domains with certain shapes.

In light of this background, we construct the approximate solution for the Neumann problem of the
modified Helmholtz equation, particularly in the disk domain, by using the MFS with a collocation
method as a quick step. We employ the collocation method to construct the approximate solution
in the MFS. Estimating the ratio of the modified Bessel functions of the first and second kinds, we
reveal the sufficient condition that all eigenvalues of the matrix generated by the MFS are not equal
to zero. This gives us the existence of the unique approximate solution by the MFS for this problem.
Moreover, we provide an algorithm to calculate the error bound between this approximate solution in
the MF'S and the exact solution found by the energy method. Using this error bound, we show a priori
that the approximate solution converges to the exact solution in exponential order, that is, N2a’V with
0 < a < 1 and the number of collocation points N. Furthermore, through numerical simulation, we
demonstrate a posteriori that the error tends to 0 in exponential order as the number of collocation
points NN increases.

This paper is organized as follows: In Section 2, we state the mathematical setting of the Neumann
boundary problem of the modified Helmholtz equation, the MFS with the collocation method, and
the main results. We prove the main results, Theorems 2.4 and 2.5, in Section 3, and Sections 5 and
6, respectively. In Section 4, we describe the algorithm used to calculate the error bound for this
approximate solution in the MFS. In Section 7, we present the result of the numerical simulations, and
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Figure 1: (a) Schematic of the domain €, position of the pulse P, the charge points {yk}i\’:l, and the collocation points
{xj}?f:l in the collocation method. (b) The profiles of the normal derivative of the exact solution 8g/dn = s, the

approximate solution g /dn, and the error dhy /On on QL in (2.2) with the parameters p = 3, R = 1, P = 0.2¢7/3,

N =6, and ®(r) = e~ *"/\/r with @ = 1.0 and » = |z — P|, where hy is defined in Section 4. The black, gray, and
dashed curves correspond to the profiles of dg/dn, dgn/On, and Ohy /On, respectively.

we summarize our paper in Section 8.

2. Mathematical settings and main results

As explained in Section 1, we consider the following form of the Neumann boundary problem of
the modified Helmholtz equation:

Ag—a’g=0, z€Q,
(2.1) dg

on
where Q := B(0,R) C R? B(0,R) is a disk with a radius R > 0 at the origin, « is a positive
constant, and s = s(z) is a 2m-periodic and sufficiently smooth function. Here we set the notation as
S(0) := s(Re) for 6 € [0,27). A typical example of this equation applied to the pulse motion in the
reaction diffusion systems as introduced in Section 1 is as follows [5]:

s, x €09,

Ag—a?g=0, zeQ,
(22) dg  0%(lz—P|)

=, € 09,

on on *
where P is the fixed point in Q, and ® = ®(r), r = |z| = (27 + 23)/? is a sufficiently smooth function
satisfying ®(r) — e~ *"/y/r as r — oo. The point P corresponds to the position of a pulse as in Fig.
1 (a), and the derivation of this equation can be found in [5].

The existence of the solution of (2.1) is shown by the standard arguments. In this argument 2
may be replaced by the general bounded domain with smooth boundary. Supposing that the function
s is the normal derivative of the trace of some function, say o, and it satisfies do/9n = s, we change
the variable as u = g + o in (2.1). Then we have

Au—a?u=Ac—ad?oc =1, z€qQ,
2.3
23) % =0, x €N

on
We define the weak solution of (2.3) as follows.



Definition 2.1. We say that a function u € H'(2) is a weak solution of (2.3) if

/Vu-Vvd:c+a2/uvdx=—/¢vd:c
Q Q Q

By using the Lax-Milgram theorem we show the existence of a unique weak solution u € H'(Q) of
(2.3). The regularity theory refines that the weak solution u € H'(Q) belongs to C'>°(Q) if ¢ € C*°(Q).
Summarizing the previous results, we have the following proposition.

for all v € HY(Q).

Proposition 2.2. Assume that o € C*°(Q2). Then, there exists a unique solution g € C*(Q) of (2.1).
In particular, in the case of 2 = B(0, R) we have the exact solution of (2.1) as follows.

Proposition 2.3. Let the function in (r,0) € [0,00) x [0,27) be

- I, (ar) ;
10\ n in6
(2.4) g(re”) = E T (ol (aR)ane ,
nez
1
an = — 5(9) —n9qg,
27

where I, (x) is the modified Bessel function of the first kind of n order, and a,, is the Fourier coefficients
for S(0), and it satisfies
0) = Z ane™.

nez
Then g(re'?) satisfies (2.1).

The proof is presented in Appendix A. This exact solution is derived by the typical variable
separation of the Fourier method.

Next, we construct the approximate solution for (2.1) by the method of fundamental solution.
Owing to the operator A — a2, the fundamental solution of (2.1) is written in terms of the modified
Bessel function of the second kind, Ko(c|z|). We take the N points {yj}I_, outside of {2, called the
charge points. As the operator A — o2 is invariant to the shift, the fundamental solutions Ko(a|z —
yel), (k =1,...,N), of which singular points are shifted to the outside of 2, satisfy the principal
equation (2.1). Therefore, we show that

N

(2.5) gn () =" QuKo(o]z — yi|)

k=1

with constants {Q}_, satisfies the principal equation (2.1) in Q. From here, we identify the two-
dimensional Euclid space R? with the complex plane C. We introduce the N points {xj} L, on
the boundary 99, called the collocation points, so that the approximate solution gy (x) satlsﬁes the
boundary condition on the NV points of the boundary. Substituting gy (x) for the boundary condition
of (2.1) and employing {x;}7_; on the 99, we have

(2.6) 0 —gnla ZQ;C —Ko(alr; —yil) = (), (G=1,...,N).

We write (2.6) as a system of linear equations for unknown functions {Qk}szl in a matrix form. By
using K{)(z) = —K(z), we set

a1 = Re (@ /I25]) - )

Ck,j = —CvKl(O(|fL'j _yk‘) |1: _ ykl
J

7

s; = s(x;),



for k,j = 1,..., N, where Re means the real part of complex number, and g, means the complex
conjugate of y,. The form of s; in (2.2) is given by

25 = Re ((@3/l2,1) - P)
|z; — P

sj = —®(|z; — P|) , (j=1,...,N).

This vector is used in the numerical simulation as in Figs. 1, 2 and 3. We define G = {Ck,j}lgk,j§N7
Q=(Q1, - ,Qn)" and S = (s1,---,sn)T. Then (2.6) is equivalent to the following system of linear
equation:

(2.7) GQ=S.

For a solution {Qx}_; of this system (2.7), we obtain an approximate solution gy (z) given by (2.5).

Next, we explain the collocation method. From here, 2 is denoted as a disk again, that is, Q =
B(0, R) with a positive constant R > 0. In the typical collocation method in a disk domain [8], the
charge points and the collocation points are usually set as {yx}1; = {pw*}_,, and as {xj}év:l =
{ij}év:l on 9N in C, respectively, where 0 < R < p, and w = ¢?"/N. These points divide the
circumference of the concentric circles into N equal parts. The schematics are presented in Fig. 1 (a).
Then, calculating that

2y — il = |R = put ),

we have ( s )
. R —Re(pw™ "7
cri = —aKi(a|R — p* i) ———2— 2
k.j 1( | p |) !R_pwk,”
Therefore, using the notation I := —(k — j), we see that ¢; ; = ¢;, and that
0« R— pcosb, 27l
¢ = —aK(a|R—pe V) g =",
l 1( ‘ p ‘)'R—p6_191| l N
Then the matrix G becomes a cyclic matrix described by
C(J Cl oo .. CN71
CN—-1 Cp
G =
C1
Cl .« .. .. .« CO
The eigenvalues of this matrix are calculated by Zf\iﬁl aqw™, m =0,...,N — 1, from the discrete

Fourier transform. The derivation of the eigenvalues of the cyclic matrix is also explained in [9].

By calculating the inverse matrix of G we explicitly obtain the coefficients {Qx}Y_,. We denote
the inverse matrix of G' by G~!. Using the Lagrange interpolation by polynomials as in Appendix B,
we obtain G~'. Setting

N—-1
fz) = Z ax!,
1=0
we write the eigenvalues as
N-1
(2.8) flw™) = chwml, (m=0,...,N—1).
1=0



Furthermore, as G~! is also a cyclic matrix, we define the component of Gt as b, (I =0,...,N —1),
by labeling the index similarly to that of G. Then, we have

b—iNZA; (1=0,...,N—1)
liNm:(]f(OJm)wml’ — Useeey

as computed in Appendix B. If f(w™) # 0 for m = 0,..., N — 1, which implies the matrix G has no
zero eigenvalue, we calculate the coefficients Qj, by

N
(2.9) Qr=>_ sibp1)-
=1

By using this {Qx}Y_,, the approximate solution gy (z) is given by (2.5). Under these settings the
main results are as follows.
Theorem 2.4. Suppose that p > (\/4a2R2 + 6 — 2v4a2R? + 9) /o for any R >0 and a > 0. Then,

we have f(w™) >0 for any N € N, and m =0,..., N — 1. Thus, the approzimate solution gn(zx) is
determined uniquely.

The proof of Theorem 2.4 is given in Section 3. Moreover, using the Green formula as explained
in Section 4, we can estimate the error bound between exact solution and the approximate solution in
H?(Q) by boundary integrations. Applying the Sobolev embedding theorem, we obtain the following
convergence result.

Theorem 2.5. In addition to the hypothesis of Theorem 2./, we assume that g can be extended to the
neighborhood of 0 and, hence, that g is bounded in 0 < r <1y, where some ro > R. Then, there exist
constants C1 > 0 and a with 0 < a < 1 that are independent of N and g such that

sup [g — gn| < C1N*a sup |g(z)|.
e

|z|<ro

Hereafter C;, (j € N), denotes positive constants. The proof of Theorem 2.5 is given in Section 6
with the preparation in Sections 4 and 5.

Remark 2.6. In practice, assuming p > 2R is a simpler and more sufficient condition for Theorem

2.4. As V4a2R2 + 6 — 2v/4a2R2 + 9 < 2aRR for any a, R > 0, the condition of Theorem 2.4 becomes
a little stronger by p > 2R.

Remark 2.7. From the variable separation of the Fourier method, we can construct the exact solution
g(r,8) for the same problem in B(0,7¢) as (2.1), and obtain g(R,#). This implies that the solution g
of (2.1) can be extended to B(0,7¢) if S(8) = 8§/9n(R,d). Thus, the assumption of Theorem 2.5 is
not empty at least.

3. Existence of the approximate solution
In this section we give the proof of Theorem 2.4. We set

Ap =1 +n)Kpii(ap)lnyi(aR), (n€N),

where K, (x) is the modified Bessel function of the second kind of n order. Furthermore, we introduce
the following functions:

d(0) == |R—pe | = V/R2 + p2 — 2Rpcos¥,
R—pcos

R — pcosf
[R — pe=i]

c() = —aKl(a|R—P€7i0|) d(9)

—aK(ad(9))



for # € [0,27). To prove Theorem 2.4 we give the Fourier series expansion of ¢(f), and another
description of the eigenvalues f(w™) for m = 0,..., N — 1 by the Fourier coefficient of ¢() in the
following proposition.

Proposition 3.1. The Fourier series expansion of ¢(0) is given by
1 ~
(3.10) c0) =5 > Ape™?
neZ
where
- = 2R
Ap = Z(A\n 1427 + A\n+1|+2r - 7A|n\+27)7 (Tl € Z)
r=0
Moreover, the eigenvalues of the cyclic matriz G are expressed by
N ~ N -
(3.11) flw™) =% > Anbnimenz = = > Apngm, (m=0,...,N-1),
nez nez
where §,, is the Kronecker Delta.

Proof of Proposition 3.1. We utilize the following formulas of the modified Bessel function of the second
kind, and the Gegenbauer polynomial [17, p365]:

KV(d(e v - m+l/(p) IHL+7/ (R) v
L = 2V (v) Z o i Cy (cos®), (p>R),

m=0

Cl (cos®) Zcos (2r —m)é

r=0

for 6 € [0,27), where v € N, I'(v) is the Gamma function, C,(x) is the Gegenbauer polynomial of m
order. Here we compute that

m m m

C} (cos ) Zcoa m)l = Z etZr—m)f — Z e'r?.

r=0 r=0 r=—m,r—me27Z
We deal with the specialization to v = 1:

aKy(ad(0) 2 > 1
e R—me:OAmCm(cos 0).



Putting the modified Bessel functions and the Gegenbauer polynomial into ¢(), we compute as

c(0) = (pcosf — R)w
2 o0
= —(pcosf — R) Z A CL (cos )
Rp m=0
2 > o .
(pcost — R) Z Anm Z em?
Rp m=0 n——m,n—mEQZ

pcosH R) Z Z A

n€Z m=|n|,m—n€2Z

pcos@ R) ZZA\"H?’"G né

n€eZ r=0

1, . . .
_ E(ew + 6719 _ 7) ZZAWH%@MH

nezZ r=0

1 > ) 9B
— E Z ZAln‘+2T(ei(n+1)0 + et(nfl)G o 76”10)

neZ r=0 p

2R
n Z Z(A|” 1427 + A|77+1H—2r - 7A\n|+gr) zne.
nEZr 0

So we put
oo
P 2R
A" = Z(A\n 1427 + A\n+1|+27 - 7A|n\+27“)
r=0 p
Then the Fourier series expansion of ¢(6) is given by
_ l ZA 6i710
) o Lel
nez

We see that A,n = fln for n € Z. Then we obtain that

y - 2R
(312) An = Z(An71+2r + An+1+27‘ - 7An+2r)
r=0
if n € N, and that
_ 2R
AO = Z(2A1+27‘ - 71427-)-
r=0



Substituting (3.10) into (2.8), we have

2

fm) = 3 el

ol
LS

E Apw™w™

0 nez

E Z A Z w(ner)]
neZ

- % Z An5n+7n€NZ

==

<.
Il

O

From the expression (3.11), we show the positivity of f(w”™) with m = 0,...,N — 1. As the
preparations of the proof of Theorem 2.4, we will show the following lemmas.

Lemma 3.2. Assume that x > \/4y2 +6—2/4y*+9 and 0 <y < x for x,y € R. Then

yl+nlha(y) K. i(x)
sup =
neNT 1N L(y) Knu(z)

Therefore, replacing r = ap and y = aR, we have

<1.

R A,
3.13 su <1
( ) rLEg P An 1

Proof of Lemma 3.2. We use the following inequalities: By referring to ([10, Theorem 1.2]), we have
K, (x) LY + V2 + z?

0 R
Ky (1) y v (>0, veR),
and from ([16, Theorem 3]), we see that
Il/+i (y) y
3.14 0< 2 < , >0, v>0
(3.14) T eyt )

Using (3.14), we have for y > 0

I (y)

Yy
L) 12+ 12

Thus, we calculate that

Y Lt+n L1 (y) Knii(z)
x n  IL((y) Ku(z)

<yn+1 Yy n+14+/(n+1)%2422
Tn (n+1/2)+/(n+1/2)? +y? T
2 1 1 1)2 + 22
) ntl ntisGER

= n (n4+1/2)+/(n+1/2)2 +2



Regarding the sequence (n + 1+ +/(n+1)2+22)/((n+ 1/2) + 1/(n + 1/2)? + y2) as the function of
n € R and calculating the derivative, we see that the sequences, and (n 4 1)/n are monotonically
decreasing with respect to n. Thus, (3.15) attains the maximum value when n = 1, thereby estimating

that

g1+n1n+1(y)Kn+1($)<@2"'\/4‘”32 _ VP +9-3
x on Ly Kulw) ~ 2?2 349+42 Vat+d-2

Solving the inequality with respect to x so that (y/4y%> 4+ 9 — 3)/(vVa? + 4 — 2) < 1, we have

x> \/4y2 +6 —2/4y2 + 9.
Therefore the statement of this lemma is shown, and by substituting * = ap and y = aR, we have

(3.13) when p > (\/4a2R2 16— 2VAa2R? + 9) Ja. O

Remark 3.3. The inequality = > \/ 4y? 4+ 6 — 24/4y> + 9 is equivalent to

(3.16) Va2 +4> /42 +9—1.
We may check the condition of Lemma 3.2 by using this inequality.

Remark 3.4. Assuming that x > 2y implies that (3.16). Thus, in practical way, we take the charge
points with p > 2R using the MFS. Furthermore, assuming that (3.16) for ,y > 0 implies that = > y.
The only condition (3.16) is sufficient for Lemma 3.2.

Next, we show RA,/(pAnt1) <1 for n € {0} UN in the following lemma.
Lemma 3.5. For any z,y € R with 0 <y < x and n € N, we have

y n  IL(y) K, (z)

= <1
rn+111(y) Koyi(z)

Therefore, replacing x = ap and y = aR, we have the inequality
R A,
p Ant1

(3.17) <1, (ne{0}UN).

Proof of Lemma 3.5. We use the following inequalities: Referring to ([16, Theorem 6]), we see that
1 Ky(z) < 1 (
v Ky () — (0 +1/2) + /(v —1/2)2 + 22

and from ([10, Theorem 1.1]), we have

1
. >
(3.18) x>0, v 2),

Lialy) _v+Vri+y?
< .
1,(y) y
By using (3.18) and (3.19), for any n € N we have
y n Iy Kn(z)
rn+11,41(y) Knya()
Ly_n n+14+(n+1)2+4y2 x
rn+1 y (n+1/2) 4+ /(n—1/2)% + 22
n n+14+/(n+1)2+y?
n+1l(n+1/2)4++/(n—1/2)2 + 22

S (2, Y)-

(3.19) (y>0, v>0).

10



We denote the above sequence of n by {n,(z,y)},. We fix y > 0. Since 1, (z,y) is the monotonically
decreasing sequence with respect to x for x > y, we show that 7, (y,y) < 1. We have that
_2+4pn

2+ qn’

(Y, y)

where
2

Pn

(Vo+ 12+ -+ 1) = .

(n+ 12+ (n+ 1)y/ln + 12 4y
_1 n— 2 2—(n— = v
0= (VTP 7 = (0= 1/) = o s

Comparing the denominators of p, and ¢,, we see that ¢, > p, for any n € N. It yields that
Nn(z,y) < 1 for any = and y with 0 < y < x, and then RA, /pA,+1 < 1. O

:n+1

We show the following lower boundedness.

Lemma 3.6. Assume that p > (\/4a2R2 +6 — 2v4a2R? + 9)/a for any R > 0 and a > 0 defined
in (2.1). Then we have

2R
(3.20) Ap1+ Apyr — 714” >0, (neN),
and
(3.21) A, >0, (nezn).

Proof of Lemma 3.6. Replacing x = ap and y = aR and utilizing Lemma 3.2 and 3.5, for p >

(\/4a2R2 +6 — 2v4a2R? + 9) /o and n € N we have

R R
Anfl > *A'ru An+l > *An
P P
Therefore, for any n € N we have
2R
Ap1+ A1 — 714” > 0,

which implies (3.20). Owing to (3.20) we have

- s 2R
Ap = Z(A|n—1|+2r + Apgarer — 7‘4\71|+2r) >0

=0

in the case of n # 0. Since
2R
2441 — —A, >0, (ne{0}UN)
p

from (3.17), we see that

[ee]

< 2R
Ap = (24149, — 7Agr) > 0.
r=0
Summarizing above, we have (3.21). O

Now we show the proof of Theorem 2.4.

Proof of Theorem 2.4. From (3.21), we have A,, > 0 for any n € Z. Thus, from (3.11) we compute
that

m N 1
f(w ):EZAnN+m>O
nez
for m =0,..., N — 1. This implies the assertion of Theorem 2.4. O
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4. Energy method for the error

In this section, we provides the algorithm to calculate the error bound for this approximate solution
by the energy method. By using the MFS, we have constructed the approximate solution (2.5), which
satisfies the boundary condition on the finite N collocation points of 9. Set the error function as

hy(z) = g(x) — gn ().
We note that this term means the error between the solution g and the approximate solution gy. As
both g and gy satisfy the principal equation of (2.1), by substituting hy for the equation and the
boundary condition of (2.1), we have
AhN—OéZhNZO xEQ,

(4'22) 8hN 8gN

To estimate the error bound, we perform a priori estimate. First we show the following lemmas.
Lemma 4.1. Let Q C R? be B(0,R) and u € H'(Q). Then, the trace u|pq can be interpreted as a
function in L?(0Q) satisfying
(4.23) [ull 250y < Callullgrq)
where Cq := (1 +2/R).

The proof is put in the Appendix C.
Lemma 4.2. Suppose that Q = B(0,R), and u € H?(Q) satisfies Au = o*u in Q. Then we have

CQ 8u
||UHH1(Q) < Cio n

L2(00)
where Cy := min{1, a2}

Proof of Lemma 4.2. Multiplying Au = o?u by u and using the Green formula, we have

ou
a2Hu||%z(Q) :/“uAuda: = 8—udl HVUHQLQ(Q).
Then we obtain that
Collulls gy < IVl + a®Nulagey = [ Sudt
2M|UllE () = [V UIL2(0) T @ [UlL2() = 0 an tah

where Cy = min{1,a?}. Schwarz inequality and the trace operator yields that

—dl

o O Han ||UHL2(BQ)

L2(09)
ou

[ull 1
on 12(0Q) @
ou 2
on

< Cq

< G
— 20,

Cy
+ 5 ”uHHl(Q)a
L2(59)

where Cq = (1 + 2/R)'/? is a positive constant specified from the trace operator in  as shown in
Lemma 4.1. Finally, we see that

ou ||
on

HUH?P(Q) > :
L2(890)

12



Next, we show following lemmas.

Lemma 4.3. Suppose that Q C R? is an arbitrary domain, and v € H*(QY). Then we have

||U||%Iz(9) < ||UH%11(Q) + ||umH%I1(Q) + HuyH?ﬁll(ﬂ)'
Proof of Lemma 4.3. We recall the definition of the norm
1/2

lullgm@y = | D 10%llia@y |

la|<m
where « is the multi-index and m € N. We see that
[l a0y = NuzelZ2 g0y + gyl 22y + luayllTe @) + 11 Vall72@) + lullZ2 (),
and

||U||ip(9) + ||Uw||i11(sz) + ||uy||i11(sz)

= ||Ua:z||%2(n) + ||Uyy||%2(n) + 2||Ua:y||%2(n) + 2||VU||%2(Q) + ||U||%2(sz)-

Lemma 4.4. Suppose that Q = B(0, R), and u € H3(Q) satisfies Au = ou in Q. Then we have

2
L2(09) } 7

Ouy

on

2 n Ouy
on

Ju
JulBiaqey < Cs {Han

2
L2(89) L2(89) .
where Cs := C3/C3.
Proof of Lemma 4.4. Applying Lemma 4.2 to u, u, and u,, we have

2

p ou
lullfr 0y < Ca || 5~ :
a on L2(09)

Ouy 2
[l 0y < Ca ;
) on L2(99)

ou, ||*
[yl @) < Cs || 52 :
7@ on L2(09)

Combining these inequalities and Lemma 4.3, we have the assertion of this lemma.

2
L2(aQ)> .

Applying Lemma 4.4 to hy in (4.22), we obtain that

Ohn

p ? Oy .
(4.24) 1PN 20y < Cs o +

2
e e
on

on

L2(09) L2(09)

As the function s is given, the error in H?(f2) is given by these boundary integrations. Eventually, the

Sobolev embedding theorem yields that the error hx belonging to C(Q2) can be bounded by (4.24).

Remark 4.5. If the exact value of Cq, is obtained in the general Jordan domain with smooth boundary,
the above algorithm for the error to calculate can be extended in the general Jordan domain with

smooth boundary.

13



5. Estimates of the Fourier coefficients

From the algorithm in previous section the error bound between the exact solution g and the
approximate solution gy in H?(Q) is given by the boundary integrations. In this section we will
prepare some lemmas before the proof of Theorem 2.5.

5.1. Upper and lower bounds of the Fourier coefficient A,,

First, we will estimate the upper and lower bounds of the Fourier coefficient A,, for ¢(f). We use
the following inequality [6]:

anlr —x 2n711'\
$<Kn(x)<&, (x>0, neN).

x xm

Also the integration form of the modified Bessel function of the first kind

I(2) = Tn ﬁ;g;(l/?) [1e—zt(1 — )" 3dt, (n e {0}UN)

yields that

2)"e”Y 2)"eY
Wiarer ) W2
n! n!
Combining these inequalities, we have
1 7R\ n+1 1 7R\ n+1
(5.25) 5(f) e PtR) - 4 < 5(7) R (n e {0} UN).
p P

We show the following the formulas and the lower bounds.

Lemma 5.1.

(5.26) A, =A ., (nez),
> Anin =) An_n, (neZ).
IEZ ez

Proof of Lemma 5.1. We compute that

ZA1N+71 ~, ZAleJrn = ZAlerw

ez lEZ lEZ
We changed the variable as I = —[ in the first equation, and used (5.26) in the second equation. [

Lemma 5.2. Under the assumption of Theorem 2.4, there exist a positive constant Cy independent of
N such that

~ R\ Inl
. > —
(5.27) An_04(p) , (nez),
and
- R\ min{N—-n,n}
(5.28) ZAlNJ,_n > 04(7> , (0 <n< N),
l€Z P
and
- R\ %
(5.29) ZA[N+n > 04(5) R (n S N)

I€Z

14



Proof of Lemma 5.2. We compute A,, downward. Owing to (5.26), we firstly estimate A, for n e N.
From (3.12), (3.13), (3.17) and (5.25) we compute that

o]

i 2R
Ay = Z(An71+27' + An+1+27” - 7An+2r)
r=0

— R R
= Z(An71+2r - *An+2r) + Z(An+l+2r - *An+27’)
r=0 p r=0 p

> An—l - E14n
1%

= Ana (1 B %Af:)
> CsAp—1
Cse*‘;(erR) (g)n’

>

where

. R A"l
Cs := Imf (1 ) A,,,,,1>
=1-su R Ay
nellgl P An—l '

From (3.13) we see that Cs > 0. Due to Ay > 0 from (3.21), setting a positive constant as
Cre—(p+R)
04 ‘= min {5627140} s

we have (5.27). Next, we compute ), , AU\H_” for 0 <n < N as follows. Utilizing (5.27), we obtain
that

0
ZA1N+n > Z ANy

leZ l=—1

=a((5) 7+ ()
. C4(§)min{N7n,n}

I

which implies (5.28).
Finally, since the left hand side of (5.29) is invariant for n = m (mod N) for m € Z, we show (5.29)
in0<n< N. Dueto2min{N —n,n} <N in0<n <N, (5.28) yields that (5.29). O

Next, we show the upper bounds.

Lemma 5.3. There exist positive constants Cg and Cr independent of N such that

. Ry Inl
(5.30) A, < 06(;) . (new),
and
- N—n
(5.31) 3" A < 2@(%) . (0<n<N).
1£0



Proof of Lemma 5.3. From (5.26), we estimate A,, for n € N using (3.12) and (5.25) as follows:

_ 2R
An = Z(An—1+2r + An+1+2'r' - 7An+27')
r=0
< Z(An—1+2r + An+1+2'r)
r=0

aR

<TG

eaR / n—1 n+1
- 7%((%) + (%) ’ )

eaR n
-G w80
~a(3)"

where Cg := (e2%/2)(p* + R?)/(p?> — R?) = (e“%/2)(1 + R?/p*)(1 — R?/p?)~". Next, we calculate Ay
upward. Applying (5.25), we compute that

oo

- 2R
Ap = Z(2A1+2r Y 7A2r)

r=0

<2 Z A1+2,,«

r=0

RN 2+2r
< (7) eaR
o\ P

R\2 1

_ ,aR (Y
- <p) 1— (R/p)?
6QR R2

p? — R?
B e 2R?
2 p2—R?
< Cs.

r=

Therefore, by using the symmetry (5.26), we obtain (5.30). We compute ., AjN4n upward as
follows. Since

Z Ainyn = Z Ainn + Z Ay
=1 =1

10 l

for n € N, we calculate the two terms, respectively. For the first term applying (5.30) for n € {0} UN,

16



we calculate that

oo [ee]

3 Ainin < Co ; (%
=G <§)n 1 ER(/}%O/)Z)N
< oﬁﬁ(g)mn
()

)lN+n

where C7 := Cgp/(p — R). Since IN —n > 0 for [ € N and any 0 <n < N, by using (5.30) we have

iﬁmﬂ <C i (%)ZN_R
=1

=1

Ry= (R/p)Y
:CG(p) 1—(15/,;)N
<C7(§)N7".

Therefore,

> A < (D) (()+ (5) )

120 p p

- 207(§>N7n

5.2. Upper bound of the Fourier coefficient a,
We define the norm as

l9llcr, == sup [g(z)],
|z|<ro
and the sequence as
In|\ /R InI
32 - (1 —)(—) , 7).
(5.32) © « +aR o (nez)

We show the following lemma.

Lemma 5.4. Under the assumption of Theorem 2.5, we have

ol \ ( Ry
(5.33) 1l < Gl = 2 (1 0 5) () N9llsry - (n € 2.

Proof of Lemma 5.4. We refer to [14] for

and to [10] for




(2.4) yields that
I, (ar) I

0\ —inb
) 4, = 1 df.
ol (aR) ™ "2 | 9re)e

From the assumption of Theorem 2.5 the function g can be extended to the neighborhood of Q, B(0,r¢)
with ro > R. Thus, we have

_|edp(eR) 1 [T 0y, —ind
ol =y 37 | 00
ol (aR)
<

S m ||9||00,r0
_aly(aR) I (aR) ol
= Ta(aro) In(aR) "em
Va2?R2 +n2 f R\"
<a—————(—) gl
aR T oo

aR+n /s R\"
< -
e OCR ( ) ||gHoo,7’()

=a(14 ) () Mgl (1€ 0} UN).

To

Due to |a—n| = |an| for n € Z we have

I

ol <a(1+ 2D () ol men),

5.8. Symmetries and upper bounds of v,

First, we show the following lemma.

Lemma 5.5.

(5.34) on=tp-n, (n€Z),
D @Niin = > @Nin, (n€).
IEZ I€Z

Proof of Lemma 5.5. From the same calculation as that of Lemma 5.1 we have

Z PIN+n = Z P_IN+n = Z PIN—n-

ez ez 1€z
We changed the variable as | = —[ in the first equation, and used (5.34) in the second equation. [
Next we give the estimation for ¢, in the following lemma.

Lemma 5.6. There exist positive constants Cg and Cg independent of N such that

(5.35) Y @i < aCs,
leZ
and
(5.36) 3 v < acg(l n %) (%)NW’ 0cnen)
1£0



Proof of Lemma 5.6.

[e°]
der=po+2) @
=1

lEZ
:a+2a; (1+%) (%)n

R/TO + R/T‘Q
1—R/rg aR(1—R/rg)?
{ro + R n RS 2roR }
ro— R aR(ro— R)?
2 2
TH 1 2rg
< ' 4, - =0
- a{ (ro — R)? + aR (rg — R)Q}

:‘“(miiomz(”%)

—a+2a{

where Cg := a(rg/(r0 — R))?(1 + 2/(aR)).
We estimate ¢,, upward as follows. From I[N —n > 0 for [ € N and any 0 < n < N, we calculate
that

Z PIN+n = i PIN+n + i PIN-—n
10 =1 =1

RGN R 0T
<23 (10 G)

) e B

Il
Q
—
Nk
—_

aR/1—(R/ro)N ~ aR (

2ar (1+ QN)(R)N—"

(ro — R)? aR/\ry
2N\ f R\N—n
= a1+ 7) (a) :
where Cy := 2r3/(ro — R)? = 2(1 — R/ro) 2. O

. ) : dgn
5.4. Fourier series expansion of 5
n

Next, set the discrete Fourier transformation for the sampling of NV collocation points as
1 Nl
& e— E —nl
Sp = N 2 S|w s

where we recall s; = s(Re®).



Lemma 5.7. The Fourier series expansion of the normal derivative of the approximate solution gy
on 0N, that is x = Re", is expressed by

ad
(5.37) gN S (Re™) Z f
Moreover,
(5.38) $n = anini, (n€Z).
=

Proof of Lemma 5.7. We perform the Fourier series expansion of normal derivative gy by regarding it
as the function of 99:

T

0 0 -
gN (R 10) _ Qkai 0(a|Rew peZOkD
k=0
N-1
_ R — pcos(f — 0)
- i(0—0x) P k
PR T I =
N-1
= Qrc(0 — O).
k=0

Here from (2.9) we have

N
Qr = Z SI0(—k+1)
=
N N—

1
1 1
N 25 Z mY om(—k+)
=1 m=0 'f w w
N-1 ZZV 816_””91’

N £ wm)

m=0

imek

N—
Z 'LmOk .
On the other hands, using (3.10), we compute that

9 61@) ZA in(60— Gk)

nEZ
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Substituting both, we have the Fourier series expansion of gy /0n|.con as

i

dgn

%(Rew) = Qrc(0 — 0r)

b
1
|
=
L~

ilng
(]
ilng
=
\3/3
=
S

.

S

s

E)

|

2

R

z
L

|
z 3
Dy
3
m
N

S -
Z m Anezn€
= fem)

n=m (mod N)

|
»=z wl= =

3
Il
o

2
L

==

N

[y

| ®

\%:
i

3
I
<)

n £l

n=m (mod N)

m

5n

flwm)

ind

N

==

n€

3
m
N

Next, we compute that

1 4 .
imb; ,—in
= — E ame’" e ¢
=0

_ % Z - Z pilm—n)0;
€

meZ =0
L _5_ am(smfnGNZ

meEL

for n € Z. O

Oh;
5.5. Fourier series expansion of —N, and explicit forms and upper bounds of the L*(0Q) norm

on

Next we give the explicit values of the boundary integrations in the following lemma.

Lemma 5.8. The Fourier series expansion of the normal derivative of the error hy on 02, that is
x = Re', is expressed by

Ohn 0\ _ E S 3 inf
on 1 )‘nz(“" R )¢

(5.39) 5
= (an — Llez TTn %lNJr" fln> e,
ez >tz AiN4n

21



The value and upper bound of ||(’9hN/8nH2Lg(3Q) are given by

~ ~ 2
(an ZleZ,l;éo AlN+n - A, ZleZ,l;ﬁO alN+71,>

oh
H N =27R - 5
L2(6%) nez (ZZGZ AlNJrn)
and
%
4TR L2(09)

5.40 ~ 2 - %
(5.40) 2 (Sienio Aivin) + 42 (Sienvo oven

2
< gl D . g
nez (ZZEZ AlN+n)

)

respectively. Moreover, assuming that the series (5.39) is differentiable term by term, we have

HahNﬁ 2 HBhNy 2
on L2(00) on L2(00)
~ ~ 2
AT n? (an ZleZ,l;éO AiNtn = An ZZGZJ;&O alN+n)
- R Z . 2 ’
neZ,n#0 (Zlelj AlN+n)
and
5] 15
8” L2(09) on L2(09)
(5.41)

. 2 )
2 2 5
< ||g||2 Z n {‘Pn(ZleZ,l;ﬁO AlN+n) +An(zlez’l¢o @lN-Q—n) }
- = - 2 )
nEZ,n#0 (Zlez AZN+n)

The possibility of differentiation term by term to (5.39) will be guaranteed in the proof of Theorem
2.5 below.

Proof of Lemma 5.8. Applying (3.11), (5.33), (5.37) and (5.38), we compute the boundary integration

22



as follows:

h 27 2
Ha N :R/ 50)— 2% (R 0)| s
L2(8%2) on
2T N ~ 2
=R / ane™ — 5T A dg
o |2 T R T
2
N 4, -
_R/ an, - n n eznﬁ do
0 Z:Z< R f(w) )
N 3, +\2
—2rR @n 7 SnAO
(5.42) net flwm)
- 2
— R (an EPYELLEY )

nez ZZEZ AlN+n
- _ 2
an ZleZ,l;ﬁO AlN4n — Ap Zlez,l#o a1N+n)
- 2
= (Zlez A1N+n)
2 A 2 12 2
Pn ( ZleZ,l;ﬁo A1N+n) + An < ZZGZJ;&O SOZN-HL)

<4anR g%, 3 = .
= (Zlez AlN+n)

It implies (5.39) and the assertions with respect to the boundary integration of dhy /On.
Furthermore, changing the variable x = Rcosf and y = Rsinf, we assume that the series of
Ohn/On in (5.39) is differentiable term by term. Then we compute that

%:C?s 88gN)89

on 90 90 on ) ox

_ —sm9( Zﬂan ind zNZ

nez nez 'f

—isinf N & <\ in
= Zn(an—ﬁf(wn)/ln)e o

nEZ

nén, A mo)

1 N 3§ - . .
__a _N 5 i(n+1)6 _ i(n—1)0
n(an R (w”)An>(e ¢ ),

~

and that

20 00 On

:cosé(znan _ﬂz

nez nez
icosf N 5, - .
= n(an _ n)ezna

a/;];y _ (35 B) agN)@

< i@
Anezn )7

flw™)
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Using these calculations and computing boundary integration similarly to (5.42) , we obtain that

2

Hahm 2 N HahN,y
on L2(0Q) on L2(00)
4m 2( N <§7L rt 2
= — n“lap, — =——=A4 )
R = " R flwm) "
47 n? ~ ~ 2
= R Z ﬁ(an Z AiNgn — Ap Z alN'-&-n) .
nEZ,n#0 (ZZGZ A1N+n) 1E€Z,1#£0 1E€Z,140

Therefore, we see that

il 2
871— 8” 2 (89)

SV pp—— Y O S R O R T RPN

nEZ,n£0 (Zlez A1N+n) 17,170 €710

2 L[| @
on

L2(09)

6. Convergence
We will explain the proof of Theorem 2.5 after showing the following Lemma.

Lemma 6.1. There exist positive constants C'ig and C11 independent of N and g such that

2

oh
(6.43) HaN < Crorn gl ry

" |l 2(00)
and

Ohn.o |I? Ohy |7
(6.44) H aN’ +' (,;V"" < CuN?*7yllgll%.,, -
"l L2(00) o lL2(00)

where

nsmma{ ()" e (2)

Proof of Lemma 6.1. Since the error hy in H?(Q) can be bounded by the boundary integrations in
(4.24), we estimate the values of the boundary integrations. From (5.40) we put the bound of the
boundary integration as

Right hand side of (5.40) =: Hg||ic’m (Er + Es).

Furthermore, we divide £y and Es into 3 or 4 parts with respect to n, respectively. Here, we introduce
an integer p as the integer part of N/2, that is, p = [IN/2], where [-] is the Gauss’s symbol. Then, from
Lemma 5.1, and Lemma 5.5, we write F; and Fs as

~ 2 - 2 ~ 2
( Zz;ﬁo AIN) ¥3 P ( Zz;so AlN+n) on > (Zz;ﬁo A1N+n) s
——+2 +2

<ZleZ AlN)z n=1 (ZleZ ‘leN+n)2 n=p+1 (Zzez /leN+n>2
= FE11+E2+ Ei3,

E, =
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and

_ 2 N 2
A%(Zz;ﬁo ‘PZN) ) P A%(Zz;ﬁo <PlN+n)
=——7 S 4
N2 - 2
(Zlez AlN) n=1 (Zlez AlN+n>
. 2 . 2
N A2(Zl IN ) > A2<Z DIN )
n #0 +n n 1£0 FIN+n
+2 ) . 3 > . 2
n=p+1 (ZZEZ AlN+n) n=N+1 (ZIGZ AlN+n>
= Fo1+Es0+ Eo3+ Eyy.

First, we estimate Ej 1 + Ey2/2. For the integer p = [N/2], we see that (N —1)/2 < p < N/2
regardless of even and odd of N. Due ton < N —n for 1 < n < p, applying (5.28) and (5.31), we
compute that

Ei1+ E;’Q _ Zp: (2#0 Ai”*")z‘j%
=0 (Zlez A1N+n)
<) ()T Y ()
< R R ()
40%03 err—of (1 22]3)2(%)%’ (fj > %)

3

IN

22 2
T rmn () Gr=n)

To

22 2 2
4acgo7 2 fmo (1 253)2(R)N’ (% < %)

Setting

RA\N 3 3
Cim o W (E) (B Y
NEN p logp —log R

we obtain that ¥aw RN
N3(—) < cm(f) , (NeN).
P P

Thus, we see that E; 1 + [ /2 converges to 0 in the order of max{(R/p)", N2(R/r¢)N}.
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For F51 + E32/2, by using (5.36) we compute that

Es 5 -
Esq + T = Z —(Z@uwn)

n=0 ( ez A1N+n) 10

e 20) (Y3 (B

2 2 — (7o 2
_ Og‘c?(l + ﬂ) (%) Nll—((r/o}/?%)2

<ot og) () () )
-1 2 N
<=7 (o) ()

Thus, Ea1 + E22/2 converges to 0 in N2(R/ro)" order.
Next, we estimate Ey 3. Since A,, > 0 for any n € Z, and (N — 1)/2 < p < N/2, we compute that

E > (leéo AlN+n) en > 2
Ba_y T g (3 v
n=p+1 (ZlezAlN+7l) n=p+1 n=p+1

(X (+ )
(B (o) o+ p i ]

0‘2<%)N71{(1 % zaNR) 1 R]@i«o)? * % 1 RI/{/OTO)Q }2

- ) G

from (5.32). Therefore, F; 3 converges to 0 in N2(R/rg)™ order.
Next we compute Ey3. From n = p+1,...,N we note that n > N — n, and thus, (R/p)" <

(6.45)

A
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(R/p)N—". Utilizing (5.28), (5.30) and (5.36), we calculate that

N 5
E A2 2
2=y (Y ew)
n=p+1 (ZZGZAIN+n) 1#0
N

1 2n—2N 2n 2N\ 2 2N—2n
> () xaly) e ) ()
nii Ci\p p aR ro

:0‘2252092(14_211\;)2 nz: (§>2N74n(%)2n
PG B S (5 ()
aQZiZC’g ro;oi‘sz (1 %)Z(Rfjv, (f: . E)

N

IN

p

To

a2cgcgg( ZN)Q(R)ZN (Ii2 B R)’

<L —2= - - - -
- cz 2 aR p 02 1
Q?CECE p? (1+2N)2(R>N (R2 R)
C?  p2—1roR aR/ \rg p2 g/’

Using Ci2 similarly to the estimation of Fy 1 + Ey.2/2, we show that E5 3 converges to 0 in the order
of max{(R/p)", N*(R/ro)"}.
Finally, applying (5.29), (5.30) and (5.35), we have

o0 A2
E;A: Z %(Zg&mwm)z

n=Ngdl ( > ez filN+n) 1#£0

i #(ZW)Q

n=N+1 ( Y ez A1N+n) IEZ

N

(6.46) < n;ﬂ C%(%)‘N x Cg(g)% x a2C2
20202 /R\N-N & R\ 2n
== (5) 2 ()
 GPCECE R\~ (R/p)PVHY
-G T
2212 2.
:%( _%) 1(§)N+2.

We see that s 4 converges to 0 in (R/p)Y order. Summarizing above all, we obtain (6.43).
Next we will estimate ||8hN7$/8n||2LQ(aQ) + ||8hN7y/8n||2Lz(8m in (4.24). Recalling (5.41), we put
the bound as

Right hand side of (5.41) =: ||g|| El + Ej).

2
ot {
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We write Ef and Ej as

_ 2 ~ 2
o XP: nQ(Z#O A1N+n) ©2 L i RZ(Z#O A1N+n) @2
1= _ 2 - 2
n=1 (ZZEZ AlN+n> n=p+1 (ZZEZ AlN+n)
= E},+ E 3,

and

~ 2
(S
Eé _ o Z Zl;éo IN+

~ 2
n=1 (ZZEZ AlN+n)

_ 2 _ 2
N nQA%(Zl;eo @lN+n) ) i nzAIZL(Zl;éO SOZN-HL)

~ 2 - 2
n=p+1 (ZZEZ AlN+n,> n=N+1 (ZIEZ AlN+n)
= Eég + Eé,s + Eé,4a

+ 2

respectively. As we see that E] , < (N/2)°E1, Ey5 < (N/2)?Es 5, and Ej 3 < N?E, 3, we estimate
Ej 3 and Ej 4. We use the following formula

T;nQT" - ﬁr—t;g = (1 31"7‘)37 (0<r<1).

Similarly to (6.45), we have

- 2
2 2
E, X" (Ez;éo A1N+n) n > 2
28— 2: < E nzapi<( E mpn)

. 3
n=p+l ( Yiez AlN+n> n=p+1 n=p+1

o0

=t ( Lm0 () )

n=1

p 2
=0 | ()" (e 2) s
Ry sy

To
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Therefore, Ef 5 converges to 0 in N*(R/ro)" order. Further, similarly to (6.46), we compute that

E! St nQAQ 2
Ba_ oy (S
n=N+1 (ZZEZ AlN+n) 1#0

<y M (v

n=N+1 (ZZEZ AlN+n) lEZ

> (I e ()" x e

§ R
n=N+1 P

GRS ey

02C2C3 (R\N [ (R/p)*(1+ (R/p)®) (R/p)* . (R/p)

- () { (= @) “Nu—(R[;p)?)”N1—<Rp/p>2}

0‘2((’;‘1205(1 . Ijj)_g(w FON + 2)(§)N+2.

We see that Ej 4 converges to 0 in N*(R/p)™ order. Consequently, the series of dhy /On is differentiable
term by term. Summarizing above all, we obtain (6.44). O

Proof of Theorem 2.5. Finally, setting

o R
min{p7 TO} ’
and using (4.24), Lemma 6.1, and the Sobolev embedding theorem, we have the assertion of Theorem
2.5. O

7. Numerical simulation

We numerically investigate the error in (4.24) against the number of the collocation points N. We
denote the error in (4.24) as
2
L2(8Q)>

for the simple description in this section. From dhy /On(Re') = S(0)—dgn/On(Re?), we can compute
the above error bound function F(N).

Figures 2 and 3 show the relationship between the error F(IN) and N from 2 to 30. We calculate
the numerical integration on 92 by the trapezoidal rule. The vertical axes of Figs. 2 and 3 are shown
in the logarithmic scale. Since we observe that the error F(N) is linearly decreasing against N, we see
that the error between g and gy decays exponentially in numerics of Fig. 2. Figure 3 is the numerical
result with the same parameters as Fig. 2 except for using the function ®(r) = e=*"/\/r, r = |x — P|
of (2.2). It is observed that the error F(N) is also linearly decreasing as varying the number of N in
Fig. 3 (a). Fig. 3 (b) and (c) show that the numerical results with P = 0.3¢'"/3 and P = 0.4¢™/3,
respectively. F'(IN) is periodically decreasing as increasing the value of the radius of P. Moreover, it
is observed that F'(INV) becomes small when N is a multiple of 6. This seems to be due to that the
situation when N is a multiple of 6 has the nearest collocation point on Re™ 3%,

Ohyn
on

on

< + ahN,x
on

(7.47) F(N):=Cy <H S H Oh.y

L2(99) L2(092)
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Figure 2: The numerical results of the error F/(N) defined in (7.47) against N with the parameters same as Fig. 1 (b).
The vertical and horizontal axes correspond to F'(N) and N, respectively. The vertical axis is plotted on the logarithmic

scale. (a) S(f) =sinf+1 in (2.1), (b) S(0) = log(2+sind) in (2.1) and (c) S(8) = e r= |Re*® — P| and P = 0.2¢"7/3

in (2.2).
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Figure 3: The numerical results of the error F(N) defined in (7.47) against N with the parameters same as Fig. 1
(b). The vertical and horizontal axes correspond to F'(N) and N, respectively. The vertical axis is plotted on the
logarithmic scale. Here (2.2) with S(8) = e~®"/\/r, r = |Re!’ — P| is used in numerical simulations. (a) P = 0.2¢!7/3
(b) P =0.3¢""/3 and (c) P = 0.4ei™/3,

8. Discussions

In this paper, we have constructed the approximate solution for the Neumann boundary problem
of the modified Helmholtz equation in the disk domain by the MFS. We have shown the sufficient
condition of the existence of the approximate solution by analyzing the eigenvalues of the cyclic matrix
associated by the MFS. In [8], the sufficient and necessary condition for the existence and convergence
of the approximate solution in the Dirichlet problems of the Laplace equation has been reported by
using the property of the fundamental solution, log(|x|). Although our analysis provided the only
sufficient, and restricted, condition of the existence of the approximate solution, it may be relaxed.
The necessary condition is left for future work.

Reducing the error into the difference of the function s on 92 and normal derivative of the ap-
proximate solution gy as the boundary integrations, we established the algorithm to calculate the
error bound. This enabled us to estimate the error between the exact solution g and the approximate
solution gy a priori. We have shown that the error converges to 0 with N2a® order with 0 < a < 1
and number of collocation points N. In [8], it has been shown that the error of the exact solution
and approximate solution for the Laplace equation of the Dirichlet problem converges to 0 in expo-
nential order. The reason for the difference of the degree of NV is a result of the set of the Neumann
boundary condition, and thus calculating the normal derivative of the modified Bessel function of first
kind. Furthermore, this error estimation enables us to compute the error without constructing the
exact solution a posteriori in numerical simulations as in Section 7. As demonstrated in Section 7,
we have shown that the decay order of the error is exponential in the numerics against the number
of collocation points N. In addition, we remark that we can introduce the numerical verification for
the numerics of the MFS if we compute the error as the boundary integrations with the numerical
verification.
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As explained in Section 5, the Fourier coefficients, a,, A,,, and §nfin/f(w") play important roles in
the analysis of the error estimate. Lemmas for a,,, A,, and A,, originally come from the property of the
modified Bessel functions of the first and second kinds. If the fundamental solution can be expanded
to the Fourier series, the method considered in this paper may be applicable to other problems with
another differential operator in the MFS in general. In addition, as the earlier studies succeeded in
extending the results obtained in the disk domain to the general domain in the case of the Laplace
equation, we plan to intensify our investigation for the extension thereof in the future by using the
results in this paper.

Appendix A. Exact solution

We will show that the function g(re'?) given in (2.4) satisfies equations (2.1). Changing the variables
in (2.1) as

g(x,y) = g(rcosf,rsinf) = v(r,0), r = /22 + y2,0 = arctan £7
T
we have

0%v  10v 1 0%v

A=52T ar TR
%ng-n:v,,..

Thus, (2.1) is rewritten by

1 1
Upp + ~Ur + V00 — o*v =0, re(0,R],0¢€]0,2n),
v (R,0) = S(0), 0¢<l0,2m).

(A1)

Proof of Proposition 2.3. From differentiation term by term in (2.4), we compute that
gr(re'?) = Z ane™ = 5(6),
nezZ

which implies the second equation of (A.1). For the first equation of (A.1), we may prove for each
n € Z. Hence, the function I,,(ar)e™? satisfies the first equation of (A.1).

Changing the variable r = 7/« this reduces to the fact that the modified Bessel function I,,(7) is
a bounded solution at 7 = 0 of the differential equation with respect to & = &(7):

P&+ T — (n* + 7)€ = 0.

Thus, the function I,,(7)e™? satisfies 7 vz + Fvz + vgg — 72v = 0. O

Appendix B. Lagrange interpolation by polynomial

In this section we explain the way of the calculation of G~!. To describe the cyclic matrix by a
polynomial we introduce the following N x N matrix:

01 - 0
J=
0 1
1 0 0

Using this matrix, we can represent the matrix G as

G= COI+61J+CQJ2 +"'+CN_1JN71,
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where I is the identity matrix. Supposing G~! is also the cyclic matrix, we set it as

G ' =bol + b1 J+byJ>+ -+ by JV L.

For these polynomials, we define the following polynomials as

N-1

flo) =" ¢al,
J=0
N-1

fHx) = Z b
j=0

As GG™! = I, we see that f(x)f~'(z) = 1 by putting «

J. Furthermore, as G and G~! are

cyclic, and ™ = 1, the polynomial f(x) and f~!(x) with 2™ = 1 are the eigenvalues of G and G~1,

respectively. Then we see that f(x)f~!(z) — 1 is divisible by 2™

F@)f N w) =1,

(j=0,...,N

— 1. This implies that
—1).

Assuming f(w’) # 0, we have f~}(w/) = 1/f(w’), 7 =0,..., N —1. Using the Lagrange interpolation

by polynomials to obtain the coefficients of g(z) yields

n—1

@)

igjocren @ —w*) 1

>

=0 Hk;éj(wj = wk)

fwi)

We calculate the numerator and denominator, respectively. The numerator is computed as

N-1
H (z — k)
H (x —wh) = "l .
k#7,0<k<N—1 r—w
. N —1
Cox—wl

w 1—wix
N-1
1 )
_ = —J\k

k=0

The denominator is calculated as
N
) -1
H(w]—wk): hm_x v
ks r—wl T — W
= lim NaV¥~1=Nw™J
T—wd
Therefore, we see that
fﬁl( ) 1 Nlezfl (w jx)k ] V=1 N 1 .
T) = — - = — - -
N j=0 k=0 Flw?) N k=0 \ j=0 wIkf(w)
Finally we obtain the exact form of the components of G~ as
131
by = — _ k=0,...,N—1).
k N ; w_ka(wJ)’ ( 5 ) )
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Appendix C. Proof of Lemma 4.1

In this section, we explain the proof of the Lemma 4.1. We suppose €2 := B(0, R) C R%. We define
the functional space C™P? () as follows:

O™P(Q) = {u € CP(Q)| D*u e LX(Q), (ja] <m)),

where |a| = a1 + - + ay, is the multi-index, and D = 8l*lu/(92$* ---9x8"). As a preparation,

we first show the inequality (4.23) for u € C12(Q), and thereafter, we prove the inequality (4.23) for
u € H'(Q) by using the density. We calculate that

_ﬁo or

9 (R
= ?/ (r2un, + ru®)(r, 0)dr.
0

Since Vu - (21, x2) = ru,(sin? § + cos? §) = ru,., and from the Schwarz inequality, we have

2 R
u?(R,0) = ﬁ/ (ruVu - (z1,22) + 1u*) (r,0)dr
0
2 [f '
< 72 r (Rlul|Vu| +u?) (r,0)dr.
0

Thus we see that

27
ull2 00 =R/O w(R,6)?do

A

2 / (Rlul|Vu| + u?)dzdes
(C.1) R Ja

IN

2 2 2 0
(e + 1Vl ey + 5 lelzeqey

2 2
<s|\1+3 [l (@) -

Proof of Lemma 4.1. We show the inequality (4.23) for u € H(2) by using the density. As C1%(Q)
is dense in H(Q), for any u € H'(Q), there exists a sequence {uy}nen C C%(Q) such that |lu —
Un|lg1 @) — 0, (n — 00). Using the inequality (C.1), we see that

2
lun — umllL200) < 4/1+ = l[tn = wmll g1 ()

2
<14 3 (1 =l + = )

— 0.

This implies that {u, },en € C12(€) is the Cauchy sequence in L2(9€2). Then, there exists a function
v € L%(99) such that |luy, _UHQL?(aQ) — 0, (n — o0). Thus, for any v € H'(Q), a function v in
L?(99) is determined. We define the trace of u € H*(Q) in 99 as

uloq == v.

Next we show that the determination of u|sg does not depend on the choice of the sequences in C*2().
We consider other sequence in C12(Q) that converges to u € H(2). Suppose that for any v € H(Q),
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there exists another sequence {v,} in C*?(Q) such that |lu — vy |1y — 0, (n — o0). Then we
compute that

v —vnllL2e0) < v —unllz200) + lun — vallL2(00)

2
<o —unllL2o0) +1/1+ = (||Un — Ul g1 ) + llu— vn”Hl(Q))

—0, (n—0).

Then u|sq is well defined. Finally, we show the inequality (4.23) as

[ull200) = llvllz200) = lm_[lun|[L2(o0)

IA

. 2 2
B [l g

2 9
I+% l[ullgr () -
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