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Abstract 

Klempous, R. and J. Kotowski, Nonlinear transport network design, Journal of Computational and Applied 
Mathematics 35 (1991) 269-275. 

In this paper two problems of optimal design of the nonlinear transportation networks will be presented. The 
goal functions in each of them are so complicated that the special approach for the determination of gradient 
and special attention for relaxation of the criterion function had to be reworked. Our considerations concern the 
water supply networks mainly. 
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1. Introduction 

In this paper we present two mathematical models of the transport network design problem. 
In both of them the idea of the optimization problem is to obtain the parameters of the elements 
for which the operation cost of the system is minimal subject to previously known restrictions of 
the installation costs. 

Our considerations concern the water supply networks mainly. In this case we assume that the 
demands of water consumers and the topology of the network structure are previously known. In 
practice an operation cost equals the cost of consumed electric energy in the pumping stations. 

Under the first assumption presented above this cost is constant, because for most of the types 
of the pump units, the level of consumed energy is simply a linear function of the total, 
previously known, output flow. That is why we proposed another shape of the goal function 
which is effectively more useful for our purposes than the previous one. Namely, we took into 
consideration the total amount of the energy wastes in the transportation network. 

* This research was supported by the Scientific Program RP.I.02 “Theory of Control and Optimization of Continuous 
Systems and Discrete Processes”. 
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2. Simulation model of the water supply system 

2.1. Mathematical relations 

Mathematical model for the simulations of flows in the water supply systems, which consists 
of n arcs and s + 1 nodes, contains the following set of equations: 

Ay = u, (1) 

Bx = 0, (4 

xi=r,yi2 sgn yi+d,, i=l,..., n. (3) 

We presented this model in details in our previous papers [6,8]. Equation (1) expresses the 
material continuity at nodes (first Kirchhoff law), where u E R” is a vector of flows from 
network nodes, A is the incidence matrix, and y E R” is the vector of flows in the network arcs. 
Equation (2) expresses path equations (second Kirchhoff law). B is a loop matrix and x E IR” is 
a vector of head differences between two ends of the pipeline. The relation connecting y, and xi 
(Bernoulli law) is expressed by (3), where d, is the difference of altitudes between two ends of 
the i th pipeline and r, is the resistance of the i th pipeline. The value of r, depends on the length, 
diameter and smoothness coefficient of the pipeline and can be calculated from the Hazen-Wil- 
liams law. 

2.2. Optimization 

In [8] we have shown that the solution of (l)-(3) is identical with the solution of the following 
static optimization problem: 

P(Y) = F,P;(YJ + en, (4 

where y fulfils (1) and 

p,(y,) =xiyI=riy,3 sgn y,, l,..., n. (5) 

After improving the notation, 

R(r, y) = diag{ riyi sgn y,, i = l,..., n}, (6) 

one can transform (l)-(3) to 

Ay = u, (7) 

BR(r, Y>Y = 0, (8) 

and (4) to 

yTR( r, y) y -+ min. (9) 

An equivalence of (l)-(3) and (9) subject to (1) is very interesting from the physical point of 
view. Values of (9) denote the total wastes of energy in the set of pipelines connected with their 
resistances. This remark allows to obtain the nature of the second Kirchhoff law. The following 
property is true in each network for which the flow of the transported medium fulfils (l), (2). 
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In [5], on the base of the sensitivity analysis, we presented the relation between Y and y in the 
form of a Jacobian matrix: 

aY -= 
dr 

-+zqy, y)BT(BR(r, y)BT)p3. 

So, for calculating the Jacobian matrix of the operator y = y( r) we have to simulate the network 
(solve (l)-(3) or (9) subject to (1)) for given r and put the obtained vector of flows y to (10). 

3. Mathematical model of the transport network design problem 

3.1. Technological restrictions 

We start elaborations of this problem from the optimal design of the single network arc. 
Let us assume that there are m types of pipelines in their store with given unit linear resistance 

pj and unit linear cost K,. The problem leads to design the minimal-resistance single pipeline 
with given length I, and a total cost no greater than k,. The mathematical model of this topic is 
as follows: 

m 
C pjzj + min (11) 

J=l 

subject to 
m 

C 'j = I(), (12) 
j=l 

m 

j=l 

ZJ > 0, j=l , * . . 5 m, 04 

where {z,} denotes lengths of particular types of pipelines. In practice p’ > p” - K’ -c K”, so we 

can enumerate variables in (ll)-(14) in such a manner that the following relations 

Pl’P2’ .-* ‘P,, (15) 

K1<K2< *-’ <Km, 06) 

will be fulfilled. 
On the base of the linear programming theory we now have the following properties. 

Property 1. At least two variables zJ are greater than 0 in the optimal solution of (ll)-(14). 

Property 2. If 

VjE {l,...,m}, Dtj = 

1 1 1 
KI Kt+1 K, 

Pt+l PJ 

20 07) 
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is the the optimal basis matrix for the problem (ll)-(14). 

From (18) we have 

and 

f&o) = 
&K,+I - PttlKt + &+I - PI k 

Kt+l _ K, 

K,+I - Kr 
0. 

08) 

0% 

(21) 

Under the previous assumption f(k) is a decreasing and convex function for all k, 3 ~,l~. 

Let r. = f( k,). For r. < p,I, an inverse function to f also exists. We will denote this function 
in the next parts of this paper by g. Function g is also decreasing and convex. 

3.2. A general version of the optimization problem 

Let us assume that we know the forecasted consumers need (J, and the required topology of 
the system of pipelines (matrix A). In the general case, on the base of parameters (15), (16) for 
available types of material, our aim is to build a water-supply network, optimal in the sense of 
the criterion function (9). The total cost of this investment must not exceed k,. The mathemati- 
cal model of this problem has the following form: 

F(r) =yTR(r, y)y -3 min, (22) 

Ay = u, (23) 
n 

c S,(C) G kll. (24) 
I=1 

Equations (22)-(24) form a nonlinear static optimization problem. It is rather difficult, or 
impossible, to discuss even very basic properties like existence and uniqueness of the optimal 
solution or its convexity. We return to these problems in Section 3.3. 

In the real cases the complexity of (22)-(24) is connected with the available techniques for the 
calculation of the goal function (22) value for a given vector of resistances r. An obvious 
approach leads to a two-level procedure: for a given r solve (l)-(3) (or (9) subject to (1)) to 
obtain y = y(r) and put this result to (22). So, the final optimization program may be time 
consuming if the simulation procedure will not be good. 

3.3. A few remarks on the convexity 

The aim of this section is to proof that the convexity of (22)-(24) even in very single cases 
strictly depends on some extra relations between parameters (15) (16). 
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We will try to show it in a very simple example, i.e., the system that consists of one source and 
one consumer with needs (J E R’, connected by two parallel pipes with unique length. Let us 
approximate functions gr( ri) and g2( r2) by the following formula: 

g(r) = gOra (25) 

for any positive rl, r2. 
In such a simple case all the results can be easily obtained theoretically. First, for any r,, 

r, > 0, we have from (l)-(3) 

rt.5a r o.5c7 
Yl = 4x5 

+ rf.5 ’ Y2 = $+ ro.5 ’ 
2 

and after putting (26) to (22) and (25) to (24) we have the following problem: 

F(rl, r2) = r1r2 

( rp.5 + rtio.‘) 
2 a3 + min, 

(26) 

(27) 

rp+r2Q<k0. 

This problem is convex when (Y > - 0.5, and 

(28) 

*_ *= 
r1 - r2 (29) 

When (Y = - 0.5, each pair ( rl, r2) that fulfils (28) as equality is an optimal solution of (27), (28). 
Finally, when (Y E (- 0.5, 0), an optimal solution goes to infinity on the curve (28). 

So the presented problem is convex iff a unit price of the pipe decreases sufficiently quickly 
with the growing values of its resistance (big absolute value of a). This is a property of an 
economy rather than an optimization problem itself. 

4. Algorithms 

4.1. Linear case 

Problem (22)-(24) has a special form when the graph of a network is a tree (there is no loop in 
it). A is a square matrix which allows to rewrite (23) to y, = A -‘u. Under some simple rules from 
the linear programming theory, (22)-(24) can be transformed to the following linear program: 

i=l 

n 

Ckdo, (31) 
r=l 

(I; - P~‘i)(~j+l -K,)~(k,-K,~i)(P~+l-~/), i=l,...yn, j=l,...,~~-1, (32) 

pJ,Gr,<p,l,, i=l,..., n, (33) 

k,>O, i=l,..., n. (34) 
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Elements of vector r and k = (k,, k,, . . . , k,) are decision variables. We denote by I= 

(119 1 2,. . . , 1,) a vector of particular lengths of pipes in the designed network. 
This problem can be solved by the procedure presented below. 

Algorithm 1. 
Step 1 (Setting initial values). Put r, = p,l, and t, = m for i = 1,. . . , n. Put k, = k, - C~=l~,lj. If 
k, -C 0, STOP. The problem has no feasible solution. Otherwise go to Step 2. 
Step 2. If k, = 0 or maxi t, = 1, STOP. An optimal solution r,, i = 1,. . . , n, was found. Otherwise 
go to Step 3. 
Step 3. Obtain 8, = max,, ,t 19,, where 

0, = Yo3, 
Pr, - Pt,-1 

K r,-1 - Kt, 

Put ,$ = min(k,, 0,1,), k, = k, - i, t, = t, 

r, = r, - 
PI, - Pt,-1 lJ. 
K t,-1 - Kt, 

- 1 and I- 

(35) 

(36) 

Return to Step 2. 

The maximal number of iterations in Algorithm 1 equals n X m. So, it has a polynomial 

complexity. 

4.2. General case 

If any loop exists in the graph of the network structure, it complicates an optimization 
problem (22)-(24) radically. Thanks to (10) the gradient of the goal function F(r) is as follows: 

aF dY Ti3J+ap=3 aY T -= - 
ar [ 1 dr ay ai- ir 1 

5 Nr, Y) +NL Y> y. 
1 

One can show that 

aF 
Vr>O a~ >O. 

(37) 

On the base of (35) the numerical procedure for calculating aF/ar can be obtained. So, if the 
gradient of (22) is available, the whole optimization problem (22)-(24) can be solved on the base 
of the Rosen gradient method. In such a case this method is very convenient because the set of 
the feasible solutions is given by the system of linear inequalities. 

As usually, the time of calculation hardly depends on the initial point r,. Good values of the 
elements of the vector r,, can be obtained with the help of Algorithm 2, presented below. This 
algorithm is a natural modification of Algorithm 1. 

Algorithm 2. 
Step 1 (Setting initial values). Put r, = p,,,l, and tj = m for i = 1,. . . , n. Put k, = k, - CI=l~,l,. If 
k, < 0, STOP. The problem has no feasible solution. Otherwise go to Step 2. 
Step 2. If k, = 0 or maxi tj = 1, put r, = r and STOP. Otherwise go to Step 3. 
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Step 3. Determinate y, = ah,/ar according to (37) for current values of r. Next put 8, = 

maxY, , 1 O,, where 19, is given by (35) and z = min(k,, f3J,), k, = k, - L, t, = t, - 1. De- 
terminate ru according to (36). Go to Step 2. 

The course of action presented above results from (38). 

5. Final remarks 

In the present paper we elaborated two mathematical models of the water supply network 
design problem. Under the base of some of their mathematical properties we obtained optimiza- 
tion procedures and checked their complexity. In both cases it is sufficiently low (polynomial) for 
solving a real problem with high dimension (over hundreds arcs). 

These procedures were programmed in C on the IBM PC/AT computer. 
In the Introduction we discussed the shape of the goal function. Let us return to this problem 

again in detail. An optimal solution of the optimization problem (22)-(24) has some extra very 
useful properties that allow to fulfil water consumer demands easily. For any pump one can find 
in the catalogue the shape of the so-called characteristic curve. This is the relation between an 
output flow yr, from the pump and the necessary head of the water H( yr). For the given network 
and the simulated vector of flows y one can determinate the necessary head of the water at the 
pumping station u. Such a flow can be obtained in practice iff H(y,,) > u. It is easy to show that 
for an optimal solution of (22)-(24) u is minimal. This property allows also to increase the total 
wastes of the leaked water, because in this situation the heads of it are relatively small in each 
node of the network. 
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