
Journal of Computational and Applied Mathematics 39 (1992) 213-225
North-Holland

213

Fast direct solvers for the heat equation
in simple geometries

James F. Epperson
Department of Mathematical Sciences, Unkersity of Alabama in Huntsville, _!iuntscille, AL 35899, United State:

Received 10 August 1990
Revised 5 February 1991

Abstract

Epperson, J.F., Fast direct solvers for the heat equation in simple geometries, Journal of Computational and
Applied Mathematics 39 (1992) 213-225.

In this note we present a method for reducing a multi-dimensional heat equation on a rectangle to a family of
one-dimensional heat equations, thus raising the possibility of substantially lowering the computational cost.
The method is shown to be stable and examples from lK!* and R3 are presented, along with execution times.
Operation count and storage estimates are also given.

Keywords: Parabolic equations, numerical methods, Green’s functions, ADI methods.

1. Introduction

Consider the heat equation with Dirichlet data, posed on the unit square:

u, = Au +f(x, Y, t), (x, Y) ER = (0, 1) x (0, l),
u(x, Y: t) =o, (xv Y) E aR, (P)
u(x, Y, 0) =u(-j(x, Y).

In this note we present a method for solving (P), which requires the factorization of only a
single tridiagonal matrix. The method is stable and extends easily to R3. No FFTs are required,
and no iteration is performed. The algorithm appears to be very amenable to vector or parallel
implementation. If the domain is rectangular but not square, or if different diffusion coeffi-
cients are used on u,, and uyY, then we are still able to apply the algorithm but we now need
to solve two tridiagonal systems.

This work is based on the use of heat kernels to partially invert the PDE in (P) before
discretization. For earlier work along these lines, see I4,5]; of related interest is the computa-
tional Green’s function method [3,6,8]. It appears that the method here can be extended to
more general operators and domains; see [7] for a more complete study along these lines.

0377-0427/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved

214 J. F. Epperson / Fast solvers for the heat equation

The present paper is organized as follows. The basic algorithm is described in Section 2 with
examples and extensions, including timing tests and 3D versions, being given in Section 3. In
Section 4 we present rough operation and memory costs for each algorithm, followed by two
appendices giving the proof of a technical lemma needed for stability of the 3D algorithm and
details of the comparison programs from Section 3. Finally, there is a brief remark on ihc
extension of these ideas to problems involving more general operators on more general
domains.

2. Derivation of the algorithm

We begin by treating the u,, term in (P) as an additional source term to derive a
one-parameter family of heat equations in X, only:

1% = & + f + K 0 <x < 1, each y E (0, l),

~(0, y, t) = ~(1, y, t) = 0, each y E (0, l), I
(P)

t+, Y, t) =tt,(x, Y), O<x<l, each y~(0, 1).

Here Y = II,.,.. Now let K(x, C; 5) be the kernel, or Green’s function, for the one-dimensional
heat equation on (0, 1). Then, for a given At > 0, we can “solve” (P’) as follows:

U(X, Y, t) = jkf x, At; &(&, y, t - At) dt
0

+ jr jlK(x, t--s; t)(f(& Y, s) +uJS, Y, d) dS cfs.
t-A 0

This may not appear immediately useful, but we nevertheless press on. Use the trapezoid rule
to approximate the time integral to get

u(x, y, t) - + At(f(x, Y9 t) +u,,(x, Y, t))

= j’K(x, AC t>(u(& Y, t - At) +- + At(f(tJ, y, t - At)
0

+u,,(S, Y, f - At>>) d5 +@(A?“).

Call the integral on the right side 4(x, y, t); then rewrite the above to get

-+ Atu,.,.+u=; At f + C#I +@(At”), each x E (0, l),

u(x, 0, t) = lI(X, 1, t) = 0, each x E (0, 1).
(1)

This is nothing more than a one-parameter family of two-point boundary value problems in y.
Assuming that the right-hand side functions are known, we can easily compute the solution to
get U(x, y, t) for each x E (0, 1). Rut how do we compute the function 4?

Recall that the operation ot integrating a known function against the heat kernel is
equivalent to solving the heat equation forwards with the known function as the initial data. In

J. F. Epperson / Fast solvers for the heat equation 215

other words, for fixed c,, 4 is simply the solution of the following one-dimensional heat
equation problem:

4r=dkx7 O<x<l, each y~(0, l), CX,,

4(0, Y, t)=+(L Y, t)=O, each YE(% I), t>t,,

4(x, Y, to) =u(x, Y9 to) + $ At(f(x9 Y9 to) +u,,(x, Y, to)).

(2)

The basic algorithm can now be spelled out. Given an array {Uij(t - At)}, Uij(t - At) =
u(xi, yj, t - At) on a uniform grid {(Xi, Yj)}, with Xi = ih for h = l/N, and similarly for Y, we
first compute the array {&ij(t)) by approximating (2) using ordinary Crank-Nicolson methods,
then we use {~ij(t)} to compute {U,,(t)) by solving (1) using central differences. More precisely,
we have the following algorithm.

Algorithm 1.
(1) Form the array (rii) from {Uij(tn_ ,)I according to

Y *.= $ At f(xi, Yjy t,r_l) +AUi,j-,(t,-,) + (1 -2h)uij(t,-,) +hui,j+l(tn-l), II

where A = At/2h2. This corresponds to computing the initial condition in (2).
(2) Form the array {~ij} from (r,) by solving the system of equations

-h~i_ 1 . j + (1 + 2A)~ij - A4i+ 1 9 j = hri_ I,j + (l - 2A)rij + Ari+l j* 9

This corresponds to solving the heat equation (2) for a single time step.
(3) Compute {uij(t,)} from {+ij) by solving the system:

-Aet bi,j_l(tn) + (1 + 2A)uij(t,,) -Aui,j+,(t,) =4ij + i Atf(xi, Yjy t).

This corresponds to solving the system of two-point boundary value problems (1).

In matrix notation the method takes on a very interesting form. Define two orderings of the
{Uij(t)} array, as fOllOWS:

W) = (u&)7 u,,(t), l l l 9 q,hl&), u&), *. -)T,
ii(t) = (u&)7 U*1(t),.“,UN_l,*(f), L+(t), **.)’

(note that the first is a row-wise ordering and the second is a column-wise ordering) and let Q
be the orthogonal matrix mapping from one to the other:

i;(t) = Qi-i(t), fi(t) = Q’;(t).

Define further the block diagonal stiffness matrix K
K=A *-.

[1 ,

K

where the K matrix is the usual one-dimensional finite-difference stiffness matrix:

K = tridiag(- 1, 2, - 1)

216 J. F. Epperson / Fast solrers for the heat equation

and A = At/2h’. Then, under the assumption that f = 0 (this is for simplicity only), the
algorithm above can be succinctly written in matrix form as follows:

li(t)=(I+lt6)-1Q(I+K)-‘(I-lK)QT(Z-lK)Li(t-At).

If :ve define the matrix G, as

G,=(I+M)-‘Q(l+K)-‘(I-K)QT(I-K),

then we have the following theorem.

Theorem 2. For any h > 0, At > 0, we haLye p(G.J < 1 so that Algorithm 1 is unconditionally
stable.

Proof. We have that GZ is similar to KI, where H is defined by

H=Q(Z+K)-l(Z-K)QT(I-lK)(Z+K)-l.

Then we have

p(G2) = p(H) < Ii H 11 2< lI(I-w)(z+D6)-‘11~<1,

since K is symmetric and positive definite for al! h and At_ EI

3. Exampies and extensions

In this section we present a series of example computations with this algorithm, as well as
some extensions to the basic method. The codes were written in FORTRAN and run on a
Sun4/260 and a CRAY X-MP/24, both at the University of Alabama in Huntsville. The
assistance of the Alabama Supercomputer Network is hereby acknowledged.

Example 3. We first look at the simplest model to demonstrate that the method does work and
achieves the expected accuracy. Consider the problem

u, =Au, (x, y) ER = (0. I) x (0, l),

u(x, Y, t)=O, (x9 Yp=%

u(x, Y, 0) =u&, Y),

where

u,(x, y) = sin TX sin rry.

Then the exact solution is

u(x, y, t) = exp(-2v2t) sin TX sin ny.

Algorithm 1 was used to solve this problem forward in time and the
was compared to the exact solution. Table 1 shows the behavior of the
nearly the expected factor of 4 as h and At are both cut in half. These
At = ih and the errors are computed at t = i.

(E) 1

approximate solution
error which drops by
runs were made with

J. F. Epperson / Fast solvers for the heat eqlration 217

Table 1
Error data from 2D kernel code

N=l/h L” error L2 error

8 3.6. 1O-4 1.8. 1O-4
16 9.2. 1O-5 4.8. 1O-5
32 2.4. lo-’ 1.2.1o-5
64 6.4. 1O-6 3.1*10-6

We next looked at execution time comparisons. Two new programs were written, using
“standard” methods for solving the linear systems associated with problems of this type. The
first code was written to use the IMSL routine FPS2Zi (which is a second-order fast Poisson
solver based on [1,2]) to approximate solutions of (E,). The second code used the routine
SSORCG (symmetric SOR with conjugate gradient acceleration) from the ITPACK ill] library
of iterative linear system solvers. Details of these comparison codes are given in Appendix B at
the end of this paper. Table 2 gives the overall CPU-time and also the average CPU-time per
time step, for all three codes. This data was obtained on a Sun4/260, using IMSL routines to
do the time checks. The codes both used At = $h, and ran until t = d was reached.

Example 4. Consider now the following anisotropic problem:

ut = au,, + bu,, , (x, Y) ER = (0, 1) x (0, I),

u(x, Y, t) =o, (x, Y) -R,

u(x, Y, 0) =u&, Y),

(E) 2

where a and b are positive constants, not necessarily equal.

In this case Algorithm 1 changes somewhat, since the constant A no longer has the same
value. We have the next algorithm.

Algorithm 5.
(1) Form the array { rii} from {Uij(t, _ ,)} according to

rij=AbUij-l(fn-l)+ (1-2h,)uij(t,-,)+AbUij+*(fn-l),
3

where A, = b At,2jl12.

Table 2
Timing data from 2D codes

N=l/h

8
16
32

64

Kernel algorithm FPS2I-l

Total Per step Total

1.0. 1o-2 5.0. 1o-3 1.0*10-2
6.0. 1O-2 1.5. 1o-2 9.0*10-2
4.4.10-l 5.5. 1o-2 6.9.10-’

3.0.10-O 1.9*10--’ 5.3.10-O

Per step

5.0*10-3
2.3. 1O-2
8.6. 1o-2
3.2.10~’

SSORCG

Total

1.6. 1O-3
7.6~10~’
4.4. lo-”
3.4.lo+’

Per step

8.n.10-2
1.9.10-l
5.5.10-’
2.1*10-”

218 J.F. Epperson / Fast solvers for the heat equation

(2) Form the array {cbij} from {rij} by solving the system of equations

-Aa+i- lj+(l +2A*)~ij-A,~i+,,j=A,ri_,,j +(I -2A,)r,i+A,ri+,,j.

Here A, = a At/2h’.
(3) Compute {Uij(t,)) from {4ij> by solving the system

-Abt4i,j-I(tn)+ (l + 2AQ)uij(fn) -AbUi,j+*(tn) =4ij9

The matrix form of the algorithm now is

r;(t)=(Z+lK,)-1Q(Z+!K,)-‘(Z-K,)QT(Z-IM,)ii(t-At), (3)

where Ki, i = a, b, means that Ai, i = a, b, has been used in the computation. The stability
theorem still holds, more or less exactly as before. As can be seen from (3), we now must factor
two different tridiagional systems. The method is still very fast, since the only additional work is
the factorization of a second tridiagonal system, and a set of test runs similar to what was done
in Example 3 produced essentially the same values.

Example 6. We now consider a problem in three dimensions:

u* = au,, + bu,, + cu,, , (x9 Y, 2) a? = (0, q3,

U(& Y, 2, t) =o, (x, Y, z) =-@,

u(x, Y, z, 0) =u&, Y, 2).

The algorithm is basically the same as before, but longer.

Algorithm 7.
(1) FOITII the array {rijk) from {Uijk(tn_l)} according to

rijk =AcUi j k-l(fn-1) . * + (l - 2hc)Ui,j,k(tn-l) + hcUi,j.k+l(fn-l)?

where A, = c At/2h2.
(2) Form the array I~ijk} from {rijk) according to

&jk = Abri.j- I,k + (1 - 2Ab)rijk + Abri,j+ I,k*

(3) Compute {~ijk} by solving the system

-Aatii- 1.j.k + (l + 2Aa)*ijk - AaJli+ I.j,k = AaI;;-- I,j,k + (l - 2AaJFijk + A,&+ I,j,k’

(4) Compute (~ijk} by solving the system

-Ab6i j-1k+(1+2Ab)~ij~-Ab~ij+lk=~ijk* . . . t

(5) Compute {Uijk(t,)} from {~ijk)} by solving the system

-A c *.j.k-- ittn) + C1 + 2AcJuijkttnJ - AcUi,j.k+ Ittn) = 4ij* u- .

(E) 3

J. F. Epperson / Fast solvers for the kea t equation 219

TO write the algorithm in matrix form, we must now consider three different orderings of the
{u J t)} array:

i;(t) = (&H(t), %*(O, l . * 9 4,,,N-l(f)9 hi(t), l l = iT’

W) = (hd0~ %,(a l ** ‘) 4,iv-,JW 412(t), l l l)T’

E(t) = (Q,(t)9 uzll@), l l l ,&b&,,l,,(f)9 u&)9 l l .)‘*

We again define orthogonal matrices mappings from one ordering to another, as follows:

i;(t) = Q;(t), fi(t) = Q’i;(t), C(t) =Piqt), u(t) = P%(t).

In addition, the product QTP maps between orderings as follows:

i;(t) = QTPi(t), ii(i) = PTQC(t).

If we define the block diagonal matrices Ki, i = a, b, c, analogous to Example 4, then we have
the following matrix form:

ii(t) = (I+ Kc)-‘Q(Z+ I&)-‘QTP(I+ W,)-’

x(I-K,)PTQ(I-U6,)QT(I-K,)ii(t-At).

For simpliciy, define the matrix G, as the coefficient matrix in the above:

G,=(Z+06,)-‘Q(Z+w,)-‘QTP(l+w,)-‘(Z-w,)PTQ(Z-~,)QT(I-w,).

The stability of the method in this case is somewhat more difficult to establish, but a rigorous
proof can be obtained by a close look at the structure of the reordering matrices P and Q. This
we do in a preliminaly lemma, whose proof is deferred to Appendix A.

Lemma 8. The matrix

M=Q(Z+K,)-lQ’rP(I+K,)-l(Z-K,)PTQ(l-K,)QT (4)

is symmetric.

Proof. See Appendix A. 0

Given the lemma, we can easily establish a stability result, more or less as before.

Theorem 9. For any h > 0, At > 0, we have p(G,) < 1 so that Algorithm 7 is unconditionally

stable.

Proof. We can write G, in terms of the matrix M as follows:

If we use

so that

G,=(I+K,)-‘M(Z-K,).

similarity to define H as was done before, we get

H=M(I-K,)(l +KJ’,

p(G3)=p(H)< IIHlk llMI!*ll(1-~,)(~+~,)-‘ll**

220 J. F. Eppwson / Fast solrun for the heat equation

Table 3
Error data from 3D kernel code

A!= l/h

8
16
32

&I

L” error

4.0. lo-”
LO- lo-”
2.5. 1o-4
5.8*10-5

L’ error

1.4. 1o-3
3.5. 1o-4
8.8* 1o-5
2.0. 1o-5

Table 4
Timing data from 3D codes

M= l/h

8
16
32
0s

Kernel algorithm

Total Per step

5.0. lo-’ 2.5. lo-?
7.9-10-l 2.0-10-l
1.3-10’” 1.6.lo+’
2.2-10” 1.4.1o+’

FPS3H SSORCG

Total Per step Total

2.0.10-l ‘. - -1,0.1p 9.L*lo-’
2.5*1o+O 6.2. lo-! 1.3*1o+’
4.1.10+ ’ 5.1.1o+O 1.8. 1O+2
6.0. 1O+2 3.s.10+’ -

Per step

- 4.6.10-’
3.2.lo+’
2.2*1o+’
-

The matrices in the norms on the right are both symmetric, hence their 2-norms are equal to
their spectral radii which are easily shown to be less than one. 0

For comparison purposes we wrote a heat solver based on the IMSL routine FPS3H, a 3D
version of FPS2H, as well as a three-dimensional version of the SSORCG code used above.
“t’F. . . A A&&& &-%PZ cirrpared to a program lxsed on Algorithm 7 and all three codes were run on (E,),
I_lshg a=b=c= i. As before, we used a sequence of h values, with At = ih, and the runs
were timed over (0, $). Tables 3 and 4 give the error and timing results on a Sun4/260. The
gap in the SSORCG data is due to the large memory requirements for workspace when running
that program - it was not practical to run that case on the Sun 4.

Finally, we give the results of the same tests with the 2D codes, made on a CRAY X-MP/24.
The primary purpose here was to see how well the kernel algorithm would perform in a vector
environment. The code for these tests was no different from the code as run on the Sun. The
vectorization of the solution steps was accomplished by organizing the loops to do them in
parallel. The ITPACK code was written using ITPACKV, a version of ITPACK designed for
vector processors like the CRAY. It is entirely plausible that this comparison is unfair to the
FPS2H code, since we were not able to get reliable information on whether the IMSL code had
been optimized for vectorization on the CRAY. Table 5 gives the results for (E,), using
At= $h, and t,, = i.

Table 5
Timing data from 2D codes on a CRAY X-MP/24

N= l/h Kernel algorithm

Total Per step

8 1.2. 1o-3 6.0. 1O-4
16 5.5. 1o-3 1.4. 1o-3
32 2.5. 1O-2 3.1. 1o-3
64 1.4-10-l 8.6. 1o-3

FPS2H

Total

3.6~10-~
2.2. 1o-2
1.2. lo- ’
7.9.10-l

Per step

1.8. 1O-3
5.5. 1o-2
1.5. lo-’
4.9. 1o-2

SSORCG

Total

4.2. 1O-3
2.1. lo-’
1.3.10-’
8.6.10-’

Per step

2.1.10-3
5.3 * lo- 3
1.7*10-*
5.4.10-2

4. Operation counts and storage estimates

In this section we will estimate the number of floating-point operations required for the
algorithms presented in the previous sections, as well as the amount of storage. For simplicity’s
sake we will assume homogeneous Dirichlet data on the boundary and, further, that the forcing
term is not present: f(x, y, t) = 0, and similarly for the three-dimensional case. The operation
count estimates are for multiplications and divisions only.

We will assume that the grid points along each axis are labeled from 0 to N; thus the mesh is
h = l/N, and there are (N - 1)” unknowns in Rm.

Two-dimensional Algorithm. If we assume the diffusion is isotropic, then there is only a single
tridiagonal factorization to be performed. If we assume further that a modified Choleski
scheme is used, then the cost of factorization can be estimated as

c factor = 3N+e(l).

The cost per time step can be readily estimated from Algorithm 1. We have

c ,t,,=6(N- 1)2+2(N- 1 +@yN),

where cSOIVe is the cost involved in doing the fo~ard/ba~~ard substitution steps associated
with the Choleski factorization. We have

c solve =2N+8(1),

so that, finally,

c step = 10N2 + H(N). (5)

Note that the factorization costs are a full order of magnitude less than the co& per step.

The major storage requirements are for the tridiagonal matrix, which takes only about 2N
words (assuming symmetry), and the solution array itself, which takes about N2 words. The
codes we used required a second copy of the solution array, making for a total of

M=2N2+@N)

words of storage. It may be possible to avoid using the second complete copy of the solution
array.

If the diffusion is anisotropic, then the only significant change is that we must factor two
tridiagonal matrices instead of just one. This only changes the Bower-order terms, so (5) sf.ands
as the two-dimensional operation count estimate. The memory requirements are similarly
una~ected.

Three-dimensional Algorithm. Working from Algorithm 7 we have

c step = 9(N- 1)2 + 3(N- l)C&e +@(N),

where Golve is as before. Hence

c step = 15N2 +8(N)*

222 J. F. Epperson / Fast sohws for the heat equation

The memory requirements are analogous to the 2D case, the bulk of the storage being used
for the solution arrays. .\gain, we used two copies of the solution for a total storage
requirement of

M=2N”+b(iY’)

words, but might be able to get by with less than that.

Again, anisotropic diffusion
memory requirements.

does not significantly affect the operation count, nor the

Appendix A

Pnrop of Lemma 8. If we multiply out the definition of the matrix A4 as given in (4), then we
have

where M, = PK,PT and Ml, = QKbQT. It is clear, then, that M is symmetric if and only if the
i matrices have the same eigenvectors. This requires a detailed examination of the reordering

matrices. Fortunately, there is no loss of generality in considering only the case of N = 4, in
which case P and Q are 27 x 27. However, the block structure allows us to view them as 9 X 9,
with 3 X 3 blocks. Define the matrices Jii to be zero everywhere, except for a one at the (i, j)
entry. For example,

0 1 0
J 12 =

i I
0 0 0.

0 0 0

In this notation we can write out P and Q explicitly:

P=

J 0 0 1 J,, 0 0 I J31 0 0

i J,, 0 i 0 Jzl 0 t 0 J31 0
0

f I
0 J,, ; 0 0 J2, 1 0 0 J31 ------------p-----------_+________---_

J 0 0 ; J,, 0 0 ; Jj2 0 0
B J,, 0 I 0 J,, 0 I 0 J32 0
0 0 J,, j 0 0 J,, j 0 0 J32

-------___________------- ------------
J 0 0 i J23 0 0 ! JJ3 0 0
: J,, 0; 0 5123 0 j 0 Jj3 0
0 0 J,, ; 0 0 J,, j 0 0 JJ3

J. F. Epper-G= h 1~ ,’ Fmt sol~ws for the heat eqrratim 223

-41 J21 J31 0 0 010 0 0‘

J 12 J22 J32 0 0 o;o 0 0

J 13 J23 J33 0 0 o;o 0 0
-_-_-_---_-_ _---_---_-_-

0 0 0
t------------

Jll J21 J31 I 0 0 0
Q= 0 0 0 J 12 J*2 J3* i 0 0 0

0 0 0 J 13 J23 J33 I 0 0 0
-_-_-_-_-I-_ -------------------------

‘0 0 0 0 0 0 i Jll J21 J31

~0 0 0

L

o o o i 42 J22 J32

0 0 0 ’ o o i 43 J23 J33

Now, since the IK, matrices are block diagonal, the blocks being proportional to the tridiagonal
matrix K = tridiag(- 1, 2, -l), it follows that the eigenvectors of Dbi are formed from the
eigenvectors of K. To be specific, let 6 be an eigenvector of K; then the corresponding
eigenvector of Ki is given by

x = (59 5953
Then we can explicitly
the corresponding Mi,
M, and M, are equal,

form the products t, = Px and zb = Qx, which give the eigenvectors of
and see that we do, in fact, have z, = z6. Therefore the eigenvectors of
hence lVl, and Mb commute and M is symmetric. [7

Appendix B. Details of comparison codes

In this section we (briefly) discuss the codes used for the comparisons of Section 3.
FPSnH Codes. As mentioned above, these codes are part of the IMSL package and are based

on the work in [1,2]. Since they are designed to approximate solutions to elliptic problems on
rectangles or boxes, the heat equation x.vas written in time discretized form to yield the
sequence of elliptic equations:

-Wrl+l) + $ At 442+,) = Au(t,) + ; At u(t,) -M’(At3). (6)

A function PRHS was written to compute the (discretized) right-hand side of (6), and a second
function BRHS was written to provide the boundary data. Other parameters in the FPSnH calls
were specified as follows:
COEFU: ; At;
NX: 9, 17, 33, 65; depending on the case;
NY: 9, 17, 33, 65; depending on the case;
NZ: 9, 17, 33, 65; depending on the case (3D, only);
AX: 0.0;
BX: 1.0;
AY: 0.0;
BY: 14:
AZ: 0.0 (3D, only);
BZ: 1.0 (3D, only);

224 IF. Epperson / Fust solrers for the heat equation

IBCTY: 1, 1, 1, 1 (vector of size 4 in 2D routine);
1, 1, 1, 1, 1, 1 (vector of size 6 in 3 routine);

IORDER: 2.
For details on the meaning of these parameters the reader is referred to the IMSL documenta-
tion.

ZTPACK Codes. For precise details about the use of this package, the reader is referred to
f11,12], which are available in TeX form from the NETLIB service [lo]. Based on the
information in [1 l] we decided to use the SSORCG routine for our tests here. The initial guess
at each time step was taken to be the final value from the previous time step. Default values for
all parameters were used.

ITPACK and ITPACKV use rather special storage schemes which make ~onst~~tion of the
matrix somewhat involved. In the scalar version, several routines are supplied to assist the user
in this connection, and these were used on the Sun. In both environments, the cost of forming
and loading the matrix is included in the timing data given in Section 3.

There appears to be no reason not to extend this algorithm to more general operators on
more general domains [7]. If we consider, for example, the equation

& = div(a(x, y) Vu)

on the unit square, then we get the algebraic system

;(t)=(Z+K,)-‘O(Z+Iib,)-l(Z-K,)~T(Z-K,)r;(t-At),

where the 86, are still block diagonal, but the blocks are no longer identical. We have

IK, =A block diag(K(a, xi, m)), IK, = A block diag(K(a, l , vi)),

where J&Z, xi, -) is the matrix obtained by applying a central difference appr~~~~~ation (in the
y-direction) to div(a(xi, y) Vu), and K(a, l , yj) is the matrix obtained by applying a central
difference appro~mation (in the x-direction) to div(a(x, yi) VU). This requires more storage
than the previous algorithms, as well as the solution of 2(N - 1) different tridiagonal systems,
instead of just one or two. Estimating the operation count is di~icult, since the cost of ~0~~~~
the systems depends heavily on how the coefficient functions are constructed. However, the

ditional memory requirements are fairly straightfo~ard: instead of storing a single tridiago-
nal system, we must store two sets of N - 1 tridiagonal systems. This results in a memory usage
of

M=6N2+d(N)

words, in 2D, and

M=4N3+8(N)

words, in 30.
While these figures do represent an increase over the constant-coefficient case, it is not a

signi~cant increase. In particular, these figures are much less than what would be expected
using traditional methods.

J. F. Epperson / Fast soh*ers for the heat equatiorr 225

The extension to more general domains is trickier, largely due to the complications intro-
duced by the geometry of the domain, but it appears to be possible to apply these “dimensional
separation” ideas at least to convex domains. That is the objective of the forthcoming work [71.
still in progress.

References

01

El

131

Ml

bl
[71
181
[91

[lOI
[ill

WI

R. Boisvert, A fourth order accurate fast direct method for the Helmholtz equation, in: G. Birkhoff and A.
Schoenstadt, Eds., Elliptic Problem Sokers II (Academic Press, New York, 1984) 35-44.
R. Boisvert, .4 fourth order accurate Fourier method for the Hc_lmholtz equation in three dimensions, ACM
Trans. Math. Software 13 (3) (1987) 221-234.
J. Epperson, On the use of Green’s functions for approximating nonlinear parabolic PDE’s, Appl. Math. Lett. 2
(3) (1989) 293-296.
J. Epperson, Semi-group linearization for nonlinear parabolic equations, Nrtmer. Methods Partial Differential
Equations 7 (1991) 147-163.
J.F. Epperson, A kernel-based method for parabolic equations with nonlinear convection teims, J. Comput.
Appl. Math. 36 (3) Cl9911 275-288.
J. Epperson, Efficient computation with heat equation kernels, SLlMJ. Sci. Stat&t. Comput., to appear.
J. Epperson, All parabolic equations are inumerically) one dimensional, in preparation.
J. Epperson, Computational Green’s function methods for nonlinear parabolic PDE’s, in preparation.
J. Epperson, EVOLVE: A set of subroutines for rapid solution of parabolic equations on a rectangle, in
preparation.
E. Grosse, Netlib news: greetings, SL4M News 23 (6) (1990) 14
D. Kincaid et al., ITPACK 2C: A FORTRAN package for solving large sparse linear systems by adaptive
accelerated iterative methods, typescript documentation.
D. Kincaid et al., ITPACKV 2C user’s guide, Report CNA-191, Center for Numer. Anal., Univ. Texas;, Austin,
1984.

