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Abstract

This paper deals with the eigenproblem of positive definite matrices. A numerical algorithm, to find the largest
eigenvalues of a full positive definite matrix using Householder reflections, is described. The proposed algorithm can
be used to find all the eigenvalues of a symmetric matrix or at least the first few largest ones. The scheme is proved
to be convergent and the convergence rate is calculated. The full matrix is operated upon, at each iteration; hence
one could use the APL programming language to write down a very brief code to implement the program.
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1. Introduction

Let 4 be an n X n full positive matrix (i.e., the leading principal minors are strictly positive)
with eigenvalues 0 <A; <A, < -+ <A,_; <A,. In this article, we present a numerical scheme
to obtain the eigenvalues of A4, and in particular the largest eigenvalue or the first few largest
ones. This basic idea is to apply a sequence of Householder reflections [1,2] so that, in the limit,
the first column of A converges to a multiple of e, (the first column of I,). The proposed
method is a special case of the power method where the starting vector is e,. In contrast of the
power method itself, our method transforms the whole matrix A4 at each step of the iteration
process. As a consequence, the presented scheme converges linearly with convergence rate
(An—l/An)z'

It is well known that the Jacobi method for obtaining the eigenvalues of a full symmetric
matrix is well-suited for sequential machines, so is our algorithm. However, our scheme is
eminently suitable for a parallel processing machine and should be superior to Jacobi’s method
presented in [3] on such machines.
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2. The proposed scheme

Let A be a full positive definite matrix. Express 4 as

11 T
a 1 4
0 0
A=A4,= ,
v, B,

where a' is the first element of A4,, v, is an (n — 1)-vector and B, is an (n — 1) X (n — 1)
positive definite matrix. We denote by H; an orthonormal matrix consisting of the eigenvectors
of 4 and by A = diag(A,, A,,...,A,) the matrix of the eigenvalues of A arranged in ascending
order.

Therefore, we can write the similarity transformation

A,=H,AH].

The vector Hye, will be denoted by f,.
The proposed algorithm is defined as follows. Starting with 4, we apply an orthogonal
transformation U, and define 4, by

AU AU,=|® "
1 04oYg v, B,
where
T 2
Uy=1, — Bououy, Bo= 2
Il g I

and the vector u, is chosen so that U, transforms the vector [ag', »§]" into ke, with

k= —y(al') + llvoll®.

As is well known [1], we can write u, as

T
2 2
gl +\(ah' ) + llwylI?, w2

The process is repeated; at a typical stage we have

: (1)

u0=

11 T
ar+1 Vr+l

Ar+l = UrArUr =

Vi1 Br+1

where
. 2
ur=In~ rurur’ Br=—_—2’ (2)
I, |l
and
2 2 T
u, = |al + (@) + w12, ¥T| . 3)
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In the following section, it will be shown that in the limit (i.e., as r — «), we obtain a matrix of
the form

A0
Amz[o Boc]a

which means

lim [|»,]|>=0 and lima!'=a.
r—»o

row

So, this method provides a very reliable and economical criterion to deflate a matrix.

3. Convergence study

In this section, we prove the convergence of the algorithm together with rate of convergence.
Before stating the theorem, we verify the following lemmas.

Lemma 1.

1
B v g V@) I @

Proof. From (2) and (3),
2 2

u |l 2 2 2
Ve @@ + 1w, 02) 1w,

2

B,

2(ay + 211w, 112+ 221 (a!) + Il o, 12

r

1
- @rama 4oV@) vt o

It can easily be proved that

d=llA,el. )
Lemma 2.
—al'/d —vT/d
U= / / - (6)
_Vr/d In—l _Br"r"r
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Proof. From (2) and (3),

1 L+d)  (al'+d)y]
Ur =In - ruru}“ =In - 11 (a' ) (ar )Vr
(ar +d)d (ai1+d)vr vyl
1—(a +d)/d -VT/d
= =(6). a
.—l’r/d Br r rr
It can easily be proved that
U A€ (7
e, = ——,
T T el )
Lemma 3.
alw, |l 2 +v'B.v,
all, =all + = . (8)
Proof. Since 4,,,=U,A4,U, then
sy Vi |_|—a'/d —vT/d all v || a;'/d v, /d
Vi1 Br+1 _Vr/d In Br rVr Br _Vr/d I Br rVr
from which
all (011)2 V;ryr ail VrTBrvr ail 2 V?Bryr
athy = | T e e T = (a2 + 20w, | + -
al 2 v'B,v, 1
= (@) + 20 12+ T =at+ a7 By .

Theorem 4. lim, ,al! = A exists and is an eigenvalue of A. Moreover, if e, fo # 0, then A = A,; if
in addition e} _,f,# 0, then

2
—A A,_
lim ’;1 === (9)
row| gl — A A,
Proof. Since A, is positive definite, then, using Lemma 3, a'l | > a!'. Thus the sequence {al'} is
a monotomcally increasing sequence bounded from above by || 4 || It follows that lim, _, .a “ =A
exists. From Lemma 3 also, it follows that lim, _, . || v, 12 =0.

Let H =U,_,H,_, denote the matrix of eigenvectors of 4,, and let f, = H Te,. Then,

fi =H1Te1 = (UOHO) € =H0TU091
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Since from (7), Uye, = —(de,)/ |l Ae |, then

Hde, AHTe, Af,
Fr= T el T T THAHZ N TASLT
Similarly,

T
fo=H,e,=(UH)) e,=H[Ue,.
Since from (7), U,e, = —(A4e,)/|l A e ||, then

Af, (—1)° A%,

L= T AL T TAR AR
Since
Af
S = AL
then
2, Af, | 1A,
AL = Tragy A4 ”‘” AL TAR T
Then,
A
o NS
L= ey T
By induction, it follows that
oy Ao
fr_( 1) ”Arfo ”

Since, by hypothesis, e} f, # 0, then

(=1)'f,=(0,0,...,1)".
Since all =f7 Af,, it follows that lim, , a!' =A,, and if e;_, f, # 0, then

An—l ?
= /\n .

It means that our proposed method converges linearly with convergence rate (A, /)\n)Z. a

n_
a, —A,

1 _
ar—l /\n

lim

¥y

4. The connection between the power method and the proposed one

The connection between the proposed method and the power method could be clarified by
the following theorem.
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Theorem 5. Consider the power method defined by
x,=e, X Ay p,=x"Ax,, r>1.
" A, Ax,_ I’
Then,
x,=(-1)UU, -+ U_e, and p,=al, foreveryr>1.
Proof. (i) For r=1:
Ax, Ae,;
I dxo [l 1l Ae,
using (7); then,
x,=—Uye;
consequently,
pi=xAx, =e]UyAUje, =elAe, =a

So the theorem is valid for r = 1.
(ii)) For r=m + 1. assuming that the theorem is valid for r=m, we will prove it for
r =m + 1. By the induction hypothesis,

xm=(_1)mU0U1 U, e

m
then,

x1=

w=(=1)"AUU, - U, _ e, =(-1)"UAU, --- U,_,e,=(=-1)"UU,A4, - U,_e,
= =(=1)"U,U,U, - U,_,A,e,.
Using (7),
Ax, = (-1)"UUU, - U,_ (- 4,,e,1U,e))=(=1)""" | 4,,e, 1 UU, - - U,e,.
Since || 4x,, || = || 4,,e, |, then

- =("1)m+1UOU1 o U,e.

x =——
7 Ax,
Finally, the Rayleigh quotient at r=m + 1 is
Pm+1 =x;+1Axm+1 eiU,U, | - UyAUU, - U, e, =e?Am+1el =a}r}+1’

and the proof is complete. O

S. Numerical examples

Example 6. Here we consider a 6 X 6 Hilbert matrix 4 = [a*/] defined by

- 1
aU=-i—+j——_—I, 1<l,]<6
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Then,
599308 —0.076195 —0.081235 —0.078978 —0.075334 —0.060945
—0.076195 0.046 760 0.050223 0.044 605 0.040991 0.038012
4= 0.081235 0.050223 0.061876 0.059875 0.055632 0.049568
! 0.078978 0.044 605 0.059875 0.059807 0.057837 0.053895 |’
—0.075334 0.040991 0.055632 0.057837 0.055818 0.054132
| —0.069045 0.038012 0.049568 0.053895 0.054132 0.051716
[1.618453  0.009665 0.013066 0.012165 0.011752 0.009898
0.009665 0.44398 0.047510 0.042899 0.037976 0.033785
A= 0.013066 0.047510 0.057290 0.055761 0.051852 0.047680
2 0.012165 0.042899 0.055761 0.056502 0.054069 0.050811 [
0.011752 0.037976 0.051852 0.054069 0.052789 0.050405
10.009898 0.033785 0.047680 0.050811 0.050405 0.048709
1.618889 —0.001438 —0.001797 —-0.001842 —-0.001740 —0.001592
—0.001438 0.044377 0.048121 0.043001 0.037897 0.033722
4= 0.001797 0.048121 0.057202 0.055655 0.051760 0.047631
371 -0.001842  0.043001 0.055655 0.056403 0.053969 0.050729 |’
—0.001740  0.037897  0.051760  0.053969 0.052707 0.050320
| —0.001592 0.033722 0.047631 0.050729 0.050320 0.048634
[1.68889  0.000212 0.000259 0.000261 0.000258 0.000240
0.000212 0.044375 0.048119 0.043000 0.037896 0.033720
A = 0.000259 0.048119 0.057200 0.055653 0.051758 0.047629
4 0.000261 0.043000 0.055653 0.056401 0.053967 0.050726
0.000258 0.037896 0.051758 0.053967 0.052705 0.050318
| 0.000240 0.033720 0.047629 0.050726 0.050318 0.048632

The convergence to the largest eigenvalue is quite fast as can be seen from the fact that ||» || °
decreases to zero rapidly. 3 3

It has to be noticed that al' =1, v,=[3, %, 1, 1, 1]', B,=[b5] where by =1/(i +j+ 1),
1<i, j<5.

Example 7. This example was designed to show the effect of the shifts. A reasonable choice of
the shift is o= 2(A, +A,_,).
In this example, the eigenvalues are close to successive integers with A, =10 and A,,_; =9.

The matrix A is arranged such that a'' > a?* > --- > a® and after the kth iteration we use
the shift
o, = %(azz(k) +a®(k)).
Then,
10 1 05 025 0.125 0.1
1 9 0.4 0.2 0.1 0.05
(-]l 05 04 8 03 015 o1

025 02 03 7 0.5 0.4
0.125 0.1 015 05 6 1
| 0.1 005 01 04 1 5 |
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Without shifts, at the end of twenty iterations, we get

10.798224 0.009873 0.003921 0.001318 0.000675 0.000481
0.009873 8.365704 0.098197 0.056740 0.023043 —-0.003464

Ao = 0.003291 0.098197 7.858157 0.229358 0.114023 0.073459
20 0.001318 0.056740 0.229358 6.966996 0.477646 0.388721
0.000675 0.023043 0.114023 0.477646 5.990780 0.992 488
0.000481 —0.003464 0.073459 0.388721 0.992488 4.995558

With shifts, at the end of seven iterations, we get

—10.798302 —0.004275 —-0.001436 —0.000785 —0.000200 —0.000509
~0.004275 8.365618 0.098312 0.056 086 0.022983 —0.003138
~0.001436 0.098312 7.858186 0.229513 0.113912 0.073 660
—0.000785 0.056 086 0.229513 6.967011 0.477631 0.388801
~—0.000200 0.022983 0.113912 0.477631 5.990887 0.992498
—0.000509 —0.003138 0.073660 0.388801 0.992498 4.995503

4,=

6. Conclusion

To find all the eigenvalues of a symmetric matrix — or at least the first few largest ones —
and the largest eigenvalue of a full positive definite matrix, a convergent numerical algorithm is
proposed. The presented procedure could be easily implemented using APL programming
language with a very brief code.
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