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Abstract 

This paper deals with the eigenproblem of positive definite matrices. A numerical algorithm, to find the largest 
eigenvalues of a full positive definite matrix using Householder reflections, is described. The proposed algorithm can 
be used to find all the eigenvalues of a symmetric matrix or at least the first few largest ones. The scheme is proved 
to be convergent and the convergence rate is calculated. The full matrix is operated upon, at each iteration; hence 
one could use the APL programming language to write down a very brief code to implement the program. 
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1. Introduction 

Let A be an IZ x n full positive matrix (i.e., the leading principal minors are strictly positive) 
with eigenvalues 0 < A, G A, G . . * G A,_, < A,,. In this article, we present a numerical scheme 
to obtain the eigenvalues of A, and in particular the largest eigenvalue or the first few largest 
ones. This basic idea is to apply a sequence of Householder reflections [1,2] so that, in the limit, 
the first column of A converges to a multiple of e, (the first column of I,). The proposed 
method is a special case of the power method where the starting vector is e,. In contrast of the 
power method itself, our method transforms the whole matrix A at each step of the iteration 
process. As a consequence, the presented scheme converges linearly with convergence rate 
&i/A,>*. 

It is well known that the Jacobi method for obtaining the eigenvalues of a full symmetric 
matrix is well-suited for sequential machines, so is our algorithm. However, our scheme is 
eminently suitable for a parallel processing machine and should be superior to Jacobi’s method 
presented in 131 on such machines. 
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2. The proposed scheme 

Let A be a full positive definite matrix. Express A as 

11 
A=A,= a’ 4 1 1 VO Bo ’ 

where ah1 is the first element of A,, v. is an (n - l)-vector and B, is an (n - 1) X (n - 1) 
positive definite matrix. We denote by Ho an orthonormal matrix consisting of the eigenvectors 
of A andbyA=diag(h,, A*,..., h,) the matrix of the eigenvalues of A arranged in ascending 
order. 

Therefore, we can write the similarity transformation 

A, = H,AII,‘. 

The vector HTe, will be denoted by fo. 
The proposed algorithm is defined as follows. Starting with A, we apply an orthogonal 

transformation U, and define A, by 

A, = U,A,U, = 
where 

2 
V,=I, -P&~;f, Po= - 

II ug II 2 ’ 

and the vector u. is chosen so that U, transforms the vector [a:, v;f]’ into ke, with 

k= -/(a:)2+ IIv~~~~. 

As is well known [l], we can write u. as 

The process is repeated; at a typical stage we have 

where 

2 
u, = I, - p,u,uT, P, = ___ 

II u, II 2 ’ 

and 

(1) 

(2) 

(3) 
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In the following section, it will be shown that in the limit (i.e., as Y + ~1, we obtain a matrix of 
the form 

which means 

lim II V, II 2 = 0 and lim a:’ = A. 
r-m r-m 

So, this method provides a very reliable and economical criterion to deflate a matrix. 

3. Convergence study 

In this section, we prove the convergence of the algorithm together with rate of convergence. 
Before stating the theorem, we verify the following lemmas. 

Lemma 1. 

Pr= l 
(aLI+ d)d ’ 

d={m. (4) 

Proof. From (2) and (31, 

2( 4’)” + 2 II V, II 2 + 2&( 4’)’ + II v, II 2 

1 

= (d +a;‘)d’ 
d=/m. •I 

It can easily be proved that 

d = II AreI II. 

Lemma 2. 

u, = 
-a:‘/d - v,T/d 

-v,/d 1 In-l - &v,v,’ . 

(5) 

(6) 
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Proof. From (2) and (31, 

1 - (u;’ + d)/d - v,T/d 
= 

-Y/d I n-1 -P WC 1 =(6). 0 

It can easily be proved that 

Lemma 3. 

(7) 

11 a, 
=- 

d2 
[(a;y2+211v,l12] ++=u ;’ + $ [ ai1 11 vr 11 2 + v,TB,yr] . 

Theorem 4. lim, ,,a, l1 = A exists and is un eigenvulue of A. Moreover, if e;rfo Z 0, then A = A,,; if 
in addition ez_ Jo # 0, then 

(9) 

Proof. Since A, is positive definite, then, using Lemma 3, uF:i 2 ut’. Thus the sequence {at’} is 
a monotonically increasing sequence bounded from above by II A II. It follows that lim, ,,a:’ = A 
exists. From Lemma 3 also, it follows that lim, em 11 V~ 11 2 = 0. 

Let H, = U,_,H,_, denote the matrix of eigenvectors of A,, and let f, = HTe,. Then, 

fi = HITe, = (UOHO)Te, = HzU,e,. 
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Since from (71, ~,e, = -(AeI)/ll Ae, IL then 

HzAe I AHTe, Afo 
A=-((=- II H,AHze, 11 = - II* 

Similarly, 

fi = H,e, = (U,H,)*e, =H?Ulel. 

Since from (7), U,e, = -(A,e,)/ll AreI II, then 

f* = 

Since 

f1 = 

then 

II Afo II ’ 

A2f* II A”fo II 
Afl = - II Afo II 

and 
II Afo II * 

Then, 

2 A2fo 
f2 = (- ‘1 1) A2fo 1) * 

By induction, it follows that 

fr=(-1) 
? 4fo 

IIn'fo 11’ 

Since, by hypothesis, e;ffo z 0, then 

(- l)‘fi --) (0, 0,. . . ) q*. 

Since LX:’ = f,T A f,., it follows that Cm,,, LZ~’ = A,, and if e,‘_,fo # 0, then 

lili~;~r~~~~=(~~. 

It means that our proposed method converges linearly with convergence rate (A,_r/A,)*. q 

4. The connection between the power method and the proposed one 

The connection between the proposed method and the power method could be clarified by 
the following theorem. 
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Theorem 5. Consider the power method defined by 

Ax r-l 
x0 = e,, 

xr = II Ax,_,ll ’ 
pr = xpx ry r> 1. 

Then, 

x, = (- l)rUoU, * * . U,_,e, and p, = a:‘, for every Y a 1. 

Proof. (i) For r = 1: 

ho Ac1 =--- 
x1= IlAx,Il lIAe,II’ 

using (7); then, 

x, = -U,e,; 

consequently, 

p1 = xTA.x, = eTU,AU,e, = eTA,e, = ail. 

So the theorem is valid for Y = 1. 
(ii) For r = m + 1: assuming that the theorem is valid for Y = m, we will prove it for 

r = m + 1. By the induction hypothesis, 

x, = (- l)mUoU1 * *. U,_,e,; 

then, 

Ax, = (- l)mAUoU1 * *. U,_,e, = ( -l)mUoAIUI *. . U,_,e, = (- l)mUoUIA2 * *. U,_,e, 

= . . . = (- l)mUoUIU2 * *. U,_,A,e,. 

Using (71, 

Ax, = (- l)mUoUIU2 *. . Urn-,( -II Amel II U,e,) = (- l)m+l II Amel I( U,U, -. - U,e,. 

Since II Ax, II = II Ame, I), then 

kn 
x m+l = /I = (- l)“+‘UoU, - * - U,e,. 

Finally, the Rayleigh quotient at r = m + 1 is 

P m+1= x~+~Ax,+~ = eTU,,,U,,_, * * . U,AU,U, * *. U,,,e, = eTA,,,+,e, = a:,,, 

and the proof is complete. •I 

5. Numerical examples 

Example 6. Here we consider a 6 x 6 Hilbert matrix A = [a”] defined by 

.ij = 
1 

i+j-1’ 
l<i, j<6. 
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Then, 

599308 -0.076195 -0.081235 -0.078978 -0.075334 -0.060945 
-0.076195 0.046760 0.050223 0.044605 0.040991 0.038012 
- A,= I 0.081235 0.050223 0.061876 0.059875 0.055632 0.049568 
0.078978 0.044605 0.059875 0.059807 0.057837 0.053895 

-0.075334 0.040991 0.055632 0.057837 0.055818 0.054132 
-0.069045 0.038012 0.049568 0.053895 0.054132 0.051716 

1.618453 0.009665 0.013066 0.012165 0.011752 0.009898 
0.009665 0.44398 0.047510 0.042899 0.037976 0.033785 

A = 

2 

i 0.013066 

0.012165 

0.047510 0.057290 0.055761 0.051852 0.047680 I 

0.042899 0.055761 0.056502 0.054069 0.050811 ' 
0.011752 0.037976 0.051852 0.054069 0.052789 0.050405 
0.009898 0.033785 0.047680 0.050811 0.050405 0.048709 

A,= 

A,= 

r 1.618889 -0.001438 -0.001797 -0.001842 -0.001740 -0.001592 
-0.001438 0.044377 0.048121 0.043001 0.037897 0.033722 
-0.001797 0.048121 0.057202 0.055655 0.051760 0.047631 
-0.001842 0.043001 0.055655 0.056403 0.053969 0.050729 
-0.001740 0.037897 0.051760 0.053969 0.052707 0.050320 
_-0.001592 0.033722 0.047631 0.050729 0.050320 0.048634 

1.68889 0.000212 0.000259 0.000261 0.000258 0.000240 
0.000212 0.044375 0.048119 0.043000 0.037896 0.033720 
0.000259 0.048119 0.057200 0.055653 0.051758 0.047629 
0.000261 0.043000 0.055653 0.056401 0.053967 0.050726 
0.000258 0.037896 0.051758 0.053967 0.052705 0.050318 
0.000240 0.033720 0.047629 0.050726 0.050318 0.048632 

105 

The convergence to the largest eigenvalue is quite fast as can be seen from the fact that II v (1 2 
decreases to zero rapidly. 

It has to be noticed that a, ” = 1, ~a = [$, 5, 4, f, iIT, B, = [by] where b;‘= l/(i +j + 11, 

1 < i, j < 5. 

Example 7. This example was designed to show the effect of the shifts. A reasonable choice of 
the shift is u = i(h, + A,_,). 

In this example, the eigenvalues are close to successive integers with A, = 10 and A,_, z 9. 
The matrix A is arranged such that ul’ > a** > * - . 2 d6 and after the kth iteration we use 

the shift 

Ok = $(a2*(k) + a@yk)). 

Then, 

A= 

10 1 0.5 0.25 0.125 0.1 
1 9 0.4 0.2 0.1 0.05 
0.5 0.4 8 0.3 0.15 0.1 
0.25 0.2 0.3 7 0.5 0.4 ’ 

0.125 0.1 0.15 0.5 6 1 
0.1 0.05 0.1 0.4 1 5 
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Without shifts, at the end of twenty iterations, we get 

- 10.798224 0.009873 0.003921 0.001318 0.000675 0.000481 
0.009 873 8.365704 0.098 197 0.056740 0.023043 - 0.003 464 

A20 = 
0.003291 0.098197 7.858157 0.229358 0.114023 0.073 459 
0.001318 0.056740 0.229358 6.966996 0.477646 0.388 721 
0 .OOO 675 0.023043 0.114023 0.477646 5.990780 0.992 488 
0.000481 -0.003464 0.073459 0.388721 0.992488 4.995 558 _ 

With shifts, at the end of seven iterations, we get 

A,= 

- 10.798302 - 0.004 275 - 0.001436 - 0.000 785 - 0.000 200 - 0.000 509 
-0.004275 8.365 618 0.098312 0.056 086 0.022 983 - 0.003 138 
- 0.001436 0.098312 7.858 186 0.229513 0.113912 0.073 660 
-0.000785 0.056 086 0.229513 6.967011 0.477631 0.388801 
- 0 .ooo 200 0.022983 0.113912 0.477631 5.990887 0.992498 
-0.000509 - 0.003 138 0.073 660 0.388801 0.992498 4.995 503 

6. Conclusion 

To find all the eigenvalues of a symmetric matrix - or at least the first few largest ones - 
and the largest eigenvalue of a full positive definite matrix, a convergent numerical algorithm is 
proposed. The presented procedure could be easily implemented using APL programming 
language with a very brief code. 
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