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Abstract

This paper is Part III of the study on blending surfaces by partial di�erential equations (PDEs). The blending surfaces
in three dimensions (3D) are taken into account by three parametric functions, x(r; t); y(r; t) and z(r; t). The boundary
penalty techniques are well suited to the complicated tangent (i.e., normal derivative) boundary conditions in engineering
blending. By following the previous papers, Parts I and II in Li (J. Comput. Math. 16 (1998) 457–480; J. Comput.
Appl. Math. 110 (1999) 155–176) the corresponding theoretical analysis is made to discover that when the penalty power
� = 2, � = 3 (or 3.5) and 0¡�61:5 in the boundary penalty �nite element methods (BP-FEMs), optimal convergence
rates, superconvergence and optimal numerical stability can be achieved, respectively. Several interesting samples of 3D
blending surfaces are provided, to display the remarkable advantages of the proposed approaches in this paper: unique
solutions of blending surfaces, optimal blending surfaces in minimum energy, ease in handling the complicated boundary
constraint conditions, and less CPU time and computer storage needed. This paper and Li (J. Comput. Math. 16 (1998)
457–480; J. Comput. Appl. Math.) provide a foundation of blending surfaces by PDE solutions, a new trend of computer
geometric design. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is a continued study of Li [24,26] on mathematical modelling and numerical techniques
for blending surfaces, by partial di�erential equations (PDEs). In [24], we review the existing blend-
ing techniques, such as Foley et al. [16], Ho�mann and Hopcroft [19], Ohkura and Kakazu [32],
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Fig. 1. A blending surface connecting V1 and V2 along @V1 and @V2.

Kosters [21], Bajaj and Ihn [3], Choi [9], Farin [14], Fisher [15], Koenderink [20], Nutbourne
and Martin [31], Su and Liu [34] and Warren [37]. Only a few [5,6] are involved in di�erential
equations for blending surfaces. In this paper, the real 3D blending surfaces shown in Fig. 1 are
considered. A 
exibly elastic thin plate is resembled to model the transmitting surfaces for blending
two primary surfaces given in Fig. 1. Denote by x(r; t); y(r; t) and z(r; t) the parametric functions
of blending surfaces. Then, the solutions x(r; t); y(r; t) and z(r; t) may be governed by a system of
the biharmonic equations satisfying the displacement and their derivative boundary conditions. The
boundary penalty �nite element methods (BF-FEMs) using the piecewise cubic Hermite functions are
employed to handle the complicated boundary conditions. In [24], only optimal convergence rates are
derived in theory and veri�ed by numerical experiments. Note that the approaches of PDE solutions
have many advantages over the existing blending techniques: unique solutions of blending surfaces,
optimal blending curves in minimum energy, ease in handling the complicated boundary constraint
conditions, and less CPU time and computer storage needed. Toward practical applications, there
still exist several important problems of theory and practice to be solved:
(1) Superconvergence of the numerical solutions.
(2) Stability analysis of the BP-FEM because the condition number of the associated matrix result-

ing from the biharmonic equations is much larger than that resulting from the Poisson equation.
(3) Numerical experiments for producing real blending surfaces in 3D.
To seek solutions to the above problems is the main theme in this paper.
The organization of this paper is as follows. In the next section, the mathematical modelling

is addressed to lead to a system of the biharmonic equations of x(r; t); y(r; t) and z(r; t), which
are connected only by the boundary tangent conditions. In Section 3, the BP-FEM is developed to
handle the boundary constrains and to produce the entire solutions of optimal blending surfaces
in the minimum energy. In Section 4, optimal convergence rates, superconvergence and stabil-
ity analysis are derived together for 3D blending surfaces. The exposition of analysis in Section
4 for real 3D blending surfaces becomes easier by following [26], where only one biharmonic
equation is studied. Several blending examples are produced in Section 5 by the numerical tech-
niques, to show the e�ectiveness of the proposed methods. In the last section, extensions and
remarks are provided. The most remarkable advantage of the methods given in this paper and
[24,26] is 
exible to the complicated blending problems in engineering. This paper and [24,26]
provide a foundation of blending surfaces by PDE solutions, a new trend of computer geometric
design.
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Fig. 2. The solution domain and its partition.

2. Mathematical modelling

Let us consider a real 3D blending surface which is sought to join two given frame bodies V1 and
V2 at the left boundary @V1 and the right boundary @V2 (see Fig. 1), also see [9,14–16,18]. Suppose
that @V1 and @V2 are disjointed to each other. Since the algebraic function y=f(x; y) is di�cult to
represent the closed surface shown in Fig. 1 (also see [37]), we solicit parametric functions instead.
Choose two parameters r and t in a unit solution area 
 = {(r; t); 06r61; 06t61}, and use the
vector of three parametric functions,

U = U (r; t) = (x; y; z)T = (x(r; t); y(r; t); z(r; t))T; (r; t)∈
 (2.1)

to represent the blending surface. Naturally, we denote the boundary of 
 (see Fig. 2) by �= @
=
�0 ∪�1 ∪�2, where �0 = AB; �1 =CD; and �2 = AC ∪ BD. Therefore, the displacement and tangent
conditions of 3D blending surfaces along the joint boundaries @V1 and @V2 can be written as

U |AC = U |r=0 = U0; U |BD = U |r=1 = U1 (or U |�2 = �U ); (2.2)

(un) AC = (un)r=0 = �0U ′
0; (un) BD = (un)r=1 = �1U ′

1; (2.3)

where Un=(@=@n)U , and n is the outer normal to the boundary @
. The vectors U0; U1; U ′
0(6= 0) and

U ′
1(6= 0) are known, but the ratio functions �0(t)(6= 0) and �1(t)(6= 0) are arbitrary real functions.
We may express (2.3) as

yn = b10xn; zn = b20xn on AC; yn = b11xn; zn = b21xn on BD (2.4)

or simply as

yn = b1xn; zn = b2xn on �2; (2.5)

where b10; b20; b11 and b21 (or b1 and b2) are known and obtained from the ratios of derivatives in
(2.3). For the closed surface along direction t, the following periodical conditions on �1 will be
satis�ed:

U (r; 0) = U (r; 1); Ut(r; 0) = Ut(r; 1); 06r61: (2.6)
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Let Ck(
) denote a space of functions having continuous derivatives of order k. Since functions
x(r; t); y(r; t), and z(r; t)∈C1(
), and the continuity of U and Un on @
 is described in (2.2),
(2.5) and (2.6), we may assume that the solution x; y; z(∈C4(
)) satisfy the following biharmonic
equations which resemble the placements in 
exible elastic plates:

�2U = F where F = (fx; fy; fz)T; (2.7)

where the Laplace operator � = (@2=@x2) + (@2=@y2), and the biharmonic operator �2 = ((@2=@x2) +
(@2=@y2))2. The functions fx; fy, and fz denote the external loading forces on the thin plate and they
can be chosen suitably based on practical experiments and requirements in engineering.
Note that Eq. (2.7), accompanied only with the essential boundary conditions (2.2), (2.3) and

(2.6), will lead to many solutions (see [16, p. 486]). We derive in [24] the additional boundary
conditions

M (U ) · B= 0; (2.8)

P(U (r; 0)) + P(U (r; 1)) = 0; M (U (r; 0)) +M (U (r; 1)) = 0; 06r61; (2.9)

where B= (1; b1; b2)T and the notations are

M (U ) =−�U + (1− �)(Urrr2s + 2Urtrsts + Uttt2s ); (2.10)

P(U ) =
@
@n

�U + (1− �)
@
@s

{Urrrnrs + Urt(rnts + rstn) + Utttnts}; (2.11)

where rn; tn and rs; ts are the direction cosines of the outnormal and vectors, respectively.
The boundary conditions (2.8) and (2.9) are called the natural conditions; and Eqs. (2.2), (2.5)

and (2.6) are the essential conditions. Both the essential and natural boundary conditions should be
implemented to the di�erential equation (2.7) to yield a unique solution U .
Now we give the variational equations of biharmonic functions (see [11,17]). Denote two spaces

H and H0 of U such that

H = {(x; y; z) | x; y; z ∈H 2(
); satisfying (2:2); (2:5) and (2:6)}; (2.12)

H0 = {(x; y; z) | x; y; z ∈H 2(
); satisfying U |�2 = 0; (2:5) and (2:6)}; (2.13)

where H 2(
) is the Sobolev space (see [30]). A solution U ∈H can be expressed in a weak form
(Galerkin problem)

A(U;W ) = F(W ); ∀W ∈H0; (2.14)

where

A(U;W ) =
∫ ∫



{�U · �W + (1− �)(2Urt ·Wrt − Urr ·Wtt − Utt ·Wrr)} dr dt; (2.15)

F(U ) =
∫ ∫



F ·W dr dt; (2.16)

and Urr = @2U=@r2, Urt = @2U=@r@t, W = (�; �; �)T, and � is the Poisson ratio satisfying 0¡�¡ 1
2 .

Also the notation U ·W denotes the scalar product of vectors.
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Note that Galerkin problem (2.14) requires only the essential boundary conditions, where x; y; z
∈H 2(
) are required to be less smooth than x; y; z ∈C4(
) required in (2.7). The true solution U
can also be restated as the variational problem:

I(U ) = min
W∈H

I(W ); I(U ) = 1
2A(U;U )− F(U ) (2.17)

which also indicates the minimal, global energy of the optimal blending surfaces obtained (also
see [13]).

3. Boundary penalty �nite element methods

To deal with conditions (2.5) and (2.6), a direct treatment is introduced in Li [22] by eliminating
some unknowns on the boundary; but the treatment may cause some complexity in programming;
we will here follow the penalty techniques described in [23,2,4,33,35,36], to simplify numerical
algorithms.
Let the square solution area 
 be divided into small quasi-uniform rectangular elements by the

coordinate lines r = ri and t = tj (see Figs. 2–4), where

0 = r0¡r1¡ · · ·¡ri ¡ · · ·¡rn = 1; n¿1;
0 = t0¡t1¡ · · ·¡tj ¡ · · ·¡tm; m¿2: (3.1)

Denote the stepsizes �ri = ri+1 − ri; �tj = tj+1 − tj, and the small rectangular elements ij (see
Fig. 5(a)) by

i; j = {(r; t); ri6r6ri+1; tj6t6tj+1}: (3.2)

For each element node (i; j) = (ri; tj), we assign four unknowns, e.g., xij; (xr)ij ; (xt)ij, and (xrt)ij of
function x(r; t). Also denote the basis functions with the nonzero supports:

�i; ‘ = �‘

(
r − ri
�ri

)
;  i; ‘ =  ‘

(
r − ri
�ri

)
; ‘ = 0; 1;

�j; ‘ = �‘

(
t − tj
�tj

)
;  j; ‘ =  ‘

(
t − tj
�tj

)
; ‘ = 0; 1;

where the cubic Hermite functions on [0; 1] are (see [7]).

�0(r) = 2r3 − 3r2 + 1; �1(r) =−2r3 + 3r2;
 0(r) = �2(r) = r3 − 2r2 + r;  1(r) = �3(r) = r3 − r2:

(3.3)

The following piecewise bi-cubic Hermite polynomials can be formulated for xh(r; t) in two di-
mensions:

xh(r; t) =
n−1∑
i=0

m−1∑
j=0

1∑
k; ‘=0

{xi+k; j+‘�i; k(r)�j;‘(t) + �ri(xr)i+k; j+‘ i; k(r)�j;‘(t)

+ �tj(xt)i+k; j+‘�i; k(r) j; ‘(t) + �ri�tj(xrt)i+k; j+‘ i; k(r) j; ‘(t)}: (3.4)
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Fig. 3. A rectangular element.

In this paper we also employ the variable transformation as in [26]

x∗i; j = xi; j; (x∗r )i; j = �r(xr)i; j ; (x∗t )i; j = �r(xt)i; j ; (x∗rt)i; j = �r�t(xrt)i; j ; (3.5)

where �r and �t are the average meshspacings of �ri and �tj given by

�r =
n∑

i=1

�ri
n

; �t =
m∑

j=1

�tj
m

: (3.6)

Hence the admissible functions are expressed as

xh(r; t) =
n−1∑
i=0

m−1∑
j=0

1∑
k; ‘=0

{
x∗i+k; j+‘�i; k(r)�j;‘(t) +

(
�ri
�r

)
(x∗r )i+k; j+‘ i; k(r)�j;‘(t)

+
(
�tj
�t

)
(x∗t )i+k; j+‘�i; k(r) j; ‘(t) +

(
�ri
�r

)(
�tj
�t

)
(x∗rt)i+k; j+‘ i; k(r) j; ‘(t)

}
: (3.7)

The admissible functions are then written as

Uh = Uh(r; t) = (xh(r; t); yh(r; t); zh(r; t))T; (3.8)

where yh(r; t) and zh(r; t) are also de�ned in (3.4) or (3.7). Obviously, xh; yh; zh ∈H 2(
) ∩ C1(
).
De�ne a �nite-dimensional collection of the functions as

Vh = {U as (3:8); satisfying (2:2)}; (3.9)

V 0
h = {U as (3:8); satisfying U |�2 = 0}: (3.10)

Conditions in (2.2) still remain in spaces Vh and V 0
h , but neither (2.5) nor (2.6) in Vh and V 0

h . Hence
if compared to the functional spaces H and H0 in (2.12) and (2.13), we can see

V 0
h 6⊂H0; Vh 6⊂H: (3.11)

Therefore, we should invoke the penalty techniques to impose the boundary conditions (2.5) and
(2.6). The solution U ∗

h ∈V can then be obtained from the boundary penalty �nite element method
(BP-FEM),

Ap(U ∗
h ; Wh) = Fh(Wh); ∀Wh ∈V 0

h ; (3.12)
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where

Fh(W ) =
∫ ∫



F̂ ·W ds: (3.13)

F̂ is the piecewise bilinear and cubic Hermite interpolatory functions of F for optimal rates and
superconvergence, respectively, and

Ap(Uh;Wh) = A(Uh;Wh) + �D(Uh;Wh); (3.14)

A(U;W ) is given in (2.15) already, and h is the maximal length of quasiuniform elements de�ned
by h = maxij(�ri; �tj). The boundary penalty integrals �D(U;W ) are designed to impose (2.5) and
(2.6), given by [24]:

�D(U;W ) =
Pc

h2�

{∫
�2
(yn − �b1xn)(�n − �b1�n) d‘ +

∫
�2
(zn − �b2xn)(�n − �b2�n) d‘

+
∫ 1

0
(U (r; 0)− U (r; 1))(W (r; 0)−W (r; 1)) dr

+
∫ 1

0
(Un(r; 0)− Un(r; 1))(Wn(r; 0)−Wn(r; 1)) dr

}
; (3.15)

where Pc(¿ 0) is a bounded positive constant independent of h, and �(¿ 0) is a penalty power.
Note that �bi used in (3.15) are the piecewise q-order interpolatory polynomials of functions bi;
where 16q63. When q = 3; �bi are chosen as the piecewise cubic Hermite interpolants of bi. By
the analysis of Li [24], we need the same penalty factor Pc=h2� used for all boundary conditions of
both displacement and derivatives. The exact integrals in �D(U;W ) may also be evaluated directly
due to polynomial integrands, or from integration rules with accuracy of order up to 6 + 2q. In the
latter, Gaussian rules are suggested with integration nodes up to 4+q. Furthermore, integration rules
of order four and six can evaluate exactly integrals Ah(Uh;Wh) and Fh(Uh), respectively (see [12]).
For superconvergence, we will choose the variants of the BP-FEM as follows:

Âp(Û
∗
h ; Wh) = Fh(Wh); ∀Wh ∈V 0

h ; (3.16)

where

Âp(U;W ) = A(U;W ) + D̂(U;W ); (3.17)

A(U;W ) and Fh(W ) are the same as in (3.12), but D̂(U;W ) is de�ned di�erently by

�D(U;W ) =
Pc

h2�

{∫̂
�2
(yn − b1xn)(�n − b1�n) d‘ +

∫̂
�2
(zn − b2xn)(�n − b2�n) d‘

+
∫̂ 1

0
(U (r; 0)− U (r; 1))(W (r; 0)−W (r; 1)) dr

+
∫̂ 1

0
(Un(r; 0)− Un(r; 1))(Wn(r; 0)−Wn(r; 1)) dr

}
: (3.18)
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In (3.18) Pc(¿ 0) and �(¿ 0) are also the penalty constant and power independent of h, and the

approximate integrals
∫̂ 1
0 and

∫̂
�2
are evaluated by the following rules:∫̂ 1

0
uv dr =

∫ 1

0
ûv̂ dr =

∫ 1

0
uIvI dr; (3.19)

û and v̂ are the piecewise cubic Hermite interpolants of u and v, respectively, and the integration
rule with higher order is needed for

∫̂
�2
given by∫̂

�2
fg d‘ =

∫
�2
f̂ĝ d‘ =

∫
�2
(�5fI)(�5

pgI) d‘; (3.20)

where f̂ (or ĝ) are the piecewise Hermite interpolant of order 5 of f (or g) on [t2j; t2j+2] using the
nodal values f2j; f2j+1; f2j+2; (@f=@t)2j; (@f=@t)2j+1 and (@f=@t)2j+2. Note that when f= �n − b1�n=
�r − b1�r , the nodal values at (0; tj) and (1; tj) on �2 are given by

fj = (�r)j − (b1)j(�r)j;
(
@f
@t

)
j
= (�rt)j − ((b1)j(�rt)j + ((b1)t)j(�r)j); r = 0; 1: (3.21)

The cubic Hermite functions in [si; si+1] with ui and u′i are then expressed by

uh(s) = ui�0

(
s− si
hi

)
+ ui+1�1

(
s− si
hi

)
+ u′ihi 0

(
s− si
hi

)
+ u′i+1hi 1

(
s− si
hi

)
(3.22)

and �k(s) and  k(s); k = 0; 1 are given in (3.3).
Let u = u(s) in one dimension, and construct the interpolant polynomials �5

2huI of order 5 on
[s2i ; s2i+2] with the supports, u2i ; u2i+1; u2i+2; u′2i ; u′2i+1 and u′2i+2. Below we give an explicit formula
for the interpolation �5

2hû h on �2, which is used for the boundary integration in (3.20); and the
a posteriori interpolants �5

pŨ
∗
h over 
 can be obtained by tensor product. Assume that the known

solutions and their derivatives are given by

û0 = u(0); û1 = u(1); û2 = u(2);

û′0 = u′(0); û′1 = u′(1); û′2 = u′(2):

Then the Hermite interpolation of order 5 on [0,2] can be obtained from Alkinson [1, p. 160]:

P5(s) = û0T0(s) + û1T1(s) + û2T2(s) + û′0Q0(s) + û′1Q1(s) + û′2Q2(s); (3.23)

where
T0(s) = 1

4(1 + 3s)(s− 1)2(s− 2)2; T1(s) = s2(s− 2)2;
T2(s) = 1

4(1− 3(s− 2))s2(s− 1)2; Q0(s) = 1
4s(s− 1)2(s− 2)2;

Q1(s) = (s− 1)s2(s− 2)2; Q2(s) = 1
4(s− 2)s2(s− 1)2:

(3.24)

Let the division number be even, i.e., N is even and h2i=h2i+1. Then we may establish the following
Hermite interpolation with order 5 on [s2i ; s2i+2]:

�5
2huh(s) = x2iT0

(
s− s2i
h2i

)
+ x2i+1T1

(
s− s2i
h2i

)
+ x2i+2T2

(
s− s2i
h2i

)

+ x′2ih2iQ0

(
s− s2i
h2i

)
+ x′2i+1h2iQ1

(
s− s2i
h2i

)
+ x′2i+2h2iQ2

(
s− s2i
h2i

)
: (3.25)
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4. Convergence, Superconvergence and Stability

In this section, we will cite convergence from Li [24], and derive superconvergence and stability
for �∈ [0; 12 ). Since the analysis on optimal convergence, superconvergence and stability may follow
the analysis in [24,26], we only pay attention to di�erent arguments in proof so that all the analysis
is condensed into one section.

4.1. Optimal convergence

By the Green theory, we have for �∈ [0; 12 ).∫ ∫


(�2U − F) ·W ds+

∫
@


P(U ) ·W d‘ −
∫
@


M (U ) ·Wn d‘; (4.1)

where M (U ) and P(U ) are given in (2.10) and (2.11). First denote a norm

| ‖U‖ |= {‖U‖2(H 2(
)) 3 + �D(U;U )}1=2; (4.2)

where �D(U;U ) is given in (3.15), using q − (16q63) order interpolatory polynomials �bi of bi.
The norm notations are

‖U‖(Hk (
)) 3 = {‖x‖2Hk (
) + ‖y‖2Hk (
) + ‖z‖2Hk (
)}1=2; (4.3)

|U |(Hk (
)) 3 = {|x|2Hk (
) + |y|2Hk (
) + |z|2Hk (
)}1=2 (4.4)

and ‖x‖2Hk (
) and |x|2Hk (
) are the Sobolev norms (see Marti (86)). We have the following lemma.

Lemma 4.1. Let �∈ [0; 12 ); there exist two bounded positive constants C0 and C1 independent of h
and � such that

|Ap(W;U )|6C1| ‖W‖ | × | ‖U‖ |; W ∈H0 and U ∈V 0
h (4.5)

and the uniformly V 0
h -elliptic inequality

C0| ‖U‖ |26AP(U;U ); U ∈V 0
h : (4.6)

Proof. We have

A(U;U ) = �(Urr + Utt)2 + (1− �)(U 2
rr + 2U

2
rt + U 2

tt ): (4.7)

Then when �∈ [0; 12 );
Ap(U;U ) = A(U;U ) + �D(U;U )¿A(U;U )¿ 1

2 |U |22: (4.8)

Moreover, when Ap(U;U )=0; then A(U;U )=0 implies Urr=Urt=Utt=0. In this case, U are linear
functions. Since U ∈V 0

h ; U |�2 = 0; and then U ≡ 0. Therefore, based on the generalized Friedrichs’
inequality (see Marti (86, p. 82)) we obtain

‖U‖226C2

{
|U |22 +

∫
�2

U 2 d‘
}
= C2|U |2262C2Ap(U;U ); (4.9)
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where C2 is also a positive bounded constant. This is (4.6); and the proof for (4.5) is easier. We
complete the proof of Lemma 4.1.

Now let us cite a theorem and a corollary from Li [24].

Theorem 4.2. Let U ∈ (H 4(
))3; F ∈ (H 2(
))3; U ∈ (H 4(�))3; Un ∈ (H 4(�))3; M (U )∈ (H 0(�))3;
P(U )∈ (H 0(�1))3 and B∈ (Hq+1(�2))2 be given. When F̂ in (3:13) is the piecewise bilinear inter-
polant of F . Then for �∈ [0; 12 ); there exists a bounded constant C independent of h and � such
that

| ‖U − U ∗
h ‖ |6C{h2(|U |(H 4(
)) 3 + |F |(H 2(
)) 3) + h�(|M (U )|(H 0(�)) 3 + |P(U )|(H 0(�1)) 3)

+ h4−�(‖B‖(Hq+1(�2)) 2 × |Un|(H 4(�2)) 3 + |U |(H 4(�1)) 3 + |Un|(H 4(�1)) 3)

+ hq+1|B|(Hq+1(�2)) 2 × |M (U )|(H 0(�2)) 3}; (4.10)

where the notations are

|B|(Hk (�2)) 2 = {|b1|2Hk (�2) + |b2|2Hk (�2)}1=2; ‖B‖(Hk (�2)) 2 = {‖b1‖2Hk (�2) + ‖b2‖2Hk (�2)}1=2: (4.11)

Corollary 4.3. Let all the conditions in Theorem 4:2 and � = 2 and q= 3 hold. When h → 0 the
solutions from the BP-FEMs (3:12) have the following asymptotes:

| ‖U − U ∗
h ‖ |=O(h2); ‖U − U ∗

h ‖(H 2(
)) 3 = O(h2); (4.12)

‖�U ∗
h ‖[0;1] = O(h4); ‖�(U ∗

h )n‖[0;1] = O(h4);
‖(y∗

h )n − �b1(x∗h )n‖H 0(�2) = O(h
4); ‖(z∗h )n − �b2(x∗h )n‖H 0(�2) = O(h

4); (4.13)

‖(y∗
h )n − b1(x∗h )n‖H 0(�2) = O(h

4); ‖(z∗h )n − b2(x∗h )n‖H 0(�2) = O(h
4); (4.14)

where

‖�U‖[0;1] =
{∫ 1

0
((x(r; 0)− x(r; 1))2 + (y(r; 0)− y(r; 1))2 + (z(r; 0)− z(r; 1))2) dr

}1=2
(4.15)

4.2. Superconvergence

Next consider superconvergence also for �∈ [0; 12 ) and choose the variant (3.16) of BP-FEM. We
also use the notations

‖f‖H 0(�2)
=
(∫

�2
(�5

pfI)2 d‘
)1=2

; ‖f‖H 0(�0)
=
(∫

�0
(fI)2 d‘

)1=2
: (4.16)

De�ne a new norm involving discrete summation on �
:

| ‖U‖ |= (‖U‖2(H 2(
)) 3 + D̂(U;U ))1=2; (4.17)

D̂(U;U ) =
Pc

h2�
{‖yn − b1xn‖2H 0(�2)

+ ‖zn − b2xn‖2H 0(�2)

+‖U+ − U−‖2H 0(�0)
+ ‖U+

n − U−
n ‖2H 0(�0)

};
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Fig. 4. 2×2
2i+1;2j+1 in the 2× 2 fashion of partition.

where D̂(U;W ) are given as (3.18). Note that the new norm de�nitions as in (4.17) are crucial
to achieve the superconvergence for the solutions involving the boundary conditions. First from the
integration rules in D̂(U;W ) given by (3.20)–(3.25) we have the following lemma directly.

Lemma 4.4. Let U;UI and �5
pUI be the true solutions; the piecewise cubic Hermite interpolants

and the Hermite interpolants with order 5 on 2×2
2i+1;2j+1 respectively (see Fig. 4); then there exist

the equalities

D̂(U;W ) = 0; D̂(U − UI ;W ) = 0; D̂(U −�5
pUI ;W ) = 0; ∀W ∈V 0

h : (4.18)

Lemma 4.5. Let fn = �n − b1�n and b1 ∈H 6(�2); then there exist the bounds

‖fn‖H 0(�2)6C(h� + h3:5‖b1‖H 6(�2))| ‖W‖ |: (4.19)

Proof. We have

‖fn‖H 0(�2) − ‖fn‖H 0(�2)
= ‖fn‖H 0(�2) − ‖f̂n‖H 0(�2)

6 ‖fn −f̂n‖H 0(�2) = ‖b1�n − b̂1�n‖H 0(�2)

6Ch6‖b1�n‖H 6(�2)6Ch6‖b1‖H 6(�2)‖�n‖H 3(�2)

6Ch3:5‖b1‖H 6(�2)| ‖W‖ |; (4.20)

where we have used the inequality for W ∈V 0
h

‖�n‖H 3(�2)6Ch−2:5‖�n‖H 1=2(�2)6Ch−2:5‖�n‖H 2(
)6Ch−2:5| ‖W‖ |: (4.21)

Since ‖fn‖H 0(�2)
6Ch�D̂(U;U )1=26Ch�| ‖W‖ |, the desired results (4.19) are obtained. This completes

the proof of Lemma 4.5.

Lemma 4.6. Let M (U )∈ (H 0(�))3; P(U )∈ (H 0(�1))3; F ∈ (H 4(
))3; B∈ (H 6(�2))2; and F̂ in
(3:13) be the piecewise cubic Hermite interpolants of F . For �∈ [0; 12 ) there exists a bounded
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constant C independent of h and � such that

| ‖UI − Û
∗
h ‖ |6 �= C

{
A(U − UI ; E)

| ‖E‖ | + h�(|M (U )|(H 0(�)) 3 + |P(U )|(H 0(�1)) 3)

+h3:5‖B‖(H 6(�2)) 2 × |M (U )|(H 0(�2)) 3 + h4|F |(H 4(
)) 3

}
; (4.22)

where U (∈H) and UI are the true solutions and their piecewise cubic Hermite interpolants;
respectively; and Û

∗
h (∈Vh) are the solutions from the BP-FEM given in (3:16).

Proof. Since the true solutions U satisfy natural boundary conditions (2.8) and (2.9), we can obtain
the following equations by applying the Green theorem:

A(U;W ) =
∫ ∫



F ·W ds+

∫
�2
{m(y)(�n − b1�n) + m(z)(�n − b2�n)} d‘

+
∫ 1

0
P(U (r; 0)) · (W (r; 0)−W (r; 0)) dr

+
∫ 1

0
M (U (r; 0)) · (Wn(r; 0)−Wn(r; 1)) dr = 0; W ∈V 0

h ; (4.23)

where m(x) and m(y) are the components of the vector M (U ) de�ned in (2.10). Then we obtain
from Lemma 4.4

ÂP(U;W ) = A(U;W ) + D̂(U;W ) = A(U;W ); W ∈V 0
h : (4.24)

Since solutions Û
∗
h satisfy (3.16), we have from (4.23)

|ÂP(U − Û
∗
h ; W )|=

∣∣∣∣ ∫
�2
{m(y)(�n − b1�n) + m(z)(�n − b2�n)} d‘

∣∣∣∣
+

∣∣∣∣∣
∫ 1

0
P(U (r; 0)) · (W (r; 0)−W (r; 1)) dr

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

0
M (U (r; 0)) · (Wn(r; 0)−Wn(r; 1)) dr

∣∣∣∣∣
+
∣∣∣∣ ∫ ∫



(F − F̂) ·W d


∣∣∣∣
= I + II + III + IV: (4.25)

For the �rst term in the right-hand side of the above equation, we have from the Schwarz inequality,
Lemma 4.5 and de�nition of | ‖W‖ | in (4.17)

I =
∣∣∣∣ ∫

�2
{m(y)(�n − b1�n) + m(z)(�n − b2�n)} d‘

∣∣∣∣
6C|M (U )|(H 0(�2)) 3 ×

{∫
�2
(|�n − b1�n|2 + |�n − b2�n|2) d‘

}1=2
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6C(h� + h3:5‖B‖H 6(�2)) 2)|M (U )|H 0(�2)) 3 × | ‖W‖ |: (4.26)

Next we estimate the rest terms in (4.25), we have again from (4.2)

II =

∣∣∣∣∣
∫ 1

0
P(U (r; 0)) · (W (r; 0)−W (r; 1)) d‘

∣∣∣∣∣
6 |P(U )|(H 0(AB)) 3 ×

(∫ 1

0
‖W (r; 0)−W (r; 1)‖2 d‘

)1=2

= |P(U )|(H 0(AB)) 3 ×
(∫̂ 1

0
‖W (r; 0)−W (r; 1)‖2 d‘

)1=2

6Ch�|P(U )|(H 0(�0)) 3 × D̂(W;W )1=2

6Ch�|P(U )|(H 0(�0)) 3 × | ‖W‖ | (4.27)

and

III =

∣∣∣∣∣
∫ 1

0
M (U (r; 0)) · (Wn(r; 0)−Wn(r; 1)) dr

∣∣∣∣∣
6Ch�|M (U )|(H 0(�0)) 3 × | ‖W‖ |: (4.28)

Since �F is piecewise cubic Hermite interpolant of F , we have

IV =
∣∣∣∣ ∫ ∫



(F − F̂) ·W d


∣∣∣∣6Ch4|F |(H 4(
)) 3 × ‖W‖(H 0(
)) 3

6Ch4|F |(H 4(
)) 3 × | ‖W‖ |: (4.29)

Therefore, combining (4.25)–(4.29) leads to

|ÂP(U − Û
∗
h ; W )|6I + II + III + IV6CQ| ‖W‖ |; (4.30)

where

Q = h�(|M (U )|(H 0(�)) 3 + |P(U )|(H 0(�0)) 3) + h3:5|B|(H 6(�2)) 2 × |M (U )|(H 0(�2)) 3 + h4|F |(H 4(
)) 3 :

Moreover, letting E = UI − Û
∗
h then E ∈V 0

h . Hence D̂(U − UI ; E) = 0 from Lemma 4.4. We obtain
also from Lemma 4.1 and (4.30) that

C0| ‖E‖ |26 ÂP(E; E)62(|ÂP(U − UI ; E)|+ |ÂP(UI − Û
∗
h ; E)|)

6C(|Â(U − UI ; E)|+ |D̂(U − UI ; E) + Q × | ‖E‖ |)

6C1

(
A(U − UI ; E)

| ‖E‖ | + Q

)
× | ‖E‖ |: (4.31)

The desired results (4.22) are obtained by dividing two sides of (4.31) by | ‖E‖ |. This completes
the proof of Lemma 4.6.
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Now we derive the important bounds for A(U − UI ; E) needed in Lemma 4.6, where

A(U;W ) =
∫ ∫



{Urr ·Wrr + Utt ·Wrr + 2(1− �)Urt ·Wrt + �(Urr ·Wtt + Utt ·Wrr)} dr dt; (4.32)

whose bounds are derived by the following three lemmas.

Lemma 4.7. For W ∈V 0
h there exist the bounds for quasiuniform ij∣∣∣∣ ∫ ∫



(U − UI)rr ·Wrr dr dt

∣∣∣∣6Ch4‖U‖(H 6(
)) 3 | ‖W‖ | (or Ch3‖U‖(H 5(
)) 3 | ‖W‖ |) ; (4.33)

for quasiuniform ij∣∣∣∣ ∫ ∫


(U − UI)rt ·Wrt dr dt

∣∣∣∣6Ch3‖U‖(H 5(
)) 3 | ‖W‖ |; (4.34)

but for uniform ij∣∣∣∣ ∫ ∫


(U − UI)rt ·Wrt dr dt

∣∣∣∣6C

h4‖U‖(H 6(
)) 3 + h3:5
∥∥∥∥∥@4U@n4

∥∥∥∥∥
(H 1(�2)) 3

+h3+�

∥∥∥∥∥@4U@n4

∥∥∥∥∥
(H 1(�0)) 3

| ‖W‖ |
 : (4.35)

Proof. Eqs. (4.33) and (4.34) follow directly from Li [26] (also see [27–29]. For uniform ij, we
also have the bounds from Lemma 4.1 of paper [26]:∣∣∣∣ ∫ ∫



(U − UI)rt ·Wrt dr dt

∣∣∣∣6Ch4
‖U‖(H 6(
)) 3 | ‖W‖ |+

∥∥∥∥∥@4U@n4

∥∥∥∥∥
(H 1(�2)) 3

‖Wn‖(H 1(�2)) 3

+

∥∥∥∥∥@4U@n4

∥∥∥∥∥
(H 1(�0)) 3

‖W+
n −W−

n ‖(H 1(�0)) 3

 : (4.36)

Then we have

‖Wn‖(H 1(�2)) 36Ch−1=2‖Wn‖(H 1=2(�2)) 36Ch−1=2‖W‖(H 2(
)) 36Ch−1=2| ‖W‖ |; (4.37)

‖W+
n −W−

n ‖(H 1(�0)) 3 6Ch−1‖W+
n −W−

n ‖(H 0(�0)) 3

= Ch−1‖W+
n −W−

n ‖(H 0(�0)) 3
6Ch�−1| ‖W‖ |: (4.38)

The desired results (4.35) are obtained from (4.36)–(4.38). This completes the proof of Lemma 4.7.

Lemma 4.8. Let �∈ [0; 12 ) U ∈Vh and W ∈V 0
h . Then there exist the bounds for quasiuniform ij∣∣∣∣ ∫ ∫



(U − UI)rr ·Wtt dr dt

∣∣∣∣6 ∣∣∣∣∫ ∫


(U − UI)rt ·Wrt dr dt

∣∣∣∣+ Ch2+�|U |(H 4(�0)) 3 | ‖W‖ | (4.39)
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and ∣∣∣∣ ∫ ∫


(U − UI)tt ·Wrr dr dt

∣∣∣∣6 ∣∣∣∣ ∫ ∫


(U − UI)rt ·Wrt dr dt

∣∣∣∣+ Ch2+�|Un|(H 4(�0)) 3 | ‖W‖ |: (4.40)

Proof. In fact, the functions (U −UI)r, W (and Wtt) are continuous along the edges parallel to axis
t, and Wtt = 0 on �2 for W ∈V 0

h . Hence we obtain from integration by parts∫ ∫


(U − UI)rr ·Wtt dr dt =−

∫ ∫


(U − UI)r ·Wrtt dr dt; W ∈V 0

h : (4.41)

Similary, since the functions (U − UI)r and Wrt are continuous along the edges parallel to axis r
for W ∈V 0

h and the periodical solutions U at t = 0; 1∫ ∫


(U − UI)r ·Wrtt dr dt=−

∫ ∫


(U − UI)rt ·Wrt dr dt

+
∫
�0
(U − UI)r · (W+

rt −W−
rt ) dr; W ∈V 0

h : (4.42)

Combining (4.41) and (4.42) yields∫ ∫


(U − UI)rr ·Wtt dr dt=

∫ ∫


(U − UI)rt ·Wrt dr dt

−
∫
�0
(U − UI)r · (W+

rt −W−
rt ) dr; W ∈V 0

h : (4.43)

Also we have∣∣∣∣∫
�0
(U − UI)r · (W+

rt −W−
rt ) dr

∣∣∣∣6|U − UI |(H 1(�0)) 3‖W+
n −W−

n ‖(H 1(�0)) 3 (4.44)

and

|U − UI |(H 1(�0)) 36Ch3|U |(H 4(�0)) 3 : (4.45)

The �rst bounds (4.39) follow from (4.43)–(4.45) and (4.38). Below we prove (4.40).
Similarly, by noting U ∈Vh and W ∈V 0

h we obtain from integration by parts∫ ∫


(U − UI)tt ·Wrr dr dt=

∫ ∫


(U − UI)rt ·Wrt dr dt

+
∫
�0
(U − UI)t · (W+

rr −W−
rr ) dr −

∫
�2
(U − UI)t ·Wrt dt: (4.46)

Moreover, we have from (4.38)∣∣∣∣∫
�0
(U − UI)t · (W+

rr −W−
rr ) dr

∣∣∣∣6 |(U − UI)n|(H 0(�0)) 3‖W+
n −W−

n ‖(H 2(�0)) 3

6Ch4|Un|(H 4(�0)) 3 × h−2‖W+
n −W−

n ‖(H 0(�0)) 3

6Ch2+�|Un|(H 4(�0)) 3 | ‖W‖ |: (4.47)
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Note that the assumption U ∈Vh indicates g=U |�2 =UI . Hence we obtain also from integration by
parts ∫

�2
(U − UI)t ·Wrt dt =−

∫
�2
(U − UI) ·Wrtt dt =−

∫
�2
(g− UI) ·Wrtt dt = 0: (4.48)

Combining (4.46)–(4.48) leads to the second desired results (4.40). This completes the proof of
Lemma 4.8.

By noting (4.32) and applying Lemmas 4.7 and 4.8 we obtain the following lemma.

Lemma 4.9. Let �∈ [0; 12 ); U ∈Vh and W ∈V 0
h . Then there exist the bounds for quasiuniform ij

A(U − UI ;W )6C{h3‖U‖(H 5(
)) 3 + h2+�(|Un|(H 4(�0)) 3 + |U |(H 4(�0)) 3)}| ‖W‖ |; (4.49)

and for uniform ij

A(U − UI ;W )6C

{
h4‖U‖(H 6(
)) 3 + h3:5

∥∥∥∥@4U@n4

∥∥∥∥
(H 1(�2)) 3

+ h3+�

∥∥∥∥@4U@n4

∥∥∥∥
(H 1(�0)) 3

+h2+�(|Un|(H 4(�0)) 3 + |U |(H 4(�0)) 3)

}
| ‖W‖ |: (4.50)

Also construct the a posteriori interpolants �5
pÛ

∗
h of order 5 on 2×2

ij . We have the following
theorem.

Theorem 4.10. Let �∈ [0; 12 ) and all conditions in Lemma 4:6 hold. Then there exist the bounds

| ‖U −�5
pÛ

∗
h ‖ |6�=C{R+ h4|F |(H 4(
)) 3 + h�(|M (U )|(H 0(�)) 3 + |P(U )|(H 0(�1)) 3)

+ h3:5‖B‖(H 6(�2)) 2 × |M (U )|(H 0(�2)) 3}; (4.51)

where

R= h3‖U‖(H 5(
)) 3 + h2+�(|Un|(H 4(�0)) 3 + |U |(H 4(�0)) 3) (4.52)

for quasiuniform ij ; and

R= h4‖U‖(H 6(
)) 3 + h3:5
∥∥∥∥∥@4U@n4

∥∥∥∥∥
(H 1(�2)) 3

+ h3+�

∥∥∥∥∥@4U@n4

∥∥∥∥∥
(H 1(�0)) 3

+h2+�(|Un|(H 4(�0)) 3 + |U |(H 4(�0)) 3) (4.53)

for uniform ij.
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Proof. Let W =U −�5
pUI . We have D̂(W;W )= 0 from Lemma 4:2. Hence, we have from Lemma

4.4 and [26]

| ‖U −�5
pÛ

∗
h ‖ |6 | ‖U −�5

pUI‖ |+ | ‖�5
p(UI − Û

∗
h )‖ |

6 ‖U −�5
pU

∗
h ‖(H 2(
)) 3 + D̂(W;W )1=2 + C| ‖UI − Û

∗
h ‖ |

6 ‖U −�5
pU

∗
h ‖(H 2(
)) 3 + C| ‖UI − Û

∗
h ‖ |6C(h�‖U‖(H�+2(
)) 3 + �); �= 3; 4;

(4.54)

where � is given in Lemma 4.6. The desired results are obtained from Lemmas 4.6 and 4.9.

Corollary 4.11. Let U ∈ (H�+2(
))3 (�=3; 4); U ∈ (H 4(�0))3; Un ∈ (H 4(�0))3; @4U=@n4 ∈ (H 1(�0))3;
@4U=@n4 ∈ (H 1(�2))3; and all the conditions in Lemma 4:6 hold. Then when � = 3 ∧ � = 3 and
�=3:5∧�=4 for quasiuniform and uniform ij ; respectively; the solutions from the BP-FEM; (3:16);
have the following superconvergence as h → 0 :

| ‖U −�5
pÛ

∗
h ‖ |=O(h�); ‖UI − Û

∗
h ‖(H 2(
)) 3 = O(h�); (4.55)

‖�Û ∗
h ‖[0;1] = O(h2�); ‖�(U ∗

h )n‖[0;1] = O(h2�); (4.56)

‖��5
pÛ

∗
h ‖[0;1] = O(h2�); ‖��5

p(Û
∗
h )n‖[0;1] = O(h2�); (4.57)

‖�5
p(ŷ

∗
h)n − b1�5

p(x̂
∗
h)n‖H 0(�2)

= O(h2�); (4.58)

‖�5
p(ẑ

∗
h)n − b2�5

p(x̂
∗
h)n‖H 0(�2)

= O(h2�): (4.59)

Remark 1. Contrasted to O(h8) of the boundary constraints for uniform ij in [26], only O(h7) of
superconvergence can be attained. The reason for such one order loss in superconvergence is not
the extension from �=0 to �∈ [0; 12 ), but the complexity of the boundary constraints in the penalty
integrals (3.15) on �2. In fact, we may easily extend all the high superconvergence in [26] from
� = 0 to �∈ [0; 12 ), by the help of new estimates (4.43) and (4.46) in Lemma 4.8 in this paper.
Besides, for the purposes of blending only, we may not need the a posteriori interpolant �4

pÛ
∗
h over


 because our attention is focussed on the boundary matching. Hence only the a posterior interpolant
on �2 as in (3.25) will lead to the superconvergence (4.56), (4.58) and (4.59).

4.3. Stability

Finally, we provide stability analysis for the BP-FEM (3.12) which is written as a system of
linear algebraic equations

Tw= k; (4.60)
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Fig. 5. (a) Element ij with the boundary length h. (b) The order of 16 unknowns on ij: v1; (vr)1; (vt)1; (vrt)1; v2; (vr)2;
(vt)2; (vrt)2; v3; (vr)3; (vt)3; (vrt)3 and v4; (vr)4; (vt)4; (vrt)4.

Fig. 6. The order of all unknowns u1–u64 in a 3× 3 partition of 
.

where w = (: : : ; x∗ij ; (xr)
∗
ij ; (xt)

∗
ij ; (x

∗
rt)ij ; y

∗
ij ; (yr)∗ij ; (yt)∗ij ; (y

∗
rt)ij ; z

∗
ij ; (zr)

∗
ij ; (zt)

∗
ij ; (z

∗
rt)ij ; : : :)

T; k is a known
vector, and T is symmetric and positive-de�nite matrix. The order of variables shown as in Figs. 5
and 6 and may reduce the matrix bandwidth. The numerical stability is measured by the condition
number: cond:(T) = �max(T)=�min(T) of matrix T, where �max(T) and �min(T) are the maximal and
minimal eigenvalues of T. We do not follow in detail the proof in [26], but �nd out the relation of
the analysis between in [26] and in this paper.
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Let us �rst consider one biharmonic equation and the clamped and periodical conditions on the
unit square 
 as in [26]

�2u=

(
@2

@r2
+

@2

@t2

)2
u= f; (r; t)∈
; (4.61)

u= g;
@u
@n
= g1 on �2; (4.62)

u(r; 0) = u(r; 1); ut(r; 0) = ut(r; 1); 06r61; (4.63)

where n is the outward normal of @
, and 
 is a unit square: 
={(r; t); 06r61; 06t61}, shown
in Fig. 2. In fact, Eqs. (4.61)–(4.63) are a special case of the 3D problems of blending surfaces
given in this paper. The corresponding BP-FEM is expressed by: To seek uh such that

b(uh; v) = F(v); (4.64)

where uh and v are the functions (3.4) satisfying (uh)|�0 = g and v|�0 = 0, respectively. The notations
are

b(u; v) =
∫ ∫



��(u; v) ds+ D(u; v); (4.65)

F(v) = f(v) +
Pc

h2�

∫
�2

g1vn d‘; (4.66)

D(u; v) =
Pc

h2�

{∫
�2

unvn d‘ +
∫ 1

0
(u+ − u−)(v+ − v−) dr +

∫ 1

0
(u+t − u−t )(v

+
t − v−t ) dr

}
; (4.67)

where u+ = u(r; 1); u− = u(r; 0); �(¿ 0) is the penalty power, Pc(¿ 0) is a bounded constant inde-
pendent of h; u and v, and h=maxij(�ri; �tj). In (4.65), the integrands are

��(u; v) = urrvrr + uttvtt + 2(1− �)urtvrt + �(urrvtt + uttvrr): (4.68)

In [26], we have derived the estimates for the condition number of the associated matrix A under
�=0 in (4.64); all the arguments in [26] can be extended, word for word, to the condition number
under �∈ [0; 12 ). We write the results without proof.

Lemma 4.12. For �∈ [0; 12 ); there exist the bounds
b(v; v)6C(h−2 + h1−2�)(C∗)TC∗; b(v; v)¿C0‖v‖H 2(
)¿C0h2(C∗)TC∗ (4.69)

where b(v; v) = (C∗)TAC∗; C and C0¿ 0 are two bounded constants independent of h and �; and
x∗ is the vector consisting of x∗ij ; (x

∗
r )ij ; (x

∗
t )ij and (x

∗
rt)ij.

Theorem 4.13. Let B∈ (H 1(�2))2 and �∈ [0; 12 ) hold. When ij are quasiuniform; then under the
variable transformations (3:5); the condition number of matrix T resulting from the BP-FEM
(3:12) has the following bounds:

contd:(T)6C(h−4 + h−1−2�): (4.70)



260 Z.-C. Li, C.-S. Chang / Journal of Computational and Applied Mathematics 110 (1999) 241–270

Proof. Consider

�D(U;U ) =
Pc

h2�

{∫
�2
(yn − �b1xn)2 d‘ +

∫
�2
(zn − �b2xn)2 d‘

+
∫ 1

0
‖U (r; 0)− U (r; 1)‖2 dr +

∫ 1

0
‖Un(r; 0)− Un(r; 1)‖2 dr

}
(4.71)

When bi ∈H 1(�2); i = 1; 2, the interpolants of bi have the bounds,

‖ �bi‖0; �2 6 ‖bi‖0; �2 + ‖bi − �bi‖0; �2
6 ‖bi‖0; �2 + Ch|bi|1; �26C‖bi‖1; �26C (4.72)

then ∫
�2
(yn − �b1xn)2 d‘ = ‖yn − �b1xn‖20; �262‖yn‖20; �2 + 2‖ �b1‖0; �2‖xn‖20; �2

6C(‖yn‖20; �2 + ‖xn‖20; �2) = C
∫
�2
(y2n + x2n) d‘ (4.73)

Similarly,∫
�2
(zn − �b2xn)2 d‘ = C

∫
�2
(z2n + x2n) d‘ (4.74)

Hence we have

Ap(U;U )6C(b(x; x) + b(y; y) + b(z; z)); (4.75)

where

b(v; v) =
∫ ∫



��(v; v) ds+ D(v; v): (4.76)

Since Ap(U;U ) = wTTw we have

�max(T) = max
w 6=0

(w)TTw
(w)Tw

=max
w 6=0

Ap(U;U )
(w)Tw

;

�min(T) = min
w 6=0

(w)TTw
(w)Tw

=min
w 6=0

Ap(U;U )
(w)Tw

;

to lead to

cond:(T) =
maxw 6=0(Ap(U;U )=(w)Tw)
minw 6=0 (Ap(U;U )=(w)Tw)

: (4.77)

Denote the vector wT=((x∗)T; (y∗)T; (z∗)T) by permutation, where (x∗)T=(: : : ; (x∗)ij ; (x∗r)ij ; (x
∗
t)ij ; (x

∗
rt)ij).

Since Ap(v; v) is invariant under any variable permutation, we obtain from (4.75) and Lemma 4.12
that

Ap(U;U )6C(h−2 + h1−2�)((x∗)Tx∗ + (y∗)Ty∗ + (z∗)Tz∗)

= C(h−2 + h1−2�)(w)Tw: (4.78)
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Next it follows from (4.6) and Lemma 4.12 that

Ap(U;U )¿C0| ‖U‖ |2¿C0‖x‖2H 2(
) + ‖y‖2H 2(
) + ‖z‖2H 2(
))

¿C0h2((x∗)Tx∗ + (y∗)Ty∗ + (z∗)Tz∗) = Ch2(w)Tw: (4.79)

Since C and C0(¿ 0) are two bounded constants independent of h and �, the desired results (4.70)
follow from (4.77), (4.78) and (4:79). This completes the proof of Theorem 4.13.

5. Examples for generating real blending surfaces

Since the veri�cation on the theoretical analysis is given in [26], in this section the numerical
experiments are designed to generate real samples of 3D blending surfaces; three di�erent models are
given (see [8]). The corresponding real blending surfaces U (r; t) = (x; (r; t); y(r; t); z(r; t))T will be
described by resembling 
exibly elastic plates and obtained approximately by the BP-FEM in (3.12).
First, consider two separated and equal spheres with the same radius (=13) in Fig. 7(a). Both

spheres are cut by vertical planes, and the circular gashes with the radius equal to 5 are obtained.
We will generate a blending surface to connect the gashes, @V1 and @V2, of the left and the right
spheres, V1 and V2. We provide below the boundary conditions of @V1 and @V2 in Fig. 7(a).

Example 5.1.

�2U = F; in 
;

@V1 = (5 cos(t); 5 sin(t); r)
T ; (@V1)n =

(−12 cos(t)
5

;
−12 sin(t)

5
; 1
)T

;

@V2 = (5 cos(t); 5 sin(t); r)
T ; (@V2)n =

(−12 cos(t)
5

;
−12 sin(t)

5
; 1
)T

;

where U and F are de�ned in (2.1) and (2:7); t ∈ [0; 2�] and r ∈ [12; 32].

Hence, from Sections 2 and 3, we use the BP-FEM (3.12) as � = 0 to evaluate the numerical
solutions to the system of three biharmonic equations. Let the square solution area


 = {(r; t) | r ∈ [12; 32]; t ∈ [0; 2�]}
be divided into 8 × 4 uniform rectangular elements, i.e., choose m = 8 and n = 4 in Eqs. (3.1)–
(3.7). Also, let �bi be the piecewise cubic Hermite interpolants of bi, and choose Pc = 20 and �= 2
in (3.15), which lead to the optimal convergence rates. We �rst consider the blending surface in a
natural state, i.e., no external loading force on elastic plate: F = (0; 0; 0)T. Then after computing,
the real blending surface of Example 5.1 is obtained and drawn by computer graphics in Fig. 7(b).
Note the narrow channel is formed by a closed blending surface between two spheres in

Fig. 7(b); however we may expand the channel by adding the external (i.e., internal) loading forces
F (see Fig. 8). As we describe the elastic plate as a blending surface, the expanding force in Fig.
8(a) will be restated as these external forces that act on the plate (see Fig. 8(b)). In fact, the
forces in Fig. 7(c)–(e), consist of two nonzero components, which have the same magnitudes but
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Fig. 7. (a) Two separated spheres with equal radii. (b) The blending surface by F = (0; 0; 0)T. (c) The blending surface
by F=(sign(sin (t)); sign(sin (t)); 0)T. (d) The blending surface by F=(t sign(sin(t)); t sign(sin (t)); 0)T. (e) The blending
surface by F = (t2 sign(sin(t)); t2 sign(sin (t)); 0)T.
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Fig. 8. (a) The external loading forces, F1 and F2, with the same magnitude but the opposite directions, for expanding
the channel. (b) The crossection of the narrow channel in Fig. 8(b).

with the opposite directions. Hence, we design the external loading forces as

F = (fx(r; t); fy(r; t); fz ∗ (r; t))T = (sign(sin(t)); sign(sin(t)); 0)T;
where

sign(t) =
{

1 if t¿0;
−1 if t ¡ 0

and the blending surfaces with an expanding channel are computed and drawn in Fig. 7(c). Other
external loading forces are designed, to generate the blending surfaces in Fig. 7(d) and (e).
Besides Example 5.1, we have produced two more numerical examples: one is to blend the two

perpendicular cylinders with di�erent radii in Example 5.2 (see Fig. 9(a)–(c)), and the other is to
blend a sphere and a cylinder in Example 5.3 (see Fig. 10(a)–(e)). Also the blending surfaces of
Examples 5.2 and 5.3 are generated in the same way as Example 5.1, with the same parameters:
� = 0; Pc = 20; � = 2; m = 8 and n = 4 in the BP-FEM (3.12). Below we give the boundary
displacement and tangent conditions.

Example 5.2.

�2U = F;

@V1 =
(
6 cos(t); 3

√
3 sin(t)−

√
42 − cos2(t);

√
3(42 − cos2(t))

)T
;

(@V1)n =

(
2 cos(t)

√
16− 9 cos2(t)

sin(t)− 3√3 cos2(t) ;

√
3 sin(t)

√
16− 9 cos2(t)− 6 cos2(t)

sin(t)− 3√3 cos2(t) ; 1

)T
;

@V2 = (4 cos(t); 2
√
3 sin(t)− 1

2r; 2 sin(t) +
√
3
2 r)T;

(@V2)n = (0;− 1√
3
; 1)T;

where t ∈ [0; 2�] and r ∈ [8; 18].
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Fig. 9. (a) Two separated cylinders with di�erent radii (R=4 and 8). (b) The blending surface by F =(0; 0; 0)T. (c) The
blending surface by F = (t4 sign(sin (t)); t4 sign(sin (t)); 0)T.
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Fig. 10. (a) The cylinder with radius 5 and the sphere with radius 13. (b) The blending surface by
F = (0; 0; 0)T. (c) The blending surface by F = (t4 sign(sin (t)); t4 sign(sin (t)); 0)T. (d) The blending surface by
F = (sin(t)sign(sin(t)); sin(t)sign(sin(t)); 0)T. (e) The blending surface by F = (cos(t)sign(sin(t)); cos(t)sign(sin(t)); 0)T.
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Example 5.3.

�2U = F;

@V1 = (5 cos(t); 5 sin(t); r)
T ;

(@V1)n =
(
−12
5
cos(t);−12

5
sin(t); 1

)T
;

@V2 =

(
5 cos(t);

5
√
3
2
sin(t)− r − 37

2
;
5
2
sin(t) +

√
3(r − 37)
2

+ 37

)T
;

(@V2)n = (0;− 1√
3
; 1)T;

t ∈ [0; 2�] and r ∈ [12; 32].

Note that the division numbers are only m= 8 and n= 4, and the resulted blending surfaces are
satisfactory to engineering requirements. Double precision is good enough for practical application.

6. Extensions and remarks

The above discussions and algorithms can be easily extended to blending surfaces on linear con-
straints of displacements and tangent conditions on both interior and exterior boundaries. Many
interesting applications of blending surfaces can be explored by following the ideas stated in [24]
and this paper. Below we give only two samples.
Sample A: We consider more complicated joint conditions BD in Fig. 11, by relaxing the dis-

placement conditions given before. Suppose that the righthand frame is a quadratic cone, and that
the joint boundary is just located on the coordinate plane x= �, where � is unknown (see Fig. 11).
By our techniques, a suitable location x = �, accompanied with the optimal blending surfaces in
minimum energy, can be determined automatically.
Suppose that the left boundary conditions at AC are the same as in Section 2:

U |AC = U0; yn = b10xn; zn = b20xn on AC: (6.1)

The quadratic cone is expressed as

y = a(x − x0)cos � ; z = b(x − x0)sin � on BD; (6.2)

where a; b and x0 are given. If letting � = 2�t, the right displacement conditions and the tangent
boundary conditions are written as

x = �; y = a(�− x0) cos(2�t); z = b(�− x0)sin(2�t) on BD (6.3)

and

yn = a cos(2�t)xn; zn = b sin(2�t)xn on BD: (6.4)

The optimal location of plane x = � can also be obtained from the numerical algorithms similar to
the BP-FEM.
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Fig. 11. A blending surface where @V2 is a plane x = � with arbitrary �.

Fig. 12. A blending surface where @V2 is an arbitrary plane passing by P.

Sample B: Suppose the right-hand frame is a cylinder along axis x, but a possible joint boundary
is placed on an arbitrary plane just passing a given point P (see Fig. 12). Hence for the right
boundary conditions, we should assign

a(x − xP) + b(y − yP) + c(z − zP) = 0; (6.5)

where a; b; c are unknown constants to be determined. We may then add the following penalty
integral to the energy form (2.17):

Pc

h2�

∫
BD
(a(x − xP) + b(y − yP) + c(z − zP))2 dl: (6.6)

After a suitable modi�cation of de�nitions of spaces Vh and V 0
h , the optimal solutions with coe�cients

a; b and c can be obtained automatically, by following the approaches in Sections 2 and 3. All
analytical conclusions may be carried our by following Section 4. For nonlinear boundary conditions,
we may develop the corresponding BP-FEM as well.
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7. Concluding remarks

1. In summary, the new approaches using PDEs are proposed in this paper, to construct general and
complicated blending surfaces. The optimal blending surfaces are sought to minimize the global
energy of the surface. The BP-FEMs are signi�cant to treat complicated boundary conditions since
algorithms can be carried out simply and easily, and since theoretical analysis is also provided.
Based on the a posteriori interpolants of numerical solutions, not only may the superconvergence
rates O(h3) and O(h3:5) of second order of generalized derivatives over 
 be gained, but also the
very high convergence rates O(h6) and O(h7) of the tangent and periodical boundary conditions of
the solutions can be attained. Note that the analysis for superconvergence is made for �∈ [0; 12 ).
In this paper we develop and apply the results of Lin and Yan [29] to the BP-FEM solutions
involving complicated boundary conditions. Lemma 4.6 is basic and important, and the bounds
in (4.35) and in Lemmas 4.8 and 4.9 are also new to [28,29].

2. Stability analysis is made for quasiuniform ij and �∈ [0; 12 ). The variable transformation (3.5)
is also suggested to reduce signi�cantly condition number of the associated matrix resulted. We
derive its bounds as O(h−4) + O(h−1−2�). It is due to high accuracy of the boundary constraints
that h is chosen to be not necessarily small in practical applications, thus to save CPU time
signi�cantly, and to lessen the numerical instability.

3. More e�orts are made in Section 5 to provide three interesting examples of real 3D blending sur-
faces, to show e�ciency of the proposed techniques in the paper. In Chang [8], several techniques
are introduced to evaluate the sti� matrices so that they may be double-checked to each other.
Also the explicit and exact entries of sti� matrices are listed for users. Besides, from viewpoint
of applications, functions F in (2.7) may be suitably chosen from the physical meanings and
engineering requirements and numerical experiments, shown in Section 5.

4. The explicit algebraic function z = f(x; y) in [26] can also serve as blending surface. However,
when the blending boundary is curve on �2; we should use the curved elements which is rather
complicated. In this case, we may employ suitable parametric functions, to transfer the solution
domain 
 into a rectangle, as done in this paper. This may greatly simplify numerical algorithms
and programming. For the case when the left and right boundaries may be touched to the frame
blending surfaces around corners (see Kosters (89)), the solution domain 
 should be chosen as
a polygon. Triangular elements of Ciarlet (90) can be used; similar algorithms and analysis of
BP-FEMs can also be carried out.

5. How to deal with the complicated boundary constraints is an important issue in blending sur-
faces. The ODE (ordinary di�erential equation) and numerical methods are also applied to the
3D blending curves, reported in other papers. Furthermore, the techniques described in this pa-
per can also be employed to other kinds of linear and nonlinear boundary constraint conditions
(see Samples A and B). Moreover, other kinds of coupling techniques described in Li [25] for
interfaces may be employed to deal with the boundary constraints in blending surfaces as well.
Again the merits of the algorithms in this paper lie in 
exibility and generality to produce the
blending surfaces satisfying the complicated boundary conditions. This paper and [24,26] provide
a theoretical frame work of complicated blending surfaces of new trends.

6. Let us recall the study of blending surfaces in Parts I [24], II in [26] and III in this paper. In
Part I we model the blending surfaces by the PDE solutions governed by the biharmonic equations,
based on the physical intuition of resembling 
exibly elastic thin plates, develop the BP-FEM to
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handle the tangent and periodical boundary conditions, and derive optimal convergence rates for
both interior solutions and boundary conditions. Note that the traditional techniques for blending
surfaces are based on interpolations reported in numerous papers and many books; they su�er
multiple solutions (see [16, p. 486]) and fail to deal with the complicated blending conditions
in the modern engineering. This is a main motivation of our study. The PDE approaches will
provide the unique blending solutions which are also optimal in minimum energy of the blending
surfaces, and the BP-FEMs are well suited to treat the complicated boundary constraints. In this
paper, we pursue superconvergence and stability for the BP-FEM and provide three real 3D
samples of blending surfaces. The �delity of the solutions to the boundary matching is our main
concern; the new error bounds, convergence and superconvergence for the boundary conditions
are studied and reported in Parts I–III. Indeed, Part II is a simple case of Parts I and III. Part II
is also important, because the biharmonic solutions are of blending surfaces, because the analysis
of the BP-FEM in convergence, superconvergence and stability is also signi�cant to biharmonic
equations, and because the simple exposition in Part II may help us reveal the ideas and spirits
in Parts I and III much easier and readable. A remarkable consequence of study in Parts I–III
is that the size of h of the �nite elements in real computation may not be chosen small so that
the double precision of computer may satisfy well the requirements by the moderate blending
problems in engineering. On the whole, Parts I and II [24,26] and this paper combine theory and
practice together for both biharmonic equations and blending surfaces, to form a systematic study
on blending surfaces by PDEs and their numerical solutions.
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