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Abstract

For the linear-squares problems minx ‖b−Ax‖2, where A is large and sparse, straightforward application of
Cholesky or QR factorization will lead to catastrophic 1ll in factor R. We consider handling such problems
by a iterative methods based on proper splittings. We establish the convergence, to the least-square solution
y= A†x, for the sequential two-stage iterative method and for the parallel stationary iterative method.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the linear system

Ax= b; (1)

where A is an m× n real, large, and sparse matrix, x is the unknown real n-vector, and b is a given
real m-vector.

If (1) is inconsistent, then the least-square solution, that is, the vector y of Rn such that

‖b− Ay‖2 = min
x

‖b− Ax‖2
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is given by y=A†b where A† is the Moore–Penrose generalized inverse of matrix A. The vector A†b
is also the solution of the normal equation ATAx = ATb, but the matrix ATA has the disadvantage
that it is frequently ill-conditioned and inEuenced greatly by roundoF error (see [5]). To avoid this
disadvantage, Berman and Plemmons [2] introduce the following iterative method similar to the
iterative method for nonsingular linear systems:

x(k+1) =M †Nx(k) +M †b; k = 0; 1; 2; : : : ; (2)

where A=M − N is a proper splitting of A; that is M and N are m× n matrices such that

R(M) = R(A) and ker(M) = ker(A):

Here, R(A) is the range or column space of A and ker(A) is the nullspace of A. Note that for the
nonsingular case, a proper splitting is a splitting (see [8]).

Berman and Plemmons [2] introduce the following convergence result.

Theorem 1 (Berman and Plemmons [2, Corollary 1]). Let A be an m × n real matrix and let
A = M − N be a proper splitting. Then iterative process (2) converges to A†b for each initial
vector x(0) if and only if �(M †N )¡ 1.

We say that matrix A= [aij] is nonnegative (A¿ 0) if aij¿ 0 for i= 1; 2; : : : ; m and j= 1; 2; : : : ; n.
Also we say that A6B if B− A¿ 0. Similar for vectors.

De�nition 1. Let A be an m× n real matrix and let A=M − N be a proper splitting. We say that
A=M−N is regular if M †¿ 0 and N¿ 0. Furthermore, we say that A=M−N is weak nonnegative
of the 1rst type if M †¿ 0 and M †N¿ 0.

Climent et al. [3] extend the convergence results introduced by Berman and Plemmons [2], proving
the following theorem that we quote for further references.

Theorem 2 (Climent et al. [3, Theorem 3]). Let A be an m × n real matrix with complete rank
and let A = M − N be a weak nonnegative proper splitting of the �rst type. Then the following
conditions are equivalent:

(i) A†¿ 0,
(ii) A†¿M †,

(iii) A†M¿ 0,
(iv) �(M †N ) = (�(A†M) − 1)=�(A†M),
(v) �(M †N ) = �(NM †)¡ 1,

(vi) (I −M †N )−1¿ 0,
(vii) A†N¿ 0,

(viii) A†N¿M †N ,
(ix) �(M †N ) = �(A†N )=(1 + �(A†N ))¡ 1.

If in the above theorem we remove the hypothesis “A has complete rank”, then we only can
establish the equivalence between parts (i), (ii) and (v)–(ix), obtaining in this way the extension
of [2, Theorem 3]. That hypothesis is necessary as we can see in [3, Example 1].
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It is very usual to use, to obtain the least-square solution of system (1), one of the several existing
codes for the sparse Cholesky factorization of ATA or the QR factorization of matrix A, than the
iterative method (2). However, when matrix A is sparse except for a few dense rows, it is an open
problem that a straightforward application of Cholesky factorization or the QR factorization will
lead to catastrophic 1ll in the factor R. Recently, authors as Adlers and BjMorck [1] introduce a new
technique by using a matrix stretching by row splittings.

In this paper, with the purpose to introduce alternative solution to this problem, we introduce two
iterative methods to obtain the least-square solution of system (1), based on the concept of proper
splitting. The 1rst one is a two-stage method and the second one is a parallel iterative method.

2. Convergence results

Let A=M − N be a proper splitting of A and let M = F − G be a proper splitting of M . If we
consider q inner iterations with splitting M = F − G we obtain the two-stage iterative method (see
[6,4] for the nonsingular case)

x(k+1) = (F†G)qx(k) +
q−1∑
j=0

(F†G) jF†(Nx(k) + b): (3)

Now, using Theorems 1 and 2 we can establish the following convergence result.

Theorem 3. Let A=M−N be a regular proper splitting, and let M=F−G be a weak nonnegative
proper splitting of the �rst type. Then the stationary two-stage iterative method (3) converges to
the least-square solution of system (1) for any initial vector x(0).

Proof. Since MM †N = N , F†M = F†F − F†G, and F†F =M †M we have, from Eq. (3), that

Tp = (F†G)p +
p−1∑
j=0

(F†G) jF†N

= (F†G)p +
p−1∑
j=0

(F†G) jF†MM †N

= (F†G)p +
p−1∑
j=0

(F†G) j(F†F − F†G)M †N

= (F†G)p + (F†F − (F†G)p)M †N

= (F†G)p + F†FM †N − (F†G)pM †N

= (F†G)p +M †MM †N − (F†G)pM †N

= (F†G)p +M †N − (F†G)pM †N
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= (F†G)p + (I − (F†G)p)M †N

= I − I + (F†G)p + (I − (F†G)p)M †N

= I − (I − (F†G)p)(I −M †N )

= I −
p−1∑
j=0

(F†G) j(I − F†G)(I −M †N ):

Now, taking into account that A = M − N and M = F − G are convergent, if y¿ 0, then x =
(I −M †N )−1(I − F†G)−1y¿ 0 and, consequently,

06Tpx= x−
p−1∑
j=0

(F†G) jy¡ x;

which implies that �(Tp)¡ 1.

Next, in a similar way that for weak nonnegative splittings of the 1rst type of nonsingular matrices
(see [7]), we can obtain a least-square solution of system (1) using a parallel iterative process based
on a multisplitting of A.

De�nition 2. Let A be an m× n real matrix. We say that {(Ml; Nl; El)}pl=1 is a proper multisplitting
of A if A=Ml − Nl, for l= 1; : : : ; p, is a proper splitting, El, for l= 1; : : : ; p, is a nonnegative and
diagonal m× m matrix, and

∑p
l=1 El = Im where Im is the m× m identity matrix.

As a generalization of De1nition 1, we say that a proper multisplitting is regular or weak non-
negative of the 1rst type, if each one of the proper splittings is regular or weak nonnegative of the
1rst type, respectively.

If {(Ml; Nl; El)}pl=1 is a proper multisplitting of A, we can consider the iterative scheme

x(k+1) = Hx(k) + Gb; k = 0; 1; 2; : : : ; (4)

where

H =
p∑
l=1

ElM
†
l Nl and G =

p∑
l=1

ElM
†
l :

Before establishing the convergence result given in Theorem 4 for the above iterative scheme, we
need the following result.

Lemma 1. Let A be an m × n real matrix and let {(Ml; Nl; El)}pl=1 be a proper multisplitting of
the �rst type of A. Then

(i) H¿ 0 and therefore H j¿ 0, for j = 0; 1; : : : ;
(ii)

∑p
l=1 ElM

†
l A= (I − H)A†A,

(iii) (I + H + H 2 + · · · + Hm)(I − H) = I − Hm+1.

Proof. Part (i) is a consequence from the de1nition of matrix H and the de1nition of weak non-
negative proper splitting of the 1rst type. Part (iii) is a consequence of part (i).
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To prove part (iii) we proceed as follows. From MlM
†
l Nl = Nl = NlM

†
l Ml and M †

l Ml = A†A for
l= 1; 2; : : : ; p we have that

A=Ml − Nl =Ml(I −M †
l Nl); l= 1; 2; : : : ; p

and then

p∑
l=1

ElM
†
l A=

p∑
l=1

ElM
†
l Ml(I −M †

l Nl)

=
p∑
l=1

El(M
†
l Ml −M †

l MlM
†
l Nl)

=
p∑
l=1

El(M
†
l Ml −M †

l NlM
†
l Ml)

=
p∑
l=1

El((I −M †
l Nl)M

†
l Ml)

=

(
I −

p∑
l=1

ElM
†
l Nl

)
A†A

= (I − H)A†A;

that is, part (ii) holds.

Theorem 4. Let A be an m× n real matrix and let {(Ml; Nl; El)}pl=1 be a proper multisplitting of
the �rst type of A. Then iterative method (4) converges to the least-square solution of system (1)
for any initial vector x(0).

Proof. Using Lemma 1 and taking into account that M †
l MlM

†
l = M †

l , and MlM
†
l = AA† for

l= 1; 2; : : : ; p, and A†AA† = A†, we obtain

06 (I + H + H 2 + · · · + Hm)
p∑
l=1

ElM
†
l

= (I + H + H 2 + · · · + Hm)
p∑
l=1

ElM
†
l MlM

†
l

= (I + H + H 2 + · · · + Hm)
p∑
l=1

ElM
†
l AA

†

= (I + H + H 2 + · · · + Hm)(I − H)A†AA†
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= (I + H + H 2 + · · · + Hm)(I − H)A†

= (I − Hm+1)A†6A†:

Therefore, the elements of Hm must remain bounded, and therefore H is convergent, that is, iterative
method (4) converges to the least-square solution of system (1) for any initial vector x(0).
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