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Abstract

A new dio/0d structure 〈�k;⊕;⊗; �; e〉 is proposed to solve a path-&nding problem in a fuzzy graph. This
algebraic structure is adapted precisely to solve the problem of the K-best fuzzy shortest paths. We demonstrate
that the generalized Gauss–Seidel’s algorithm always converges for the solving of the K-best fuzzy shortest
paths problem on a valued fuzzy graph without cycles of negative weight. This work starts a safe extension
of the path algebra paradigm to valued fuzzy graphs for the shortest path-&nding problem.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The fuzzy shortest path-&nding problem from a speci&ed source node to the other nodes appears
in several applications. In transportation systems area, their corresponding networks use fuzzy in-
formations on the arcs, assumed to represent transportation time or economic cost than tra>c ?ow,
etc. These informations are soft and would be well presented by fuzzy numbers or fuzzy set based
on fuzzy set theory [23].

The &rst works developed to solve the fuzzy shortest path problem have been initiated for the
&rst time in [5,6,21]. Nevertheless, if the research of the shortest path length in a fuzzy graph is
feasible, generally this path does not correspond to a real path in the considered fuzzy graph. This
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exception is explained by the particular behavior of the generalized min and max operators for the
fuzzy numbers.

Dubois and Prade [6] comment the solution of the classical fuzzy shortest path problem through
the use of extended sum, ⊕, and extended min and max, ˜min, ˜max. To solve the problem Floyd’s and
Ford’s algorithms are applied. Unfortunately, this approach, even though it can determine the length
of a fuzzy shortest path, it cannot &nd a fuzzy path which corresponds to this length in the fuzzy
graph. This failure is a consequence of the classical operators extension min and max, according to
the extension principle. From that principle, the extended ˜min or ˜max of several fuzzy numbers may
not be one of those numbers. Some approaches based on the concept of �-cut [3,4,16,18] and other
models based on the parametric orders [7] or relation order [20], did permit to reuse the classic
methods in various fuzzy graphs applications on operations research &eld. With regard to the based
methods on parametric or relation orders, a work proposed in [7] uses a modi&ed Dijkstra’s algorithm
for valued fuzzy graphs, where valuations of the arcs are L-fuzzy numbers. An other algorithm has
been proposed in [20] for the valued fuzzy graphs with L–R fuzzy numbers. The proposed algorithm
de&nes a relation order between L–R fuzzy numbers. It is based on the multiple labeling method
to obtain all nondominated paths. The multiple labeling can be considered as a generalization of
Dijkstra’s algorithm [20].

A formulation of the fuzzy shortest path problem not doing reference to the concept of �-cut
or parametric orders, has been proposed in [12]. Klein’s algorithm [12] is based on multi-criteria
dynamic programming, and can &nd a path or paths for a level of membership set by a decision
maker. This algorithm, however, assumes that the valued fuzzy graphs are acyclic graphs. To apply
Klein’s algorithm for other graphs, Klein [12] proposed a transformation for these graphs according
to the following remark owed to Lawler [17]: each graph that has no cycles of negative weight
can easily be converted to a directed acyclic graph. Nevertheless, the transformation procedure is
NP-Hard in the general case [11]. Hence for the computational aspects, the Klein’s algorithm is
restricted to acyclic graphs. This algorithm, however, assumes that the network is layered and the
number of layers is &xed. Klein’s algorithm assumes also, that each arc can take an integer value
for length between 1 and a &xed integer depending of the number of layers.

The present work proposes a structure of dio/0d (path algebra) to solve the fuzzy shortest path
problem in a fuzzy graph. This structure agrees to solve the problem of the K-best fuzzy shortest
paths. This &rst result generalizes Klein’s work. This paper starts the extension of Gondran and
Minoux path algebra given for the crisp case [10,11,19] to valued fuzzy graphs.

This paper is organized as follows: Foundations of path algebra are given succinctly in Section
2. In Section 3 we recall the basic concepts of fuzzy sets and fuzzy graphs, we give a summary
description of the extension principle for the classic operators in the fuzzy context and we introduce
a valued fuzzy graph example. These brief recalls are important for the formulation of the new
structure of dio/0d. Section 4 recalls the general Gauss–Seidel’s algorithm for the resolution of the
shortest path problem in crisp case. This algorithm is applied on the path algebra structure that we
develop in the case of valued fuzzy graphs.

In the same section, we develop a dio/0d structure to model the problem of the K-best fuzzy
shortest paths, as well as the survey of convergence and complexity of the general algorithm using
the proposed dio/0d. A small illustration example is presented. In Section 5, a fuzzy graph conceptual
modelling based on object-oriented paradigm is described. We also consider in the same section, the
software development suited to the analysis of fuzzy graphs. This paper is concluded in Section 6.
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2. Dio��ds and the shortest path problem solving

The concept of dio/0d has been proposed to designate an algebraic structure constituted by a set
denoted by � which is provided with two internal operations ⊕ and ⊗ [15]. The dio/0d structure has
been transported from the matrix algebra to generalize known results in this algebra to graph theory.
The de&nition of this concept is given here after.

De�nition 1 (Semiring, Kuich and Salomaa [14], Yager [22]): By semiring 〈�;⊕;⊗; �; e〉 we mean
a set � together with two binary operations ⊕ and ⊗ and two constant elements � and e (� and e
are the neutral elements for ⊕ and ⊗, respectively), such that:

(i) 〈�;⊕; �〉 is a commutative mono/0d,
(ii) 〈�;⊗; e〉 is a mono/0d,

(iii) the distribution laws x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and (x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z),
(iv) �⊗ x = x ⊗ � = � for every x.

It is known that each of the following is a semiring:
〈R ∪ {∞};min;+;∞; 0〉; 〈R ∪ {−∞};max;+;−∞; 0〉,
〈R+∪{∞};max;min; 0;∞〉; 〈[0; 1];max; ·;∞; 0; 1〉 where min and max are de&ned in the obvious

fashion.

De�nition 2 (Dio/0d, path algebra, Gondran [9], Yager [22]): A dio/0d or path algebra 〈�;⊕;⊗; �; e〉
is a semiring in which:

The canonical pre-order relation relatively to ⊕ (de&ned by x 4 y ⇔ ∃z : y = x ⊕ z) is an order
relation, so it veri&es ((x 4 y) ∧ (y 4 x) ⇒ x = y).

A dio/0d is said commutative if the law ⊗ is commutative.

De�nition 3 (Ring, Kuich and Salomaa [14]): We call a ring a semiring in which the basis set �
has a structure of commutative group for the operation ⊕.

Remark 4 (Minoux [19]): 〈Z;+;×; 0; 1〉 is a ring but is not a dio/0d, 〈N;+;×; 0; 1〉 is a dio/0d. It is
therefore the presence of a relation order intrinsically bound to the operation ⊕ that constitutes the
main distinction between rings and dio/0ds.

Dio/0ds have been used for the formulation of graph path-&nding problems. The solving of an
operations research problem (classic problems) consists to determining an algebraic structure based
on dio/0ds and applying some general algorithms. Let us recall some classic dio/0ds examples conceived
to solve path-&nding problems: The structure 〈R ∪ {∞};min;+;∞; 0〉 correspond to the classical
shortest path problem, 〈R∪{−∞};max;+;−∞; 0〉 correspond to the classical longest path problem
[11,19].

3. Concepts of fuzzy sets and fuzzy graphs

This section introduces the basic concepts of fuzzy sets used through out this paper.
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3.1. Concepts of fuzzy sets

Let � denote a universal set, then the characteristic function of a crisp set � assigns a value of
either 1 or 0 to each individual in the universal set. This function can be generalized such that the
values assigned to the elements of � fall within a speci&ed range.

Such a function is called a membership function and the set de&ned by it is a fuzzy set. The
membership function 
Ã by which a fuzzy set Ã is usually de&ned as the form 
Ã :� → [0; 1] [13].

Given a crisp universal set �, let P(�) = [0; 1]� denote the fuzzy sets of �. The support of a
fuzzy set Ã in the universal set � is obtained by the function �(Ã) = {x∈�|
Ã(x) � 0}. Let us
introduce a special notation that is often used in the literature for de&ning fuzzy sets with a &nite
support. Assume that xi ∈�(Ã) and that 
i is its grade of membership in Ã, then Ã is written as
Ã =

∑n
i=1 


′
ixi.

Similarly, when � is an interval of real numbers, a fuzzy set Ã is often written as Ã=
∫
� 
Ã(x)′x

3.2. The extension principle

One of the most basic concepts of fuzzy set theory which can be used to generalize crisp math-
ematical concepts to fuzzy sets is the extension principle [6]. Let � be a cartesian product of n
universes � = �1 × · · · × �n, and Ã1; : : : ; Ãn be n fuzzy sets in �1; : : : ; �n, respectively.
$ is a mapping from � to a universe �; y = $(x1; : : : ; xn). Then the extension principle allows

us to de&ne a fuzzy set B̃ in � by
B̃ = {(y; 
B̃(y))|y = $(x1; : : : ; xn); (x1; : : : ; xn)∈�},
where 
B̃(y) = Sup(x1 ;:::;x n)∈$−1(y)(Min{
Ã1

(x1); : : : ; 
Ãn(xn)})
if $−1(y) �= ? else 
B̃(y) = 0,
where $−1 is the inverse of $.
The extension principle will be used in Section 4 to de&ne the dio/0d structure based on two

internal operations ⊕ and ⊗.

3.3. Basic concepts of fuzzy graphs

De�nition 5 (Fuzzy graph): Let � be a &nite set which is assumed equal to {1; : : : ; n}. The triplet
G(�; �; 
) will be called a fuzzy graph on � where:
� :� → [0; 1] and stands for the membership level of each node;
and 
 :� × � → [0; 1] and stands for the membership level of each arc [4].

De�nition 6 (Valuation on fuzzy graphs): Let G(�; �; 
) be a fuzzy graph and assume that nodes
and arcs are crisp, for every (i; j)∈�2 we de&ne the valuation associated with (i; j), such as a
function �, such that [4]: � :�2 → ℵ, where ℵ is an ordered set. The structure G(�; �; 
; �) will be
called valued fuzzy graph.

Example 7. Fig. 1 gives an example of valued fuzzy graph, where:
� = {1; 2; 3; 4; 5; 6}; �(1; 2) = {:1′1; :5′2; :8′3},
�(1; 3) = {:2′1; :5′2; :6′3}; �(1; 4) = {:3′1; :1′2; :6′3},
�(5; 2) = {:1′1; :3′2; :4′3}; �(2; 4) = {:2′1; :6′2; :9′3},
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Fig. 1. Fuzzy graph.

�(4; 5) = {:3′1; :3′2; :2′3}; �(3; 6) = {:5′1; :6′2; :6′3},
�(4; 6) = {:3′1; :6′2; :1′3}; �(5; 6) = {:1′1; :3′2; :4′3}.

4. Path algebra and the K-best fuzzy shortest paths problem

In this section we introduce a new dio/0d structure (path algebra) to solve the K-best fuzzy shortest
path-&nding problem. All technical constructions are given in the following subsection.

4.1. Dio56d of the K-best fuzzy shortest paths problem

Let �k be the set of all fuzzy sets of N the set of natural numbers, with its support’s cardinality
less or equal than k. The couple (N ∪ {+∞};6) represent an ordered structure, where the relation
6 de&nes the natural order on the set N.

We have �k = {Ã∈ [0; 1]N| ‖�(Ã)‖6 k}; ‖�(Ã)‖ denotes the cardinal of the set �(Ã). The
symbols ∪̃ and ∩̃ denote, respectively, the union and intersection operators de&ned on fuzzy sets
[6,13]. The symbol ∓ denotes the addition operator de&ned on fuzzy sets.

Let the operator �k( ) de&ned on the crisp subsets of N the set of natural numbers, denotes
the select or sorting operator that returns only the k &rst-ordered element of the considered set. The
selection operator �k( ) uses the order relation that is de&ned on natural numbers. We de&ne the
operator [ ]k on subsets of �k by

[Ã]k = �k(�(Ã))∩̃Ã;
where ∀!∈� → 
[Ã]k

(!) = 1�k (�(Ã))(!) × 
Ã(!),
where 1A( ) denotes the classical indicator function of the set A. (∀!∈�, if !∈A then 1A(!) = 1
else 1A(!) = 0).
Stages of construction of the structure 〈�k;⊕;⊗; �; e〉 are developed below.
The operation ⊕: Let Ã∈�k and B̃∈�k then we de&ne the fuzzy set Ã⊕ B̃ by Ã⊕ B̃= [Ã∪̃B̃]k .

The grade of membership of the elements of Ã⊕ B̃ are given by

∀!∈�k → 
Ã⊕B̃(!) = 
[Ã∪̃B̃]k
(!) = 1�k (�(Ã∪̃B̃))(!) × 
Ã∪̃B̃(!)

=1�k (�(Ã∪̃B̃))(!) × max(
Ã(!); 
B̃(!)):
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The operation ⊗: Let Ã∈�k and B̃∈�k then we de&ne the fuzzy set Ã⊗ B̃ by Ã⊗ B̃= [Ã∓ B̃]k .
According to the extension principle, the grade of membership of the elements of Ã⊗ B̃ are given
by

∀!∈�k → 
Ã⊗B̃(!) = 
[Ã∓B̃]k
(!) = 1�k (�(Ã∓B̃))(!) × 
Ã∓B̃(!)

=1�k (�(Ã∓B̃))(!) × max
!=x+y

(min(
Ã(x); 
B̃(y))):

Example 8. Let Ã = {:1′1; :5′2; :8′3}; B̃ = {:2′1; :5′2; :6′3} and k = 3. Then while using de&nitions
above, we obtain

Ã⊕ B̃ = [Ã∪̃B̃]3 = [{:2′1; :5′2; :8′3}]3 = {:2′1; :5′2; :8′3};

Ã⊗ B̃ = [Ã∓ B̃]3 = [{:1′2; :2′3; :5′4; :5′5; :5′6}]3 = {:1′2; :2′3; :5′4}:

Proposition 9 (The K-best fuzzy shortest paths dio/0d): The structure 〈�k;⊕;⊗; �; e〉 developed above
and which is proposed for the K-best fuzzy shortest paths problem, corresponds to a dio56d structure,
where � = ∅ and e = {1=0}.

Proof. The structure 〈�k;⊕;⊗; �; e〉 veri&es the path algebra (or dio/0d) properties. The triplet ([0; 1]�;
∓; ∪̃) is a semiring, therefore the distributivity of the operation ⊗ relative to the operation ⊕ can
be deduced.

4.2. Generalized Gauss–Seidel’s path-:nding algorithm

Let G(�; �; 
; �) be a valued fuzzy graph. Assume that the structure (�;⊕;⊗) is a path algebra. In
the case of a graph without p-absorbing cycles the general algorithm is given below (see algorithm
1) [10,11,19]. Here, �(i) is the length of the shortest path or paths from vertex 1 to vertex i. Through
the general algorithm, vertex i is labeled with �(i), and the labels allows the determination of the
path.

Algorithm 1 (Gauss–Seidel’s algorithm, Gondran and Minoux [10; 11]): Let G(�; �; 
; �) be a valued
fuzzy graph, where �(i; i) = �.
The function � gives the set of successors of each node i∈�.
(�): �(1) = e; �(i) = �(1; i) for i¿ 2,
( ): at step k,
for i = 1 : : : n do

�(1) =
⊕∑

j∈�−1(1)

[�(j) ⊗ �(j; 1) ⊕ e];

�(i) =
⊕∑

j∈�−1(i)

[�(j) ⊗ �(j; i)] (i¿ 2):

(!): repeat ( ) until stabilization of �(i).
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4.2.1. Algorithm complexity analysis
Let n and m denote, respectively, the number of nodes and arcs of a valued fuzzy graph without

p-absorbing cycles. The &rst loop (�) uses O(n) operations, there are (n− 1) iterations in the loop
( ) with m (⊕;⊗) operations. Hence we have O(n × m) operations at this step. The operation ⊕
needs k comparisons and the operation ⊗ uses k× log(k) operations (for a sorting algorithm). Hence
in the algorithm the complexity of the operation ⊗ is R(k + k2 + k × log(k)).

Proposition 10 (Convergence of the algorithm): The generalized Gauss–Seidel’s algorithm always
converges in 〈�k;⊕;⊗; �; e〉 path algebra, and solves the K-best fuzzy shortest paths problem on a
valued fuzzy graph without p-absorbing cycles.

Proof. It is known that if the graph doesn’t contain cycles of negative length, then the weight of
every cycle is (K−1)-regular [10] in the dio/0d 〈�k;⊕;⊗; �; e〉 associated to the K-best fuzzy shortest
paths problem. Once the operation ⊗ is commutative, then we can deduce from the Gondran’s
theorem [11,8] the convergence of the algorithm.

All labels �(i) are fuzzy sets of �k . These labels give the fuzzy lengths of paths going from the
departure node 1 to any node i of the fuzzy graph.

Example 11. We describe in this example the main stages of the algorithm. First note that in this
illustration, node 1 correspond to the source node, and k = 3. By applying the algorithm using the
K-best fuzzy shortest paths dio/0d (see algorithm 1) on the valued fuzzy graph given in Fig. 1.

With these considerations we obtain the following results:
Initialization step: �(1) = e = {1′0}; �(2) = {:1′1; :5′2; :8′3},
�(3) = {:2′1; :5′2; :6′3}; �(4) = {:3′1; :1′2; :6′3},
�(5) = �(6) = � = ∅.
After convergence the labels are given by:
�(1) = {1′0; 1′0; 1′0}; �(2) = {:1′1; :5′2; :8′3}; �(3) = {:2′1; :5′2; :6′3},
�(4) = {:3′1; :1′2; :6′3}; �(5) = {:3′2; :3′3; :3′3}; �(6) = {:3′2; :5′2; :5′3}. The K-best fuzzy shortest

path length is then given by: �(6) = {:3′2; :5′3; :5′3}.
A decision maker can then &nd that the &rst best shortest possible path has length 2 with a grade

membership of 0:3. This path corresponds to the path: [:3′2] (1 → 4 → 6) in the original valued
fuzzy graph (Fig. 1). If the decision maker takes a threshold of membership of 0.5, then he could
choose the path of length 3 which correspond to the path [:5′3] (1 → 3 → 6). Our approach in this
paper is to &rst present the model based on the path algebra.

As proposed in [12], this approach &nds a fuzzy number representing the fuzzy shortest path
length but it also associates an eSective path to that number. The membership grades are associated
to the arcs and “nondominated” paths are found.

5. Fuzzy graphs and object oriented modelling

Our main practical objective is to develop a Fuzzy Graph Object Component. The software
component could be integrated in many applications. To this end, we have used mainly the
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<Key> <PtrSucc> <SuccNode> <PtrVal> <PtrSuccNode>
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NULL

<Stack>

Fig. 2. Class diagram of the fuzzy graphs software component (UML notation).
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Fig. 3. A directed valued fuzzy graph and its linked implementation.

object-oriented-programming methodologies. We use the C++ programming language for the
implementation of concepts.

Frequently basic Abstract Data Type are implemented in the Standard Template Library (STL).
STL is assumed to become a part of the C++ standard library and therefore it is an ideal basis
when writing portable programs.

Unfortunately, STL has no support for graphs Abstract Data Type. We decided to implement a
fuzzy graph library based on STL. The built library contains the classes needed to work with fuzzy
graphs (see Figs. 2 and 3), nodes and edges and some basic fuzzy path-&nding algorithms (Klein’s
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algorithm, Dijkstra’s algorithm for parametric and relation orders, generalized Gauss–Seidel’s algo-
rithm with the corresponding path algebra for the K-best shortest paths problem).

6. Conclusion

In this paper we provide a new path algebra structure for the K-best fuzzy shortest paths problem
on the valued fuzzy graphs. The main result introduced in this paper concerns the extension of
the path-&nding algorithms to valued fuzzy graphs. More precisely, we have used the generalized
Gauss–Seidel’s algorithm with the proposed path algebra to solve the K-best fuzzy shortest paths
problem. Future investigations would involve the analysis of the obtained paths and the development
of procedures to help decision maker for choosing paths. Further orientations would be considered
to improve the computing time aspect. The transposition of results given in this paper to solve
some operational problems is foreseeable (scheduling problem with duration expressed with fuzzy
variables, fuzzy routing problem in the area of telecommunication and transportation integrating the
fuzzy modelling [1,2]).
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