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Abstract

Let{Q,(x)}, be the sequence of monic polynomials orthogonal with respect to the Sobolev-type inner product

(p(x), r(x))s = (Uo, p(x)r(x)) + A(u1, (Ap)(x)(Ar)(x)),

wherel >0, (Af)(x) = f(x + 1) — f(x) denotes the forward difference operator &ngl uy) is aA-coherent pair

of positive-definite linear functionals being the Meixner linear functional. In this paper, relative asymptotics for
the{Q,(x)}, sequence with respect to Meixner polynomials on compact subsétg@f+oo) is obtained. This

relative asymptotics is also given for the scaled polynomials. In both cases, we deduce the same asymptotics as we
have for the selfA-coherent pair, that is, wham = u; is the Meixner linear functional. Furthermore, we establish

a limit relation between these orthogonal polynomials and the Laguerre—Sobolev orthogonal polynomials which is
analogous to the one existing between Meixner and Laguerre polynomials in the Askey scheme.
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1. Introduction

The study of polynomials orthogonal with respect to an inner product involving differences was started
in two paperg7,8] by Bavinck. There, the inner product

(p,q)=/Rp(t)q(t) du(®) 4+ A(Ap)(c)(Ag)(c) (1.1)

was introduced, wherg, g are polynomials with real coefficienise R, u is a distribution function with
infinite support such that has no points of increase in the intervalc + 1), A € Ry and(Ap)(¢c) =
p(c + 1) — p(c) denotes the forward difference operator.

Some algebraic and analytic results for the polynomials orthogonal with respect to (1.1) were obtained
in [7,8], with special emphasis on the location of their zeros. Furthermore, wherthe Meixner
weight function and: = 0, spectral properties were deduced. Later orf9jnthe authors obtained a
difference operator of infinite order for which these orthogonal polynomials (called Sobolev-type Meixner
polynomials) are eigenfunctions. The name Sobolev-type is justified from the analogy with the case

(p.q) = /R () du(t) + Mp'(©)g' (@), 12)

which has been widely considered in the literature (for example, see the survey in Sobolev polynomials
[13]). Note that (1.2) can be considered as a limit case of (1.1). Later on, under the influence of the
developments in the so-called continuous case, i.e., inner products of the form

<P,q>=/Rp(t)q(t) duo(t)+i/Rp’(t)q/(t) duy (1),

wherepy andu, are nonatomic measures satisfying some extra conditions (the so-called coherence, see
[12,14), the research is focused on the analysis of polynomials orthogonal with respect to the inner
product

(p.q) = /R (1)) duo(t) + /R (Ap)()(A) (1) duy (1), (1.3)

where g, 11 are measures with a countable set as its support. In that case, the conaepiharent
pair was introduced as a discrete analogue of the continuous cadé]jsaed a classification of such
A-coherent pairs was given (sg). One of the measureg,, u; must be classical, i.e., correspond to
Charlier, Kravchuk, Meixner, or Hahn polynomials. In particular, the Meixner linear functional is self-
A-coherent. Ifug = pq is the Meixner weight function, the relative asymptotics for these polynomials
orthogonal with respect to (1.3) in terms of the Meixner polynomials has been analyjs¢dgwell as
some analytic properties of their zero distribution (3¢

In this paper we study the asymptotic properties for polynomials orthogonal with resped-to a
Sobolev inner product built from A-coherent pair of measurés,, 1) of type I, that is, assuming that
uq is the Meixner weight function and therefore, according to the classification af-tteherent pairs
given in[2], po is a polynomial modification of degree one of the meagyréNe will establish that
this polynomial modification does not influence the asymptotic behavior oAtBebolev orthogonal
polynomials. Another goal of this paper is to show that one family of continuous Sobolev orthogonal
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polynomials can be seen as a limit of th&Sobolev polynomials introduced in this work. In this way, we
obtain some results contained[ib] for the Laguerre—Sobolev orthogonal polynomials.

The structure of the paper is the following: In Section 2, we introduce very well-known properties of
Meixner polynomials which will be very useful along this paper and some notions abcoiterence.
In Section 3, the outer relative asymptotics and the outer Plancherel-Rotach type asymptotics for poly-
nomials orthogonal with respect to the inner product (1.3) wiagnu,) is aA-coherent pair of type | in
terms of Meixner polynomials are deduced. Finally, in Section 4, we establish a limit relation between
these orthogonal polynomials and the Laguerre—Sobolev orthogonal polynomials which is analogous to
the one existing between Meixner and Laguerre polynomials in the Askey scheme and we recover some
results given irf15] for Laguerre—Sobolev orthogonal polynomials.

2. Basic definitions and notations
2.1. A-coherent pairs of linear functionals

Let P be the linear space of polynomials with complex coefficients an@'ldte its algebraic dual
space. We denotg@, p) the duality bracket fou € P’ andp € P, and(u),, = (u, x") with n >0 are the
canonical moments af.

Definition 2.1. A linear functionalu is said to be quasi-definite if all the principal submatriégs=
[(u),-+j]f."j:0, k>0, of the Hankel moment matrix associated withre nonsingular.

Given a quasi-definite linear functiona) there exists a family of monic polynomial#®, (x)}72 o
orthogonal with respect to, i.e. P, (x) = x"+ terms of lower degree, for eveny>0, and{u, P, P,,,) =
I'yonm, 'y # 0, foreveryn, m>0. Such a sequence is said to be a monic orthogonal polynomial sequence
(MOPS) associated with the linear functional

Next, we introduce the concept of positive-definite linear functi¢b@l p. 13]

Definition 2.2. A linear functionalu is said to be positive-definite if its moments are all real and
det(H;) > 0, for everyk >0.

Definition 2.3. Given a complex numba, the Dirac functionab(x — ¢) is defined by
(6(x — ¢), p) : =p(c), foreveryp e P.

Definition 2.4. Letu be a linear functional anp be a fixed polynomial. We define the linear functional
p(x)u as follows:

(pu,q) : =(u, pq), foreveryq e P.
For each complex numbewe introduce the linear functionat — ¢)~‘u such that

q(x) —q(c)

X —C

((x — o) tu, q) : :<u > for everyq € P.
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Note that
(x — )" H(x — o)u) =u — ()ed(x —©),
while (x — ¢)((x — ¢)"tu) = u.

Definition 2.5. The forward difference operatot and the backward difference operat®r are
defined by

ANHX):=fx+D—-fx), (VHX :=fx)— f(x-—1.
Definition 2.6. Foru € P/, we introduce the linear functionalu as

(Au, p) = —(u, Ap), foreveryp e P.

Definition 2.7. Alinear functional is said to be a classical discrete linear functionaliff quasi-definite
and there exist polynomials andys, with deq ¢) <2 and degy) = 1 such that

Al¢pu] = yu. (2.1)
The corresponding MOPS associated witis said to be a classical discrete MOPS.

The Meixner linear functional®-#, defined by

wrx+p) (1—w’
ro)rix+1)

@]
) p) =) p@) . 7>0, O<p<l, peP (2:2)
x=0

is a classical discrete linear functional since it satisfies the distributional equation (2.1) with
d(x) s =p(x +7), Y&x):i=ppu—xA—-p.

Definition 2.8. Letug andu; be two quasi-definite linear functionals, and{&}, (x)},, and{7, (x)}, be
the MOPS associated witly anduy, respectively. We say thdtig, u1) is a A-coherent pair of linear
functionals if

_ AP)(x) (AP (x)

>1, 23
n+1 " (2.3)

T, (x)
where{s,}, IS a sequence of nonzero complex numbers.

In [4] we have proved that ifug, u1) is a A-coherent pair of linear functionals, then at least one of
them must be a classical discrete linear functional (Charlier, Meixner).

2.2. A-coherent pairs of Meixner type

Definition 2.9. Let (ug, u1) be aA-coherent pair of linear functionals. Uy or us is the Meixner linear
functionalu® defined in (2.2), thekug, uy) is said to be a\-coherent pair of Meixner type.
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Furthermore, we deduced [8] the following:

Proposition 2.10. Let (ug, u1) be aA-coherent pair of positive-definite linear functionals of Meixner
type.

(1) If ug is the Meixner linear functional®*, then

(@) If y>1,then

\ 1—wld- -
to= (1 ﬁo(x+“)wyLm:uum+ﬁ WA=+ 610 450, (2.4
y—1 y—1
(b) If y =1, thenug = u™® + Ké(x), with K >0.
(€) If 0<y < 1,thenug = uM,
(2) If ug is the Meixner linear functional®-#, then
up = éu(’”l’m + Kdé(x +a), K=>0, a=0. (2.5)

AQ-wkx+a)

2.3. Monic Meixner polynomials

Monic Meixner orthogonal polynomials denoted by’ (x)}, are the polynomial solution of a
second-order linear difference equation of hypergeometric[typd 6]

a(x)(AVy)(x) + t(x)(Ay)(x) + 4ny(x) =0,
ox):=x, t(x):=yu—xQA—p), A :=n(l—p). (2.6)

These ponnomiaI:{sM,i’"“) (x)}, are orthogonal ofv U {0} with respect to the linear functional (2.2).
For monic Meixner orthogonal polynomials we ¢ét11,16]

2.3.1. Three-term recurrence relation

MG 0y = MU () + BOOMEP (x) + O M (), n>1, (2.7)
) 1 : ~1
o = Wt CymzﬁﬂliZTJ (2.8)
1—p 1-w

with the initial conditionst”l“)(x) - =0 andMg’"‘) (x) : =1. Furthermore, for >0,

n
M (0) = (Ll) D M)+ M<1 ) = (2.9)
—
where(a), denotes the Pochhammer symbqal, =1, (a)s =a(a+1)---(a+s—1), s=>1.

2.3.2. Squared norm
From (2.8)

n!l(), 1"

k}g“/,#) c=(um), (Mr(l%u)(x))2> — T

n>0. (2.10)
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The following relations can be easily derived from the definitiovh,(bf‘):

. . -1 y
ké/’“) =1, kr(l/,u) — %k;’ﬁ), n>1. (2.11)
—u

2.3.3. Difference representations

We have
(GHD]
M X
M(%H) (x) = (A n+1 )(x) K (AM(N"’“))(X), n>0. (2.12)
" n+1 1—pu "

The following relation between two different sequences of Meixner polynomials holds:

n+1
n+1

o,
AM X
MO+ Gy = & )(x)

, n=0. (2.13)
From the above relation and (2.12), we get
MO0 () = MO (x) +n1 M,g' W(x), n=0, (2.14)

which is valid fory > 1.

2.3.4. Asymptotic property
From (2.7) and using Poincaré’s Theorem the relative asymptotics
(r,0)
im Maa 1
n—o00 nM}%/ ,u)(x) w— 1

(2.15)

holds uniformly on compact subsets©f[0, +0c0).

3. Asymptotics of A-Meixner—Sobolev orthogonal polynomials of type |

We shall denot¢Q,, (x; y, i; 4, K, a) = Q,(x)}, the sequence of monic polynomials orthogonal with
respect to the Sobolev type inner product

(p(x), r(0))¥ : =(uo, p(x)r(x)) + Alut, (Ap)(x)(Ar)(x)), 3.1

where (ug, u1) be aA-coherent pair of linear functionals withy = u®-*) and we shall refer to this as
A-coherent pairs of Meixner type |. Moreover, we shall denote

=(0,(x), 0x(xNY, n>o0. (3.2)

We can summarize the asymptotic behavior of polynomials orthogonal with respect to (3.1) in the
following:
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Theorem 3.1(Relative asymptotigs Let (ug, u1) be aA-coherent pair of linear functionals of Meixner
type I. Let us denotgQ, (x)}, the MOPS with respect {8.1) and

_ A4+ 2= 0+ V(@ 4 )+ AL = P —

2 (3.3)
The following limit relation holds
im _2n&) - u)’ (3.4)
neo p0 ey = u
uniformly on compact subsets©f[0, +0c0).
In order to prove the above theorem we need some analytic and algebraic results.
Lemma 3.2. Let (ug, u) be aA-coherent pair of linear functionalsvith u; = u®# . Then
()
M ) 4 n Mjl' @) = Quw) +n - k”nT:ll On 1(x), n>1, (3.5)

Wherek,([”“) andl?,ﬂ” are given in(2.10)and(3.2),respectivelyand Qo(x) = 1.
Proof. (1) If y > 1, thenug is given in (2.4). If we consider the expansion

n—1

M) + M,i’ P =000+ ) fin i),

i=0

then, from (2.12) and (2.14), we get, fok@<n — 1,

fin = kl (M “>(x)+n1 M,i' P (x), Qi)Y

1

1 .
= { <uo, <M,§W> (x) + nEM;:’f (x)) Qi(x)>

+z<u(>”“> ((AM“ “>><x)+n1 (AM,E’ ’f)<x>) (AQ; )(x>>}

_ ];iM(Uo, MO0 (1) 0, (x).

i
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Taking into account (2.4)f; , = 0 for 0<i<n — 2. Finally, ifi =n — 1,

(uo, MY (x) @ _1(x))

fn—l,n = ];A{
1 1—, 1- ;
= <”(V”” L Qo AR ot gyt (x)Qn_1<x>>
kn—l 7= 1

1 : —
= = W M) Qo ()
n—1

1 » - ]
= —];M <u("“), (M,E”“)(x) + nﬁMﬁ’_"f(x)) Qn—l(x)>

ﬂ k H)
"1 k '
(2) If y =1, thenug = u(l’“) + K6(x), with K >0. Thus

n—1

M<1*‘)(x)+n1 M(lu)(x)_Qn(x)-i-;gan(x) n=1,

and the coefficientg; ,, for 0<i <n — 1, can be computed by using (2.12) and (2.9). Indeed
(M @) + g MR (), ;)Y
,;M

{<uo, (M<1 () g M<1 ”(x)) Qi<x)>

8i.n —

l

+ A<u1, ((AM<1 D))+ (AM,E1 ’f)(x)) (AQ; )(x>>}
1

= <u<1,m’< (1u>(x)+n1 M (x )> Q,-(x)>

1

+ K (M,glw 0 + nl%Mf,l_*’{)(m) 0:(0)
+ A0, M (040 (x))}

_ Y aw (haw @ ) . >
_];M< K (M “(x)+n1 M”57 (x) ) Qi(x)).

Thusg; , = 0 for 0<i <n — 2. Furthermore,

(3) If 0 <y <1, thenug = u; = u®» and (3.5) was already obtained[B]. O
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Lemma 3.3. The following recurrence relation far holds

Q) Ify>1, thenforn>1

2
- . . l1—y4+a)d- i
k' =k 4 n? ((—1 . ) + /1) ko G2 OQ W 6-10

— y—1

B (n I ) (k(}’ ,“))2
1-n k)

with the initial condition

:(V —Du+ald—p
y—1 '

(2) f0<y<l,thenforn>1

5 1 2 ) I (k(/ #))2

M Y, 9 Vs

kM = k00 4o ((—1—M> +A)kn_’i—(n1_u) T
n—1

with the initial condition

];M_ K +1, ’y:].,
0 7)1, O<y<l

iy

Proof. (1) From (2.14), (2.4) and (3.5),

— (Qn(x)’ Qn(x))gl = (Qn(x), Mr(l"/—l,,u)(x»gﬂ
= (Uo, Qn(X)Mn(V_l’H)(x» + )tnzk('*”“)

, Yy 1- 1- _
= (u®n, Qn(X)M,E* 1’“)()()) + Anzk(’ P‘) + ( i a)]_( 0 k(/ 1w
y —

(V8]
. M 7 Ky
— <u()sﬂ)’ (Mr(z“m(x) + an,u (M’(l_/i)(x) - ]g;v[l in(x)))
n—1

(M(’ ”)(x) +n— - Mr(l) Ai)(x))>

y—1 "

+n Zk(y ﬂ)+

Thus, (3.6) follows.

29

(3.6)

(3.7)

(2)1f0 <y <1, (3.7) was obtained if8]. In the case =1, it is enough to take into account the relation

(2.9) and use the same technique agin

The initial condition can be deduced in the three above cases from the definition of the Sobolev inner

product. O

Remark 1. Note that case = 1 in (3.7) is a consequence of (3.6) taking into account (2.10) as a limit

case, since lim 1 K70 — 0, n>1.
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Now, we obtain the asymptotic behavior of the squateSlobolev norms.

Lemma 3.4.

ye lim A0 A=+ VAt + A= D - 4

= 1. 3.8
n—o00 k,g"/sﬂ) 2,u > ( )

Proof. First, we assume> 1. If we divide (3.6) byk,({”“), by using (2.11) we get

M k(mi)
kn n—1
where
(G — D% + p®)n (1—y+a)l—p un
A(n) =1+ . Bm) = , Cn)=———.
(n) W tn—1) (n) -1 (n) PR

Let us define
k!
Sp+1 - =Snﬁ
kn/sﬂ
with the initial conditionsg = 1. Thus, we can write the above expression as
sn+1 = (A(n) + B(n))s, — C(n)sp—1, (3.9)

whereso = 1 andsy = k3 /kJ"*. Taking into account

2 2
. A1 — ) .
lim A(n):“ Tt A W , Iim Bn)=0, Im Chn)=u,
n—oo ﬂ n—oo n—oo

the roots of the limit characteristic equation of (3.9)

2 12+t 21— p)?
Z — Z
U

+u=0

are

py o ML+ + (1= 02+ V(L + )+ 21— 0 — 43
2u

1y ML+ + (1= 02—V (@ + )+ i1 — % — 43
2u )

9

Because of Poincaré’s Theorem, the sequéﬁéﬁkfﬂ’“) = sp+1/5, converges tai or zo. On the other
hand, using the extremal property of the monic polynomials and the expressigrgoen in (2.4) we
get

~ 1—u ,

k' = (00 (), Qu)¥ > >—2 WO (@) RE) + ik,
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whereR,, is the monic polynomial of degree orthogonal with respect to the positive definite functional
[(y —1)/(1 — w]ug. Taking into account (s€g@o, p. 35)

=L
M (—a) .
(x + @) R, (0) = MY 7 () — %Mkl’“)m,
Mn' (_a)
and so
0,
-1 2 n+1 (=) (/—1 0y
(u (X +a)R;(x)) = M(”‘l P e
Thus,
(/ Lw
- X a) 1—
M > a2 My GO 1= 16100

M(/ lﬂ)( a)w/—ln
Now, using (2.10) and (2.11) we get

~ 1
Y (A= My ()
k,(,v’“) n+y-1 H nM,(l’ 1H)(—a)

Taking into account the ratio asymptotic (2.15), we get that the sequghce!" is bounded from
below by a sequence which converges t¢ 2(1 — x)?/u. This means, taking into accoul%%/k,([”“)
converges, that lim., o IEM/k(”’“) =z1>1

When 0< y<1, we can divide (3.7) by\"* and we get

];M (Mi)
p
g = A —C) i

Following the same reasoning as in the casel, we can prove the result in a more easy way because
now for each: >0, kM >k thatis kM k" >1. O

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. If we divide (3.5) byM.\"* (x) we obtain

(/ o) 0,0 3,050
k M, X
14n—t (1 )( Y _ =Cp(x)+n a r;wl ( )( ) Cpo1(x), n=1, (3.10)
1 'qu.“(x) 1—,ukn_an/ll(x)
where
Q,(x)
Cn(x) o0 n>0.
M, (x)
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From (2.15) and Lemma 3.4

k() ,“) M(/ ,U)( ) 1
lim n =——,
n—oo 1 — u kM M(/ ,“)(x) n

holds uniformly on compact subsets©{[0, o).
Now, we are in the same conditions as in the proof of Theoren{H irTherefore, we can deduce the
result in the same way asjf]. O

If we want to obtain a more detailed asymptotic information aboutAt®&obolev polynomials, we
must give the Plancherel-Rotach type asymptotics of these polynomials.

Theorem 3.5(Relative Plancherel-Rotach-type asymptqtidsholds

1- 1
lim 0, (nx) nlp(SG u)x ( 1) + Vil
n—00 M(/ H)(nx) ((1 u)x (1+H))+\/—

(3.11)

uniformly on compact subsets©f[0, (14 ./i)%/(1— w1, wherep(x) =x ++v/x2 — Lwith+/x2 — 1> 0
if x > 1, i.e, the conformal mapping af\[—1, 1] onto the exterior of the closed unit disk

Proof. Making the change of variable — nx in (3.5), using this relation for the scaled polynomials in
a recursive way and dividing byz"* (nx) we get

(i H)(nx) + (l’l _ j)l,u M(i ) 1(7’[)6)

n
e et L T (3.12)
My"" (nx) o M, (nx)
where
b =1,
o k(w{)
K . — .

b,(ln_)j:(r> l_l(n—l-l-l)];nTl, j=1...,n.

K i=1 n—i

Now, we are in a similar situation as in the proof of Theorem Psinand like for that proof, we need

again a dominant for (3.12) in order to apply Lebesgue’s dominated convergence theorem. The key to
the proof of Theorem 7 ifp] is that the sequendé”“)/l%’l” <% <1lforalln>1 (seg5, f.(14)]), but in

general this is not true in our situation as we have observed by numerical computations for certain values
of y > 1 andn being small. However, ifiL] a technical result was established in order to solve a similar
problem. This result can be rewritten as

Lemma 3.6. There exist constants C and r wieh> 1 and0 < r < 1 such that?™ = k¥ /kM _ verify
0< di(”) <Criforall n>0and0<i<n.

Proof. The proof is the same as the one of the Lemma 3[2]ilbut now taking into account Lemma
34. O
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Using the above lemma, we can obtain a dominant for (3.12) and therefore, we get Theorem 3.5 following
the same steps as in the proof of Theorem [Bln O

Obviously, the Corollaries 8 and 9[iB] remain true for th&-Meixner—Sobolev orthogonal polynomials
associated ta-coherent pairs of type I.

4. Laguerre—Sobolev as limit case of Meixner—Sobolev

In [15], the authors obtained asymptotic properties for coherent pairs of positive-definite linear func-
tionals of Laguerre type. In this section, we shall recover some of these results using another approach
via limit relations by using the asymptotic properties focoherent pairs of positive-definite linear
functionals of Meixner type obtained in the previous section.

Monic Laguerre ponnomialSL,S“) (x)}, are orthogonal with respect to the Laguerre linear functional
u® defined by

@ 400 xote—x d
u?, p) = x)—dx, a>-—1, c P.
W, p) fo PO p
We shall denote
I'n4+a+1)

K9 =@, (L® 2y _p1— = >0. 4.1

n ( (L,)”(x)%)=n RN n (4.1)
Note that

m (1— 2k =@ >0 (4.2)
as well as

m 1 — " mtLo <l%u> =LYx), n=0. (4.3)

In [14] Meijer obtained

Theorem 4.1. Let (ug, u1) be a coherent pair of positive-definite linear functionals of Laguerre type. If
u; = u® is the Laguerre linear functionathen

(a) If «>0,then

_ (x +a) W=D,
o

uo a>0.

(b) If o =0, thenug = u©@ + Ms(x), whereM >0.
(€) If —1< o <0,thenug=u®.

We shall refer to a coherent pair of linear functionals, wheres the Laguerre linear functional as a
coherent pair of linear functionals of Laguerre type I.
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Let (ug, u1) be a coherent pair of positive-definite linear functionals of Laguerre type I, and let us
denote

(p.r)s 1 =(ug, pry + Au@, p'r’y,  2>0. (4.4)
Let{Q,(x; a, 4, M, a)}, be the MOPS associated with the above inner product. We shall denote
= (Qn(x; 0, 2, M, a), Qu(x; o, 2, M, a))k. (4.5)

Lemma 4.2(Meijer et al., Lemma 3)1 Let (ug, u1) be a coherent pair of positive-definite linear func-
tionals of Laguerre type I. Then

()
k

L () 0Ly () = On(x: 2, 20 Mo @) 4 n 2= Onoa(wi o o Moa) - =1 (4.6)
n—1

wherek,(,‘“) andl}',f are given in(4.1)and(4.5),respectivelyand Qo(x; o, A, M, a) = 1.

Lemma 4.3(Meijer et al., Lemma 3)2 (1) If « > 0, then

L 2@ | 41 (k(o{)l)2 pL._xta
ky =k + G+ Dl + —k0Y —n? = 21, k= : (4.7)
o kn 1 o
(2)If —1<a<0,then

£ 2

7L _ (@ 2, g )L —1<a<0,

kb =k + 2+ D2k i n>1, ko._{HM’ e (4.8)
pll

Proposition 4.4. Let{Q, (x; o«; 4, M, a)}, be the MOPS associated with the inner prodict) and let
{0, (x;y, w5 A, M, a)}, be the MOPS associated with the inner prodi{®1). Then

a

A
soo+ 1, .M,
AL-w? 1w

uﬂ(l—u)"Qn <1i )= On(x;05 4, M, a). (4.9)

Proof. If « > 0, first note that the following limit holds:

lim (1 — ;)2 M (oc+ 1 L) — (o i a 4.10
im (1— 0 E; b Ty =R A (4.10)
as consequence of
) a

Iimll%” (oc +1, 1

) = kk i) =1+,
ut x

1—-pw? 1—u
and (4.2). The limit relation (4.9) follows from (3.5), (4.3), (4.10) and

X A a
QO< aa+1aﬂ7 9M7 )=QO(X,%,U, ;"7M7a)=1
1—p A—w? T1l-u

If —1 < a<0, the proof follows as in the previous case from (4.8)]
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Corollary 4.5. Let{L,(f) (x)}, be the Laguerre MOPS and IgD,, (x; o, 4, M, a)}, be the MOPS associ-
ated with(4.4).Then

im On(x;0,2, M, a) _ A+ A4+ 2)
n— 00 L}g“_l) (x) - 2

: (4.11)

uniformly on compact subsets©f[0, +00).

Proof. Inordertorecover (4.11) from the asymptotic properties of Meixner type, we can compute directly
the limit asy 1 1 in (3.4), withi — 4/(1 — p)? (see 4.9), since all the steps given in order to obtain the
asymptotic behavior (3.4) fax-coherent pairs of linear functionals of Meixner type I, are valid if we first
compute an appropriate limit whent 1. O
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