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Abstract

Under weak Lipschitz condition, local convergence properties of inexact Newton methods and Newton-like
methods for systems of nonlinear equations are established in an arbitrary vector norm. Processes with modified
relative residual control are considered; the results easily provide an estimate of convergence ball for inexact
methods. For a special case, the results are affine invariant. Some applications are given.
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1. Introduction

We consider the system of nonlinear equations:

f(x)=0, (1.1)
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where f(x) : R" — R"is Fréchet differentiable. Let f’(x) denote the Fréchet derivative of fat x. Inexact
iterative procedures commonly used to solve (1.1) have the general forms:

For k =0 step 1 until convergence do
Find the step Ay which satisfies:

7%l

ByAy = —f(xx) +rr where <.
If ool ="

(1.2)

Set xg41 = x¢ + 4,

where xq is a given initial guess, By is an n x n nonsingular matrix and {r;} is a sequence of forcing
terms such that 0<n; <1. The process is inexact Newton method if By = f’(x), the process is inexact
modified Newton method if By = f’(xg), and it represents a inexact Newton-like method if By = B(x)
is an approximation of derivative f’(x;) (see [5,13-15]).

We remark that inexact methods include the class of Newton iterative methods (see [1,3-5,7,12—14]),
where an iterative method is used to approximate the solution of linear systems (1.2).

For inexact Newton methods, local and rate of convergence properties can be characterized in terms
of forcing sequence ;. Let || - || denote any vector norm on R” and matrix subordinate norm on
R™". In [2] it is shown that, if the usual assumptions for Newton’s method hold and 7, is uniformly
less than 1, we can define a sequence {x;} linearly convergent to a solution x* of (1.1) in the norm
Iyl = 11LF" )yl

Recently, several authors (see [8,11]) have proposed applications of inexact methods in different fields
of numerical analysis and pointed out difficulties in applying results of [2]. In fact, such results are norm-
dependent and || - ||« is not computable. Then, they focused on the analysis of the stopping residual control
7 ll/ Nl f (xk) 1l <ni and its effect on convergence properties. Morini (see [13]) considered inexact methods
where a scaled relative residual control was performed at each iteration; its iterative form is as follows:

For k =0 step 1 until convergence do

Find the step Ay which satisfies
| Prrll

BiAy = — f(xk) +ry  where ————— <0k
| Pr f (xie) |

(1.3)

Set xjy1 = xp + 4g,

where Py is an invertible matrix for each k. If Py = I for each k, (1.3) reduces to (1.2). It is worth noting
that residuals of this form are used in iterative Newton methods if preconditioning is applied, and that Py
changes with index k if By does. But we also note that the results obtained in [13] cannot make us clearly
see how big the radius of the convergence ball is.
Let x* denote a solution of (1.1), B(x, r) denote an open ball with radius r and center x, and let B(x, r)
denote its closure. Under the hypothesis that f’(x) satisfies the Lipschitz condition
p(x)
IF )~ () — f/(xr))lléf L(u)du, Vx € B(x",r), (1.4)
Tp(x)
where p(x) = ||lx — x*||, x* = x* 4+ 7(x — x*), and L is a monotone function. Wang (see[16-18]) studied
the convergence of the Newton’s method.
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In this paper, under weak Lipschitz condition, we continue to consider inexact methods where a scaled
relative residual control was performed at each iteration. The results obtained are valid under widely used
hypotheses on f and merge into the theories of Newton’s and Newton-like methods in the limiting case
of vanishing residuals, i.e., n; = 0 for each k. The results also can make us clearly see how big the radius
of the convergence ball is. Further, for a special case, such conditions of convergence are affine invariant
and in agreement with the theory of [18].

2. Preliminaries
The condition on the function f
If ) — fFODI<Llx —x"[l, Vx € B(x™,r), (2.1)

where x* = x* + 7(x — x™), 0<r<1, is usually called radius Lipschitz condition in the ball B(x*, r)
with constant L. Sometimes, if it is only required to satisfy

IfC) = fFGOI<Llx —x™|l, Vx € B(x™, 1), (2.2)

we call it the center Lipschitz condition in the ball B(x*, r) with constant L. Furthermore, the L in the
Lipschitz condition need not be a constant, but a positive integrable function. If this is the case, then (2.1)
or (2.2) is replaced by

(x)
I f(x) = f&xOI< /P Lu)du, Vx e B(x* r), 0<t<l1, (2.3)
7p(x)
or
p(x)
I fx) — fF&HIN ](; L) du, Vx € B(x*,r), (2.4)

where p(x) = ||x — x*||. At the same time, the corresponding ‘Lipschitz condition’ is referred to as having
the L average.
By Banach’s theorem (see [9,10,14]), the following result can be obtained directly.

Lemma 2.1 (See Wang [18]). Suppose that f has a continuous derivative in B(x*,r), f’ (x*)*1 exists
and f'(x*)~' f' satisfies the center Lipschitz condition with the L average:

(x)
L/ ™ ) = TN < /p L(u)du, Vx € B(x*,r), 2.5)
0

where L is positive integrable function. Let r satisfy

/r L(u)du<l. (2.6)
0
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Then f'(x) is invertible in this ball and

-1

p(x)
IIf/(X)_'f/(X*)II<<1—fO L(u)du> . (2.7

Proof. In fact, suppose E =1 — f/'(x*)~ f(x), Vx € B(x*, r), and a sequence {Sk}p2,, defined by

Sg=I1+E+---+E~

From (2.5) and (2.6), we obtain || E| < fop(x) L(u)du < [y L(u)du<1, and note that, for all m, n
(m >n),

”Sm - Sn” =

m—1 m—1
YO EM <D IENS
k=n k=n

These imply {S}72, is a Cauchy sequence and convergent.
By the equality:

I-EI+E+ - +E"Y=(U+E+---+E*"YI-E)=1- E*,

we have
&) [e})
(I - E) (Z E">= (Z Ek> (I-E)=1,
k=0 k=0
ie, I —E= f'(x*)"! f/(x) is invertible, and
L) =D B <D IEN = < ,
,; ,; F=1EI 1= % L(u) du

This shows the validity of (2.7). O

Lemma 2.2. Suppose that f has a continuous derivative in B(x*, r), f'(x*)~" exists.
If f'(x*)~' ' satisfies the radius Lipschitz condition with the L average:
p(x)
L/ )TN @) = f < / L(u)du, Vxe B(x*,r), 0<z<l, (2.8)
Tp(x)

where x* = x* + t(x — x¥), p(x) = ||x — x*|| and L is positive integrable function, then we have

1 p(x)
/0 Ilf/(X*)_l(f/(X)—f/(xf))llp(x)dr</0 L(u)udu, (2.9)
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and

fop(x) L(uw)udu

1@~ fII<p) + o : (2.10)
1— [ L(u)du
If f'(x*)~1 £/ satisfies the center Lipschitz condition with the L average:
7p(x)
I/ = I< / L(u)du, Vxe B(x*,r), 0<c<l, (2.11)
0
where L is positive integrable function, then we have
! l 1 pr p(x)
/0 ILf ) f () —IIIP(X)dT</O L(u)(p(x) — u)du, (2.12)
and
. I =¥+ S La (o) —w) du
[FECRNECO]IS Jo . Va,y € BGHn). (2.13)

1= 9 L) du

Proof. The Lipschitz conditions (2.8) and (2.11), respectively, imply that

p(x)

1 1 p(x)
fo 1LF & ) — F1 o) de< /0 f L(u) dup(x) de = fo LGuyudu,

p(x)
1 1 1 prplx) p(x)
/0 1 G F () — Tlp(e) de< /0 /0 L(u) dup(x) de = /0 L(u)(p(x) — ) du.

This proves (2.9) and (2.12).

Note that
FOE)=1— O e G) = D) (2.14)
and
1
FO =) — f&x*) = /O O de(x — x%), (2.15)

where x* = x* + t(x™ — x).
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If f/(x*)~! f’ satisfies the radius Lipschitz condition, by (2.7) and (2.9) we obtain

1
1O ol = H fo (I — 'O NN ) — f(xD) delx — x%)

1
< (1 + 1@ ) /0 L' @) = F e df) lx = x|

fop(x) L(uw)udu
1= % L) du

<lx —x*| +

This proves (2.10).
If 7/ (x*)_1 f' satisfies the center Lipschitz condition, when x, y € B(x*, r), we have

1
1M~ Feoll = H fo I = 'O O) = D) delx — x%)

1
< (1 + 1 ) /O L' NS Gy = £ e df) lx — x|

1
< (1 + 1O e /O £/ G () = £/ ) de

1
* /o 1F D 6 = F df) Ix — x*|

POV L) dullx — x* |+ S L) (p(x) — u) du

1— % L(u) du

=i+ S L) (p(x) — u) du
h 1= 29 L(u) du '

This proves (2.13). O

Lemma 2.3. Let

1 t
h(t):t—a/ L@u*'du, o>1, 0<r<r,
0

(2.16)

where L(u) is a positive integrable function and nondecreasing monotonically in [0, r]. Then h(t) is

nondecreasing with respect to t.
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Proof. In fact, by the monotonicity of L, o> 1, we obtain

12 1 fn |
h(ty) — h(t)) = (7/ —7/ )L(u)u“_ du
t2 0 tl 0
L2 (1 1\ "
(Ao
Iy Ju L /) Jo
(] G- ))
>L(t) +l 5= u " du
51 I 0
4
—L(t1)< / /)u“lduzo
0

for 0 <ty <tr. Thus, h(t) = (1/t%) fot L(u)u*" du is nondecreasing with respect to z. [
Lemma 2.4. Let
1 t
<p(t)=t—2f Lw)(at —u)du, o=>1, 0<t<r, (2.17)
0

where L(u) is a positive integrable function and nondecreasing monotonically in [0, r]. Then ¢(t) is
nondecreasing monotonically with respect to t.

Proof. In fact, since L is a nondecreasing function, when 0 < #; <, <r, a>1, we have

1 (o 1 [
p(2) —o(t)) = —2/ L(u)(oty — u)du — —2/ L(u)(oty — u)du
12 0 tl 0

2

1 [2 1 [
=(@—1) (—/ L(u)du — —f L(u) du)
2 Jo n Jo

1 [~ 1 [n
+ —2/ L(u)(tp —u)du — —2/ L(u)(t; — u)du
1y Jo 1 Jo

1 15} 1 51
=(@—1 (—/ L(u)du——f L(u)du)
2 Jo 1 Jo
1 1 % 131 131
+<¥—g)/0 (L(E—i-u)—L(E—u))udu

( —11)” 1)?

/ (L(t1) — L(u)) du
21‘2l‘1

+ 72/ (L) — L)t — ) du>0.
2 90

Thus, ¢(t) = (1/ 12) fot L(u)(ot — u) du is nondecreasing monotonically with respect to r. [
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3. Convergence of inexact Newton methods with scale residual control

First we examine inexact Newton and modified inexact Newton methods that correspond to By = f’ (yx)
with yy = x; and y; = xo, for each k, respectively.

Theorem 3.1. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f’ (x*)*1 exists and
F'(x*) "1 f/(x) satisfies the radius Lipschitz condition with L average:

(x)
1L ) = < / " Lwdu, 0<e<l, 3.1

p(x)

where x* = x* 4+ t(x — x*), p(x) = ||x — x*||, and L is nondecreasing. Assume By, = f'(xy), Vk in (1.3),
vk = Okl (P f' i) ™ |- 1 Pe f/ (i) || = Ok cond (Py £/ (xk)) with vg <v < 1. Let r > 0 satisfy

Jo L)udu

(1+ v)r(1 - f()r L) du) +o< L (3.2)
Then inexact Newton method is convergent for all xy € B(x*, r) and
st — 5l < ((1 +0) zfop(xo) L+ ) e = 71l (3.3)
p(x0)™(1 = [ L(u) du)
where
g (1 +v) fop(x(’) L(u)udu 3.4

pCeo) (1= [ L () du)
is less than 1.

Proof. Arbitrarily choosing xo € B(x™, r), where r satisfies (3.2), then ¢ determined by (3.4) is less than
1. In fact, by the monotonicity of L and Lemma 2.3, we have

fop(x‘)) L(u)udu
p(x0)2(1 — I L(u) du)

Jo Ludu
r2(1 — [y L(u) du)r
0

qg=~1+v) p(x0) + v

<(1+v) + o<1,
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Now if x; € B(x*, r), we have by (1.3)
Xept =2 = =1 = f100) TN (F @) = FO) + f 0 e
= f'(a) ™ f' (") /0 P 0 — G — b o B B
where x¥ = x* 4 1(x; — x*). Hence, by Lemmas 2.1 and 2.2 and condition (3.1) we obtain
1
el N FACA R ECo] /0 1F' 67N @ = F NI e — x| d

+ Ol (Prf ")) M- 1 P f (el

/ /p(xk)
L(u)dup(xy)dec
fp“‘“ L) du Jo Jopwp

+ Ol (Pef"Ga)) ™M - 1P o) f e ™ f G|

fop(xk) L(u)udu
1 — [ L(u) du

fp(xk) L(u)udu
+ 0 cond(Pe £/ (xi)) [l — x| 4+ —2
— fop(x") L(u)du

fp(x") L(uw)udu
fﬂ(xk) L(Lt) u

<(I+v ) + villxe — x* .

Taking k = 0 above, we obtain |x; — x*||<q|lxo — x*|| < ||xo — x*||. Hence, x; € B(x*,r), this
shows that (1.3) can be continued an infinite number of times. By mathematical induction, all xi

belong to B(x*,r) and p(x;) = ||lxx — x*|| decreases monotonically. Therefore, for all k>0,
we have

fp(xk) L(u)udu

kg1 — 2™ < (14 vg)
P> (1 = [ L(u) du)

p(x)? + vrp(xr)

p(x0)
< <(1 ‘) fo L(u)udu

+ .
(L fOp(XO) L(u)du)p(Xk) v) p(xk)

Thus (3.3) follows. O
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Theorem 3.2. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f’ ()c*)_1 exists and
F'(x*) "1 f/(x) satisfies the center Lipschitz condition with L average:

Tp(x)
||f/(x*)—1f/(xf) _[||g/Op L(u)du, 0<<l, 3.5)

where x* = x* 4+ t(x — x*), p(x) = ||lx — x*||, and L is nondecreasing. Assume By, = f'(xo), Vk in (1.3),
vk = Okl (Po.f'(x0) Il - 1Po £/ (x0) | = Ok cond(Py £ (x0)) with v <v < 1. Let r > 0 satisfy

Jo La)(r —uydu v+ f5 Lu)du _

14+ - < 3.6
( )r(l — Jo Lw)ydu) 1 — f5 L(u)du G0
Then modified inexact Newton method is convergent for all xy € B(x™, r) and
p(xo) p(x0)
L(u)(p(xo)—u) du vk+ L(u)du
1 =¥ < <<1+ 0 - )+ Jo ) ) e — 21,
p(x0)* (1= [ L(u) du) 1— [ L(u)du
3.7
where
p(x0) p(xo)
L —u)d + Lu)d
g=(1+0) l () (p(xo) —u)du v+ [ (u) du (38)

pGro)(1 = f£° Laydu) 1 — [ Lu) du

is less than 1.

Proof. Arbitrarily choosing xo € B(x*, r), where r satisfies (3.6), then ¢ determined by (3.8) is less than
1. In fact, by the monotonicity of L and Lemma 2.4, we have

v+ [ L) du
1= [0 L(u) du

J§ LG (p(x0) — u) du
pCr0)2 (1= [ L) du)

Jo L)(r — u)du v+ [y L(u)du
r <
r2(1— [y Lw)du) — 1— [y L) du

Now if x; € B(x*, r), we have by (1.3)

g= =40 p(xo0) +

<(14v)

Xep1 — X =xp — 1 = £ (x0) TN (fF ) — ) + (o) e

1
= f(x0) " f (x*) /0 F N o) — ) o — x) de + f/(x0) ™ P Per,
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where x* = x* + 7(x;y — x™). Hence, by Lemmas 2.1 and 2.2 and condition (3.5) we obtain

1
HMH—xWQW@wﬂNﬁwAnfuﬂ”ﬁvw—fuwan—ﬁwh
+ 0l (Po £ o) ™Ml - 1 Po f (xo)
1
< o) ) ]E U ) (o) — £/

1A ETHS @ = FEND

e = x| de + Ol (Po.f (x0) ™ 1 Po f (xo) |

! Lo tp(xp)
l—ﬁW“memA A (wdut | () du ) p(xe) de

+ 0l (Po.f" (x0)) ™M I+ I Po.f (x0) £ (x0) ™ f (x|

fop(x()) L(u) dup(Xk) + ¢ L) (p(x) — u) du
= Lo du

L+ o™ L) (p0o) — u) du .
X 0(x0) ||Xk - X ||
11—/ L(u)du

~+ 0 cond( Py f,(X()))

\

fop(xo) L(u) dup(xk) i fop(xk) L) (p(xr) —u)du
fOP(XO) L(u)du

X|m—xw+kmhwmmw—mw
fp(xO) L(M) du

+ vk

Taking k =0 above, we obtain ||x; —x™*|| <gllxo —x*|| < |lxo —x*||. Hence, x; € B(x™, r), this shows that
(1.3) can be continued an infinite number of times. By mathematical induction, all x; belong to B(x™*, r)
and p(x;) = ||lxx — x*|| decreases monotonically. Therefore, for all k =0, 1, ..., we have

SO L) (pOog) — u) du oo Y L) du
p(xp)” +
pO)2(1 = [ L(u) du) 1= [ L) du

p(x0) _ p(xo0)
(4w fo L(u)(p(xo0) —u)du ik v+ fo L(u)du (0.
p(x0)2(1 — [ L(u) du) 1= % L(u) du

xk41 — X < (1 + vg)

p(Xk)

Thus (3.7) follows. O
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Theorems 3.1 and 3.2 give an estimate of the radii of convergence ball for inexact Newton method
and modified inexact Newton methods, respectively. In particular, for v = 0, the estimate for the radius
of convergence ball for Newton’s method is given by

for L(u)udu
r(1— [y L@u)du)

which can be found in [18]. Then, we can conclude that vanishing residuals, Theorem 3.1 merges into
the theory of Newton’s method.

A result analogous to Theorems 3.1 and 3.2 can also be proven for inexact Newton-like methods where
Bj = B(xy) approximates f”(xz).

Theorem 3.3. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f’ (x"‘)_1 exists
and f’ (x"‘)*1 [ satisfies the radius Lipschitz condition (3.1) with L is nondecreasing. Let B(x) be an
approximation to the f'(x) for all x € B(x*, r), B(x) is invertible and

1B F')ll<or, 1B F/(x) — I <on. (3.9)
Where vi = 0, || (P /i) ™M - 1P £/ (i) | = 0k cond( Py £/ (xx)) with v <v < 1. Let r > 0 satisfy

o1 fy L(u)udu
r(l — [y L(u)du)

(I +v) + wr + wv< 1. (3.10)

Then inexact Newton-like method is convergent for all xo € B(x™*, r) and

p(xo0)
w1 L(u)udu
e — x5 < 4+ — Jo — (o) +or+ow | —xl, G
p(x0)*(1 — f§* L(u) du)
where
w1 Op(x(’) L(w)udu
g=(14v) + wy 4+ oo (3.12)

p(i0) (1 — [0 L(u) du)
is less than 1.

Proof. Arbitrarily choosing xo € B(x*, r), where r satisfies (3.10), then ¢ determined by (3.12) is less
than 1. In fact, by the monotonicity of L and Lemma 2.3 , we have

W] fop(x()) L(u)udu
p(x0)? (1 = ¢ L(u) du)

o1 fy Lu)udu
r2(1 — [y L(u)du)

qg=(1+v) p(x0) + w2 + wiv

< (1+40v) r+ wy + o<l
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Now if x; € B(x™, r), we have by (1.3)
Xt — x*=xp —x* = B (fF ) — f(xN) + B '
1
=x; —x" — / B,:lf/(xf) dr (xx — x*) + B,:lPkflPkrk
0
1
= - Bklf/(Xk)/O F o O T ) — D) G — xF) de
+ B (f(x) — Bo) (x — x*) + B ' P Pry,

where x* = x* + t(x;y — x™). Hence, by Lemmas 2.1and 2.2 and condition (3.1) we obtain

1
breer — x* I < B f @)l /0. L G ™ F O L ) T G = F DI e — x| de

+UB N () — B - Nk — x* |+ 0l By PP f (el

p(xx)
L(u) dup(xi)dt + wzp(xp)
fop(x") L(u)du / /p(m

1
+ 0l B ) P o)™ TP S (e “/0 S~

fop(xk) L(u)udu
1= [ L(u) du

w1 fop(xk) L(u)udu
1= [ L(u) du

+ w2p(xk) + wvg (p(Xk) +

w1 O(X") L(u)udu
O(Xk) L(u)du

<1+ ) + (w2 + o) p(xi).

Taking k =0 above, we obtain || x; —x™|| <g|lxo —x™| < |[xo —x™||. Hence, x; € B(x™, r), this shows that
(1.3) can be continued an infinite number of times. By mathematical induction, all x,, belong to B(x™, r)
and p(xz) = ||lxx — x*|| decreases monotonically. Therefore, for all k>0, we have

fp(xk) L(u)udu

pO)2(1 = [ Lu) du)

p(x0)
(4w w1 fo l(,(b)t)u du
p(x0)* (1 — fF'™ L(u)du)

o1 — ¥ < (14 vg) p(x)? + (2 + oo p(xx)

p(xi) + w2 + wlv) p(xg).

Thus (3.11) follows. O
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Remark 3.1. The results we proved state inverse proportionality between cond( Py By) and each forcing
term 0. Such conditions are sufficient for convergence, and may be overly restrictive for the upper bounds
on {0}, if Py By are bad conditioned matrices. But we can choose appropriate Py to precondition By which
can lead to relaxation on the forcing terms. The more properties about scaling residual control can be
found in [13].

4. Applications

In the study of the Newton’s method, the assumption that the derivative is Lipschitz continuous is
considered traditional. In this section, we will apply the obtained results to some concrete cases. By
taking L as a constant, the following corollaries are obtained under Lipschitz conditions (3.1) and (3.5)
directly.

Corollary 4.1. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*, r), f'(x*)~! exists and
F'(x*) "1 f/(x) satisfies the radius Lipschitz condition with L average.

L/ @7 = FaNI<A =oL]x —x*, 0<e<1, 4.1

where x* = x* + t(x — x*), p(x) = ||x — x*||. Assume By = f'(xy), Vk in (1.3), vp = O || (P f/(xk))_1 Il -
| Pr f'(xp)|l = O cond(Py f'(xx)) with vp <v < 1. Let r > 0 satisfy

B 2(1 —v)

=—. 4.2
"TLG - 4.2)
Then inexact Newton method is convergent for all xo € B(x*, r),
Lllxo — x*||(1
llxo — x™[I(1 4 v) -1, 4.3)

2(1 = Lllxo — x*|I)
and inequality (3.3) holds.

Corollary 4.2. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f'(x*)™" exists and
F'(x*) "1 /(%) satisfies the center Lipschitz condition with L average:

I/ 9™ ) = Tl <<Ljlx —x*, 0<t<], (4.4)

where x" = x* + t(x — x*), p(x) = ||x — x*||, and L is nondecreasing. Assume By = f'(xo), Yk in (1.3),
vk = Ol (Pof"(x0) "Il - 11 Po.f/ (x0) Il = Ok cond(Po f' (x0)) with vg <v < 1. Let r > 0 satisfy

_2(1—v)
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Then modified inexact Newton method is convergent for all xo € B(x*, r),

q_LIIXO—X*||+v Lilxo —x*d +v) _
I—Llxo—x*|  2(1 = Lllxo—x*[)

(4.6)

and inequality (3.7) holds.

Corollary 4.3. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f'(x*)™" exists and
f/(x*)_lf’ satisfies the radius Lipschitz condition (4.1) with L is positive number. Assume B(x) be an
approximation to the f(x) for all x € B(x*, r), B(x) satisfies condition (3.9), vy = 91¢||(Pkf/(xk))_l I| -
| P f/ (xi) || = O cond(Py f/(x)) with vg <v < 1. Let r > 0 satisfy

2(1 — vy — @)
r= .
L2+ v —vwr —2w)p)

4.7)

Then inexact Newton-like method is convergent for all xo € B(x*, r),

Lllxo — x*|loy (1 4+ v)
q =vw] + w2 + <1, (4.8)
2(1 = Lilxo — x*[)

and the inequality (3.11) holds.

Remark 4.1. The results of Corollary 4.1 can be found in [13], and if taking v =0 in Corollary 4.1, Wang
(see [15,16,18]) also gave the similar results of Newton’s method. But it seems that Corollaries 4.2 and
4.3 have not appeared in the literature.

5. Convergence under weaker Lipschitz condition

In this section, we will consider the system of nonlinear equations (1.1) under weaker Lipschitz con-
dition.

In Section 3, we studied the inexact Newton method and inexact Newton-like method under condition
(3.1). In fact, similar to Theorem 3.2, we can also give the convergence of the inexact Newton method
and inexact Newton-like method with Lipschitz condition (3.5).

Theorem 5.1. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f’ (x"‘)_1 exists

and f'(x*)~' f' satisfies the radius Lipschitz condition (3.5) with L is nondecreasing. Let B(x) be an
approximation to the f'(x) for all x € B(x*,r), B(x) is invertible and

IB) 'F')|<or,  1Bx)™'F'(x) — I|<on. (5.1)
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Where vi = 0, || (P £/ i) ™M - 1P £/ (i) || = Ok cond( Py £/ (xx)) with v <v < 1. Let r > 0 satisfy

Jo L@)@r + (v — Du) du
r(1— [y L(u)du)

+ wy + wv< 1. (5.2)

Then inexact Newton-like method is convergent for all xo € B(x™*, r) and

P L(w)(2p(x0) + (0 — Du)d
g1 — x* < (wl o ( )(zu()l( p(;;)()xo) Z)( )d)u)) pa) +on + ww) e — x*I, (5.3)
p(xo - u)du
where
p(x0) _
. 1 Lw)(2p(xp) + (v — Du) du ort o (5.4)

p(x0) (1 = [ L(u) du)

is less than 1.

Proof. Arbitrarily choosing xo € B(x*, r), where r satisfies (5.2), then ¢ determined by (5.4) is less than
1. In fact, by the monotonicity of L and Lemmas 2.3 and 2.4, we have

JES Ly @p(xo) + (0 — Du) du
(0]
1 p(x0)*(1 — IOP(XO) L(u) du)

Jo La)@r + (v — Du) du
r2(1— [ L(u)du)

o(x0) + w2 + wv

r—+ w4+ o<l.

Now if x; € B(x*, r), we have by (1.3)
Xipr —xXF =xp —xF = B (f ) — f(&) + B '

1
=x; —x* — / B () dt (xp — x*) + B P Per
0

1
= - Bk_lf/(xk)/o F o0~ O @ TS ) = F OO O — x*) de

+ BN () — B (xk — x*) + B P Py,
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where x* = x* + 7(x;y — x™). Hence, by Lemmas 2.1 and 2.2 and condition (3.5) we obtain
e — x* 1 <IIBE f/ Gl /01 L G ™ P O ) T Ga) = /DI e — x| de
1B () =Bl - Ixe=x* 1| + Ol B P NP f o)l
<IB Gl L G~ )l /:(llf/(x*)_l(f/(xk) — 1N
F LTS = DD -l — x*) de

B ) = BO - Nk — x* I+ 0B P I P f el

w1 1 p(xz) Tp(xg)
S ) / / L(M)du+/ L(u)du | p(xx) dtt+wap(xn)
1— [ Ly du Jo \Jo 0

1
+ 0l B F G P o)™ P f () “ /O F1o) ™ f () e — x*)H

p(xK) p(xr)
L 20(xx) —u)d L d
<o Cpt) — ) du | w2p(xi) + orvg | plxg) + =2 ()i du
p(xr) p(xr)
1— 7™ L(u)du 1— 7™ L(u)du
p(xk) p(xk)
L(u)2p(xx) —u)du L(u)udu
< s 10k Jo + (w2 + o) p(xk).

1= [ L(u) du 1— [ L(u) du

Taking k =0 above, we obtain ||x; —x™*|| <gqllxo —x*|| < |lxo —x*||. Hence, x; € B(x™, r), this shows that
(1.3) can be continued an infinite number of times. By mathematical induction, all x,, belong to B(x™*, r)
and p(xz) = ||lxx — x*|| decreases monotonically. Therefore, for all k>0, we have

JES Ly 2p(er) — u) du
p(? (= [ L) du)

+ (w2 + wrvg) p(xk)

fop(x") L(uw)udu
p(e)* (1= [ L(u) du)

ka1 — x| <o p(xp)? + o1vx p(xk)?

p(x0) - p(x0)
o fo L(u)2p(xg) —u)du p(xk)2 + o fo L(u)udu )2
p(x0)2(1 — [ L(u) du) p(x0)2(1 — [ Lu) du)

+ (w2 + w1v) p(xy)

(S8 L) @oo) + (0 — D) du
S|
U a0 — % L duy

p(xi) + w2 + ww) p(xg).

Thus (5.3) follows. 0O
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If taking B(x)"' = F'(x),ie., w; =1, wy =0 in Theorem 5.1, we obtain the inexact Newton method
under condition (3.5) immediately.

Theorem 5.2. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f’ (x*)_1 exists and
f (x"‘)_1 f(x) satisfies the radius Lipschitz condition with L average:

(x)
1 ) — < / " Lwdu, 0<e<l, (5.5)

p(x)

where x* = x* 4+ t(x — x*), p(x) = ||lx — x*||, and L is nondecreasing. Assume By, = f'(xy), Vk in (1.3),
vk = Okl (P f' i) ™ - 1 Pe f/ (i) || = Ok cond (Py £/ (xk)) with vg <v < 1. Let r > 0 satisfy

Jo L@)2r + (v = Du) du
r(1 — [y L(u)du)

+ o<1 (5.6)

Then inexact Newton method is convergent for all xy € B(x*, r) and

P9 L) (2p(x0) + (0 — Du)d
lxk+1 — x| < (/0 (Z)( p(x;)()xo) (= Da) Mp(xk) + D) lxe — x|, (5.7)
p(x0)~ (1 — fo L(u)du)
where
p(x0) _
— o fo Lu)(2p(x0) + (v — Du) du T (5.8)

p(x0) (1 = [ L(u) du)
is less than 1.
In particular, taking L as a constant, we can obtain the following corollaries.

Corollary 5.1. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f'(x*)~" exists and
I (x*)_1 [/ satisfies the center Lipschitz condition (4.4) where L is positive number. Assume B(x) be an
approximation to the f(x) for all x € B(x*,r), B(x) satisfies condition(5.1),v;, = €)k||(Pkf’(xk))_1 I -
| P f/ (x) || = O cond( Py f/(xx)) with vx <v < 1. Let r > 0 satisfy

2(1 —vw; — @)
r= .
L2+ 3w; —vw; —2w))

(5.9)

Then inexact Newton-like method is convergent for all xo € B(x™*, r),

Lllxo — x*[w1(3 4 v)
q =vo + w2 + <1, (5.10)
2(1 = Lixo — x*)

and the inequality (5.3) holds.
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Corollary 5.2. Suppose x* satisfies (1.1), f has a continuous derivative in B(x*,r), f'(x*)~! exists
and f'(x*)~' f'(x) satisfies the center Lipschitz condition (4.4). Assume By = f'(xx), Vk in (1.3), v =

Okl (P £/ )™M - 11 Pe £ (i) | = Ok cond( Py £/ (xk)) with v <v < 1. Let r > 0 satisfy
2(1 —
P20 (5.11)
L5 —v)
Then inexact Newton method is convergent for all xy € B(x*, r),
Lljxo — x*||(3
llxo — x*[|(3 4+ v) -1, (5.12)

2(1 = Lllxo — x*|I)
and inequality (5.7) holds.
Remark 5.1. The results in this section are all new under the center Lipschitz condition. Especially,
Theorems 5.1, 5.2 and Corollaries 5.1, 5.2 improve the convergence conclusions of Newton’s method

[15,16,18] in the limiting case of vanishing residuals, i.e., 0y = wg = 0, w1 = 1. The following example
shows that the convergence result under the center Lipschitz condition is an essential improvement.

Example 5.1. Define a function

X
f(x)z/ <1+fcosf) dr, VxeR.
0 T

Then
/ooy J14+xcosE, x#0;
f(X)_{l, * _x:o'

It is clear that x* = 0 is a zero of fand f’(x) satisfies
/ * / T %
17/ f' ) — 1l = |xoos X[ <lv = x*I, vxe R.
X

It follows from Theorems 5.1 and 5.2 that for any xo € B(x*, 2/5)

3|xol

)l —xl?, k=0,1,2,....
2(1—IXO|)> :

X1 — Xl < (

However, there is no positive integrable function L such that (3.5) or (4.4) is satisfied. In fact, notice that
1

El
n

T

I N ) = F ) = ‘x COS; — X COS —

[

for x = %, 1=2n/(2n+1)andn=1, 2, .... Thus, if there was a positive integrable function L such that
(3.5) holds in the ball B(x™*, r) for some r > 0, it follows that there exists some ng > 1 such that

r +00 % —|—o<>1
L(u)du> L(u)du> — =+o00,
/0 (u) kZ Wduz -

—n0 2n/(2n+1) k=ny

which is a contradiction.
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Table 1

Estimated radii

v Estimates (4.2) Estimates (4.5) Estimates (5.2)
r=2(1-v)/L3 —0v) r=2(1—v)/L(5 +0v) r=2(1-v)/L(5—v)

0.9 0.14285714 0.05084746 0.07317073

0.7 0.39130435 0.15789474 0.20930233

0.5 0.60000000 0.27272727 0.33333333

0.4 0.69230769 0.33333333 0.39130435

0.2 0.85714286 0.46153846 0.50000000

0 1.00000000 0.60000000 0.60000000

Remark 5.2. Theorems 3.1-3.3,5.1 and 5.2 give us a perceptive apprehension of convergence for inexact
Newton methods. Giving approximately estimated radii of convergence ball helps to ensure that inexact
Newton methods converge rapidly and is also important to choose an initial iterative point inexact Newton
methods. Fortunately, only a rough estimation of radii for convergence ball is enough to do those. The
following example will show us how to give estimated radii of convergence ball.

Example 5.2. Define a function

1.2
x4 3xt, 0<x <
f(x)_{—x—%xz, —1<x <.
Then
—1+4+2x, 0<x<1;
’ — 3N AX L
S {—1—%x, —1<x <.

Obviously, x* = 0 is a zero of fand f’(x) satisfies
LF' )TN @) = £ =30 =l —x*|.

Hence, when using inexact methods and taking different v, we get the results of the estimated radii in

Table 1.
Moreover, we should choose initial iterative point xg < r, which can ensure rapid convergence. In fact,
by taking xo = 1, and v = 0 in inexact methods, we have

x1=x0 — [f (x0)17" f (x0)
1 ( +1 2)
=x0— —— | —x =X
0 —1+%X() 0 370
=x0—2x9=—1,

and x, = (=", n=1,2,... . Thatis to say, xo on the boundary of the convergence ball can make
the inexact methods fails.
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6. Discussion for assumptions

In the previous three sections, Lipschitz assumptions (3.1), (3.5), (4.1) and (4.4) have been used. We
remark that the conditions (3.1), (3.5), (4.1) and (4.4) are all affine invariants, as it is insensitive with
respect to transformations of the mapping f(x) of the form: f(x) — Af(x), A an invertible matrix, as
long as the same affine transformation is also valid for B(x) (see e.g. inexact Newton method, modified
inexact Newton method and inexact Newton-like methods).

Since Newton’s iterates are affine invariant, in [6,19] convergence conditions were determined in affine
invariant terms. With the P, = B, ! proposed in this paper, we point out that Theorems 3.1-3.3, 5.1 and
5.2 represent an affine convergence analysis of inexact Newton methods.

Under affine invariant Lipschitz condition:

LF' TN @) = FONI<LIx =yl Vx,y € B&*,r), (6.1)

the convergence analysis of inexact Newton method is given in [13]. It follows from Example 5.1 that
the conditions (3.1), (3.5), (4.1) and (4.4) are essentially weaker than the condition (6.1). That is to say,
under weaker affine invariant Lipschitz condition, Theorems 3.1-3.3, 5.1 and 5.2 show the convergence
analysis of inexact Newton methods. Hence, Theorems 3.1-3.3, 5.1 and 5.2 really extend the results in
[13,15,16,18] and expand the application fields of inexact Newton methods and Newton’s method.
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