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a b s t r a c t

Differential algebraic equations (DAEs) define a differential equation on a manifold.
A number of ways have been developed to numerically solve some classes of DAEs.
Motivated by problems in control theory, numerical simulation, and the use of general
purpose modeling environments, recent research has considered the embedding of the
DAE solutions of a general DAE into the solutions of an ODE where the added dynamics
have special properties. This paper both provides new results on the linear time-varying
case and considers the important nonlinear case.
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1. Introduction

Nonlinear differential algebraic equations (DAEs)

F(t, x, ẋ) = 0 (1)

arise in a number of application areas [1,2]. Here F ∈ C0(I×Dx×Dẋ,Rn) is sufficiently smooth, I = [t, t] ⊆ R is a (compact)
interval, and Dx,Dẋ ⊆ Rn, are open sets. A number of numerical approaches have been developed for (1). Classical methods
such as backward differentiation or implicit Runge–Kutta methods require the system to be low index and have special
structure. Several approaches have been developed based on what is called the derivative array [3,2,4].
One possible approach, sometimes called index reduction, is to transform (1) into an index one DAE which has the same

solutions as (1) but allows for the application of certain classes of integrationmethods known from the treatment of ordinary
differential equations (ODEs). However, we cannot use every numerical method. In particular, it is not possible to apply
explicit methods. This is due to the fact that the new DAE contains all algebraic constraints posed by (1) and the numerical
method must be able to resolve these constraints.
An ODE whose solutions include the solutions of a DAE is called a completion of that DAE. There are several reasons why

having a completion would be beneficial. For one it would allow the use of explicit integrators. It would also permit easy
interfacing with many modeling and design software packages which require ODE models. That is, one derives an ODE for
the unknown x from (1) and uses this ODE. But every such ODE will have a larger solution space than (1). In particular, the
derivation introduces additional dynamical behavior which can be interpreted as a completion of the flow of (1) which is
only defined on the set of all (t, x) which satisfy all constraints contained in (1). This additional dynamics is artificial and
depends on the way the corresponding ODE is derived from (1). Examples show that already in the case of linear DAEs
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with constant coefficients the additional flow can be quite arbitrary [5] and sometimes cause difficulty with the numerical
solvers. See also [6] where the so-called least-squares completion is considered.
This leads to the important problem of developing numerical procedures for generating completions of general nonlinear

DAEs for which the additional dynamics of the completion are known and have the desired behavior. In the case of linear
DAEs with constant coefficients it has been shown in [6] that the least-squares completion yields additional dynamics with
all eigenvalues being zero implying that the additional dynamics is at most polynomial. In [6] it has also been pointed out
that for this special case one can define a completion in such a way that the additional dynamics is constant. This is achieved
by basing the construction of the completion on techniques also used for the index reduction mentioned above. In [7], it
has been shown how the additional dynamics of the least-squares completion in the case of linear DAEs with constant
coefficients can be stabilized. Finally, representations of least-squares completions in the case of linear DAEs with time-
varying coefficients were obtained in [8]. The aim of the present paper is to generalize these results to nonlinear DAEs.
Using some earlier results on stabilization of invariants, we suggest a technique useful for both linear time-varying and
nonlinear DAEs that allows for the modification of a computed completion in such a way that every solution will approach
the set of all points satisfying the DAE constraints. The results presented also provide a corrected reformulation of some
claims of [9].
Stabilization of explicit constraints has been studied on several occasions [9,10]. We are concerned here with general

DAEswhere some or all of the constraints can be implicit. Stabilization is done in this paperwithout analytically determining
any constraints.
Section 2 discusses the linear time-varying case, presents needed notation, and gives formulas for the computed

completions. Section 3 sets up the nonlinear notation and gives results on the nonlinear completions. The key Section 4 first
discusses stabilization of invariants for ODEs, and then applies these ideas to stabilizing the completions of general DAEs.
The results of this section are new contributions to both the linear time-varying and nonlinear cases. Numerical examples
are discussed in Section 5.

2. Linear DAEs with variable coefficients

Consider a linear DAE with variable coefficients of the form
E(t)ẋ = A(t)x+ f (t), (2)

where I is an interval and E, A ∈ C(I,Rn,n) and f ∈ C(I,Rn) are assumed to be sufficiently smooth, i.e., sufficiently often
continuously differentiable. It is well known that (2) defines a well-posed problem if and only if it possesses a well-defined
differentiation index. In order to characterize this property, we need the so-called derivative array equation

M`(t)ż` = N`(t)x+ g`(t) (3)
obtained by differentiating (2) ` times. Here

(M`)i,j =
(
i
j

)
E(i−j) −

(
i
j+ 1

)
A(i−j−1), i, j = 0, . . . , `,

(N`)i = A(i), i = 0, . . . , `,
(g`)i = f (i), i = 0, . . . , `,
(z`)j = x(j), j = 0, . . . , `,

(4)

with the convention that
(
i
j

)
= 0 for i < 0, j < 0 or j > i. We then require the following hypothesis, see [2, Chapter 3].

Hypothesis 1. There exist integersµ, a, and d such that the derivative arraysMµ,Nµ associatedwith the given pair ofmatrix
functions (E, A) has the following properties:
1. For all t ∈ I we have rank(Mµ(t)) = (µ + 1)n − a. This implies that there exists a smooth matrix function Z2 of size
((µ+ 1)n, a) and pointwise orthonormalized columns satisfying ZT2Mµ = 0.

2. For all t ∈ I we have rank(Â2(t)) = a, where Â2 = ZT2Nµ. This implies that there exists a smooth matrix function T2 of
size (n, d), d = n− a, and pointwise orthonormalized columns satisfying Â2T2 = 0.

3. For all t ∈ I we have rank(E(t)T2(t)) = d. This implies that there exists a smooth matrix function Z1 of size (n, d) and
pointwise orthonormalized columns satisfying rank Ê1T2 = dwith Ê1 = ZT1E.

If (2) satisfies Hypothesis 1 for some µ, then it satisfies Hypothesis 1 for every larger µ with the same values a and d. If
(2) satisfies Hypothesis 1 and µ is chosen minimally, then (2) has a well-defined differentiation index ν = µ+ 1 for a 6= 0
and ν = µ = 0 for a = 0. Conversely, if (2) has a well-defined differentiation index ν, then it satisfies Hypothesis 1 with a
minimal µ = max{ν − 1, 0}. For details see again [2, Chapter 3].
We have used the formulation in Hypothesis 1 since the matrices Z2, T2, Z1 are used in the numerical procedures. There

are simpler alternative assumptions directly in terms ofM`,N` that can be checked to see that Hypothesis 1 holds [11].
All of the above properties are invariant under (global) equivalence transformations defined by

Ẽ = PEQ , Ã = PAQ − PEQ̇ , x̃ = Q−1x, f̃ = Pf , (5)
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where P ∈ C(I,Rn,n) and Q ∈ C1(I,Rn,n) are pointwise nonsingular. In particular, the derivative arraysM`,N` belonging to
E, A and M̃`, Ñ` belonging to Ẽ, Ã transform according to

M̃` = Π`M`Θ`, Ñ` = Π`M`Q −Π`M`Ψ`, g̃` = Π`g` (6)
with

(Π`)i,j =

(
i
j

)
P (i−j), i, j = 0, . . . , `,

(Θ`)i,j =

(
i+ 1
j+ 1

)
Q (i−j), i, j = 0, . . . , `,

(Ψ`)i = Q (i+1), i = 0, . . . , `.

(7)

The matrix functions Z1 and Z2 of Hypothesis 1 define a so-called reduced DAE[
Ê1(t)
0

]
ẋ =

[
Â1(t)
Â2(t)

]
x+

[
f̂1(t)
f̂2(t)

]
(8)

with
Ê1 = ZT1E, Â1 = ZT1A, f̂1 = ZT1 f ,

Â2 = ZT2Nµ, f̂2 = ZT2gµ,
which is known to possess the same solutions as the original DAE (2). Moreover, (8) satisfies Hypothesis 1 with µ = 0 and
the same values a and d as the original DAE. In particular, the matrix functions ZT1E and Z

T
2Nµ form a pointwise nonsingular

matrix function. In view of (8) a natural completion of the given DAE (2) would therefore be the ODE[
Ê1(t)
−Â2(t)

]
ẋ =

[
Â1(t)
˙̂A2(t)

]
x+

[
f̂1(t)
˙̂f 2(t)

]
. (9)

In the context of completions the case ν = 0, where the DAE is actually an ODE, is of no interest. In what follows, we
therefore only consider the case ν ≥ 1 implying that ν = µ+ 1.

2.1. Completions and the derivative arrays

The completion (9) is derived by differentiating a part of the computed (8). The first question concerning the completion
(9) is whether it can be derived directly from the derivative array equations (3). To simplify the following discussion, we
sometimes work with formally infinite derivative arrays M , N , and g , defined according to (4) by dropping the limit `.
Similarly, we use formally infinite transformations Π , Θ , and Ψ according to (7). Note that these formally infinite matrix
functions introduce no difficulties since we will actually consider only finite parts of them.

Lemma 2. Let the (infinite) shift matrix S and the projection V be given by

S =


0
In 0
In 0

. . .
. . .

 , V =


In
0
0
...


and let I denote the (infinite) identity matrix. Then we have the relations

(a) STS = I, SST + VV T = I,
(b) STM = MST + Ṁ − NV T,
(c) STΠ = ΠST + Π̇ .

(10)

Proof. The relations in (10)(a) are trivial. Observing that Si,j = δi,j+1In with the Kronecker symbol δi,j we find that

(MST + Ṁ − NV T)i,j =
∑
k≥0

Mi,kSj,k + Ṁi,j − Niδj,0

=

∑
k≥0

[(
i
k

)
E(i−k) −

(
i

k+ 1

)
A(i−k−1)

]
δj,k+1 +

[(
i
j

)
E(i−j+1) −

(
i
j+ 1

)
A(i−j)

]
− A(i)δj,0

=

∑
k≥0

[(
i
k

)
E(i−k+1) −

(
i

k+ 1

)
A(i−k)

]
δj,k +

[(
i
j

)
E(i−j+1) −

(
i
j+ 1

)
A(i−j)

]
=

[(
i
j− 1

)
E(i−j+1) −

(
i
j

)
A(i−j)

]
+

[(
i
j

)
E(i−j+1) −

(
i
j+ 1

)
A(i−j)

]
,
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which coincides with

(STM)i,j =
∑
k≥0

Sk,iMk,j

=

∑
k≥0

δk,i+1

[(
k
j

)
E(k−j) −

(
k
j+ 1

)
A(k−j−1)

]
=

[(
i+ 1
j

)
E(i−j+1) −

(
i+ 1
j+ 1

)
A(i−j)

]
.

Similarly, we find that

(ΠST + Π̇)i,j =
∑
k≥0

Πi,kδj,k+1 + Π̇i,j

=

∑
k≥0

(
i
k

)
P (i−k)δj,k+1 +

(
i
j

)
P (i−j+1) =

(
i
j− 1

)
P (i−j+1) +

(
i
j

)
P (i−j+1),

which coincides with

(STΠ)i,j =
∑
k≥0

Sk,iΠk,jδk,i+1

(
k
j

)
P (k−j) =

(
i+ 1
j

)
P (i−j+1). �

Extending Z1 and Z2 to infinite functions by adding zero blocks and using the same notation for these infinite functions,
we can write

Ê1 = ZT1MV , Â1 = ZT1N, f̂1 = ZT1g,
Â2 = ZT2N, f̂2 = ZT2g

(11)

for the coefficients in (8). The property ZT2M = 0 together with (10) then implies

(ŻT2 + Z
T
2 S
T)M = ŻT2M + Z

T
2 S
TM = ŻT2M + Z

T
2 (MS

T
+ Ṁ − NV T)

= ŻT2M + Z
T
2 Ṁ − Z

T
2NV

T

=
d
dt
(ZT2M)− Z

T
2NV

T
= −ZT2NV

T.

Setting Z3 = Ż2+ SZ2, we first observe that Z3 possibly has a nonvanishing νth block due to the involved shift. We therefore
actually workwith the finite partMν ofM . Setting simplyM = Mν in the followingwith Z1 and Z2 of Hypothesis 1 completed
with a zero block, we define Z = [ Z1 Z2 Z3 Z4 ] in such a way that Z becomes a square matrix function. Consider now
the (finite) matrix function

ZTMV =


ZT1MV
0
−ZT2N
ZT4MV

 .
Since ZT1MV and Z

T
2N constitute a pointwise nonsingular matrix function, the first part of Z consisting of Z1, Z2, and Z3 has

pointwise full column rank. Hence, we can choose a smooth Z4 in such a way that Z is pointwise nonsingular.
Solving now the transformed derivative array equation

ZTMż = ZT(Nx+ g)

with z = zν by means of the Moore–Penrose pseudoinverse [12] of ZTM yields

ż = (ZTM)+ZT(Nx+ g).

Because of corank(M) = a corresponding to ZT2M = 0, the above least-squares solution is given by the least-squares solution
of  ZT1M

−ZT2NV
T

ZT4M

 ż =
 ZT1
ŻT2 + Z

T
2 S
T

ZT4

 (Nx+ g). (12)

Since [
ZT1M
−ZT2NV

T

]
=

[
ZT1MV
−ZT2N

]
V T,
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where the matrix function multiplying V T is pointwise nonsingular, every solution of (12) satisfies[
ZT1MV
−ZT2N

]
ẋ =

[
ZT1

ŻT2 + Z
T
2 S
T

]
(Nx+ g). (13)

But this is just the desired completion (9). Hence, (9) can be interpreted as the completion

ẋ = V TM−(Nx+ g) (14)

that is given by the generalized inverseM− ofM defined by

M− = (ZTM)+ZT. (15)

Lemma 3. The (pointwise) generalized inverse M− of M defined by (15) with a (pointwise) nonsingular matrix function Z is
(pointwise) an inner and outer inverse of M, that is,

MM−M = M, M−MM− = M−, (16)

and ZT(MM−)Z−T as well as M−M are (pointwise) symmetric.

Proof. In the following we make use of the properties of (ZTM)+. First, we have M−M = (ZTM)+(ZTM), which is
symmetric. Second, we have MM− = M(ZTM)+ZT or ZT(MM−)Z−T = (ZTM)(ZTM)+, which is symmetric. Third, we have
ZTMM−M = (ZTM)(ZTM)+ZTM = ZTM implying MM−M = M . Fourth, we have M−MM− = (ZTM)+(ZTM)(ZTM)+ZT =
(ZTM)+ZT = M−. �

2.2. Completions and equivalence transformations

In this section, we investigate how the completion behaves under (global) equivalence transformations (5). In particular,
what is the relationship between the completions of equivalent systems. As already mentioned, the transformed DAE
Ẽ(t)˙̃x = Ã(t)x + f̃ (t) satisfies Hypothesis 1 if the original DAE does, with the same values µ, a, and d. The corresponding
matrix functions Z̃2, T̃2, and Z̃1 are related according to

(a) Z̃2 = Π−TZ2UZ2 ,
(b) T̃2 = Q−1T2UT2 ,
(c) Z̃1 = Π−TZ1UZ1 ,

(17)

where UZ2 ,UT2 ,UZ1 are smooth, pointwise nonsingular matrix functions of appropriate size describing the necessary re-
orthonormalization and the specific choice of a smooth orthonormal basis. Again, it does not matter whether Z1, Z2 are
related to Mµ, Mν , or the infinite matrix function M . We therefore also omit a subscript of Π . The completion of the
transformed problem is then given by[

Z̃T1 M̃V
−Z̃T2 Ñ

]
˙̃x =

[
Z̃T1

˙̃Z
T

2 + Z̃
T
2 S
T

]
(Ñ x̃+ g̃), (18)

where the ˙̃Z2 is computed from Z̃3 =
˙̃Z2 + SZ̃2.

In terms of the original data, the first block equation reads

U−1Z1 Z
T
1Π
−1ΠMΘV

d
dt
(Q−1x) = U−1Z1 Z

T
1Π
−1((ΠNQ −ΠMΨ )Q−1x+Πg)

or, utilizing the special block structure of the involved matrix functions,

ZT1MVQ (Q
−1ẋ− Q−1Q̇ Q−1x) = ZT1 (Nx−MVQ̇Q

−1x+ g),

which reduces to

ZT1MVẋ = Z
T
1 (Nx+ g), (19)

which has the same form. However, the second block equation reads

−U−1Z2 Z
T
2Π
−1(ΠNQ −ΠMΨ )

d
dt
(Q−1x) =

(
d
dt
(U−1Z2 )Z

T
2Π
−1
+ U−1Z2 Ż

T
2Π
−1
− U−1Z2 Z

T
2Π
−1Π̇Π−1 + U−1Z2 Z

T
2Π
−1ST

)
× ((ΠNQ −ΠMΨ )Q−1x+Πg)
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or, with the help of (10)(c) and Z3M = −ZT2NV
T,

−ZT2NQ (Q
−1ẋ− Q−1Q̇ Q−1x) = (ŻT2 + Z

T
2 S
T
− U̇Z2U

−1
Z2
ZT2 )((NQ −MΨ )Q

−1x+ g)

= (ŻT2 + Z
T
2 S
T
− U̇Z2U

−1
Z2
ZT2 )(Nx+ g)+ Z

T
2NV

TΨQ−1x
which reduces to

− ZT2Nẋ = (Ż
T
2 + Z

T
2 S
T
− U̇Z2U

−1
Z2
ZT2 )(Nx+ g). (20)

Note that (20) is different from the bottom equation in (18). Hence, in general the completion belonging to the
transformed problem is not equivalent to the completion for the original problem we started with. A sufficient condition
that we have equivalence is that U̇Z2 = 0 which is a restriction on the choice of the (pointwise) orthonormal columns in Z̃2.
It should be observed that this choice has an influence on the additional dynamics introduced in the completion.

2.3. Numerical aspects

When dealing with DAEs numerically, we are faced with the problem that while it is possible, it would in general be
too costly to represent Z1, Z2 as smooth matrix functions. Rather, we are interested in a procedure which is based on the
determination of suitable values of Z1, Z2 at some given point. Setting P = Q = In in the previous section implying
that Π = Θ = I and Ψ = 0, the matrix functions Z̃1, Z̃2 can be interpreted as representing the specific choice of
orthonormal bases in a numerical procedurewhenwe allowUZ1 ,UZ2 to be non-smooth. Note that in the present caseUZ1 ,UZ2
describe transformations betweenorthonormal bases and are thus pointwise orthogonal. It is known that such anon-smooth
selection does not lead to any problems when we integrate the DAE (8) having non-smooth coefficient functions since in
standard discretization methods the transformations UZ1 ,UZ2 simply cancel out.

If we want to integrate the completion (13), we must fix a suitable ˙̃Z2 at a given point. For this, we may assume that
we have already determined a suitable Z2. In the context of a numerical method it is also important that the differentiation
involved in ˙̃Z2 is not performed by numerical differentiation but based on the use of differentiated data.
Following [2, Chapter 3], we know that we can choose Z2 in such a way that[

T ′T1 M
T

ZT2

]
Ż2 = −

[
T ′T1 Ṁ

T

0

]
Z2, (21)

where the columns of T ′1 form a suitable orthonormal basis of cokernel(M). This also guarantees that the leading matrix

function is pointwise nonsingular. Fixing T̃ ′1 = T
′

1UT ′1 with a non-smooth, pointwise orthogonal UT ′1 , we consider now
˙̃Z2 as

the solution of[
T̃ ′T1 M

T

Z̃T2

]
˙̃Z2 = −

[
T̃ ′T1 Ṁ

T

0

]
Z̃2. (22)

Inserting the relations Z̃2 = Z2UZ2 and T̃
′

1 = T
′

1UT ′1 gives[
UTT ′1
T ′T1 M

T

UTZ2Z
T
2

]
˙̃Z2 = −

[
UTT ′1
T ′T1 Ṁ

T

0

]
Z2UZ2

and, therefore, ˙̃Z2 = Ż2UZ2 . Thus, the choice of
˙̃Z2 transforms in the same way as Z̃2 such that UZ2 can be simply removed

in (18). In particular, discretizing (18) with the so constructed possibly non-smooth realizations Z̃1, Z̃2,
˙̃Z2 gives the same

numerical solutions as directly discretizing (13).

3. Nonlinear DAEs

In the general case of unstructured nonlinear DAEs (1), the derivative array equations obtained by differentiating (1) `
times are given by

F`(t, z, ż, . . . , z(`+1)) = 0, (23)
that is,

F`(t, z, ż, . . . , z(`+1)) =


F(t, z, ż)
d
dt
F(t, z, ż)
...

d`

dt`
F(t, z, ż)

 . (24)

The following hypothesis corresponds to Hypothesis 1 in the case of linear DAEs with variable coefficients.
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Hypothesis 4. There exist integersµ, a, and d such thatLµ = {zµ ∈ I×Rn×Rn×· · ·×Rn | Fµ(zµ) = 0} is not empty and for
every point (t0, x0, ẋ0, . . . , x

(µ+1)
0 ) ∈ Lµ there exists a (sufficiently small) neighborhood in which the following properties

hold:

1. We have rank(Fµ;ẋ,...,x(µ+1)) = (µ+ 1)n− a on Lµ. This implies that there exists a smooth full rank matrix function Z2 of
size ((µ+ 1)n, a) satisfying

ZT2 Fµ;ẋ,...,x(µ+1) = 0

on Lµ.
2. We have rank(ZT2 Fµ;x) = a on Lµ. This implies that there exists a smooth full rank matrix function T2 of size (n, n − a)
satisfying

ZT2 Fµ;xT2 = 0.

3. We have rank(FẋT2) = d = n − a. This implies that there exists a smooth full rank matrix function Z1 of size (n, d)
satisfying

rank ZT1 FẋT2 = d.

Again, alternative characterizations exist [11,13], but the preceding formulas fit our numerical procedures better. We
may assume that µ is chosen minimally and set ν = µ+ 1 as in Section 2. For convenience, we use the shorthand notation
y = (ẋ, . . . , x(µ+1)). Given (t0, x0, y0) ∈ Lµ we set

Ẑ1 = Z1(t0, x0, y0), Ẑ2 = Z2(t0, x0, y0).

Moreover, due to Hypothesis 4 we can choose a T̂1 such that[
Fµ;y(t0, x0, y0) Ẑ2

T̂ T1 0

]
is nonsingular. Defining

H(t, x, y, w) =
[
Fµ(t, x, y)+ Ẑ2w
T̂ T1 (y− y0)

]
we immediately see thatH(t0, x0, y0, 0) = 0 and thatHy,w(t0, x0, y0, 0) is nonsingular. Hence, the implicit function theorem
shows that the equation H(t, x, y, w) = 0 can locally be solved for y, w, say according to

y = K(t, x), w = L(t, x).

Obviously, every (t, x) with L(t, x) = 0 satisfies Fµ(t, x, K(t, x)) = 0 and hence x is consistent at point t . But also the
converse holds, i.e., if x is consistent at point t then (t, x) satisfies L(t, x) = 0. See [2, Section 7.2] for more details. It follows
that the relation L(t, x) = 0 constitutes all constraints imposed by the given DAE. Moreover, the problem

ẐT1 F(t, x, ẋ) = 0, (25a)

L(t, x) = 0 (25b)

is an index reduced DAE belonging to the original DAE. In particular, locally it possesses the same solutions as the original
DAE (1) but is index one. Note that we are able to evaluate L (and K ) numerically by means of Newton’s method applied to
H(t, x, y, w) = 0. Simply differentiating the constraints, a possible completion is then implicitly defined by

ẐT1 F(t, x, ẋ) = 0, (26a)

Lt(t, x)+ Lx(t, x)ẋ = 0. (26b)

The involved derivatives can be obtained numerically due to the implicit function theorem by solving the linear system[
Fµ;y(t, x, K(t, x)) Ẑ2

T̂ T1 0

] [
Kt(t, x) Kx(t, x)
Lt(t, x) Lx(t, x)

]
= −

[
Fµ;t(t, x, K(t, x)) Fµ;x(t, x, K(t, x))

0 0

]
. (27)

In a numerical realization of this approach one can combine the systems H(t, x, y, w) = 0, (26) and (27) in the form

H(t, x, y, w) = 0, (28a)

ẐT1 F(t, x, ẋ) = 0, (28b)

L1 + L2ẋ = 0, (28c)[
Fµ;y(t, x, y) Ẑ2

T̂ T1 0

] [
∗ ∗

L1 L2

]
= −

[
Fµ;t(t, x, y) Fµ;x(t, x, y)

0 0

]
, (28d)
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where the last relation (28d) can be used to eliminate the unknowns L1 and L2. Note that utilizing in this way the structure
of the nonlinear system (28) the computational costs compared with the standard integration of the DAE as by the general
purpose code GENDA [14,15] are only slightly increased due to the additional bordering given by (28c).
Standard integration has to discretize (28b), say by BDF, and then to solve this together with (28a) and w = 0 by a

nonlinear equation solver. An efficient implementation of such a solver can be based on the solution of linear systems with
coefficient matrices as in (28d). Thus, the only additional part which comes into play because of the completion are the a
equations of (28c) which can be decoupled by first dealing with (28a) and (28b). The overall additional costs of solving (28)
compared with standard integration therefore consists of the decoupling of (28c) and of the determination of the Jacobian
belonging to (28c), say by numerical differentiation.

4. First integrals and stabilization

When constructing a completion, we lose the information that the solution of the original DAEmust satisfy the algebraic
constraints. In the completions presented in the previous sections we rather have the property that the original constraints
describe invariants or first integrals of the constructed ODEs. In this section we therefore consider ODEs which possess first
integrals and studymodifications of them to insure that solutionswhich do not satisfy a given first integral with a prescribed
value at least yield values of the first integral which tend to the prescribed value exponentially. Moreover, solutions with
the prescribed value of the first integral should not be altered. We then apply the results to the presented completions.
Consider the ODE

ẋ = f (t, x) (29)

with f : I× D→ Rn, D ⊆ Rn open, and let I : I× D→ Rm,m ≤ n, be a first integral of (29), that is,

It(t, x)+ Ix(t, x)f (t, x) = 0 for all (t, x) ∈ I× D. (30)

This property immediately implies that I(t, x) stays constant along every solution of (29). If I0 is the given prescribed value
of the first integral, we want to modify (29) in such a way that g : I× D→ Rm defined by

g(t, x) = I(t, x)− I0 (31)

tends to zero exponentially along every solution of (29) at least when g(t, x) is already sufficiently small. That is, we want
to construct a stabilization of the constraint g(t, x) = 0. As was done for completions, this kind of stabilization should be
defined in a smooth way and it should be easy to carry out numerically.

4.1. Stabilization by Gauß–Newton flows

The stabilization we are going to present will be based on a generalized Gauß–Newton flow for the nonlinear equation
g(t, x) = 0. In particular, it involves a certain class of generalized inverses of the Jacobian gx(t, x)which is still assumed to
be of full row rank. A Gauß–Newton flow can be viewed as a continuous Newton method for solving g = 0.
In order to introduce the class under consideration let A ∈ Rm,n be a matrix with full row rank and let R ∈ Rn,n be

nonsingular. We introduce R both as a design parameter and also because earlier work on the linear case showed that some
different appearing completions could be viewed as coming from different choices of generalized inverses.

Lemma 5. The matrix A− ∈ Rn,m defined by A− = R−1(AR−1)+ is the unique generalized inverse satisfying

AA−A = A, A−AA− = A−, AA− = Im, RA−AR−1 symmetric. (32)

Proof. It is easy to see that A− = R−1(AR−1)+ satisfies the four properties stated in (32). On the other hand, setting B = AR−1
and B+ = RA− the properties (32) imply BB+B = B, B+BB+ = B+, and BB+ and B+B are symmetric. Hence, B+ is the
Moore–Penrose pseudoinverse of B. �

For later use we need an appropriate form of the property that A−Ax = x holds for a vector x ∈ Rn. That is, x is in
the range of the projection A−A. Inserting the definition of A− into A−A we get the condition (AR−1)+(AR−1)Rx = Rx or
Rx ∈ cokernel(AR−1). That is,

T TRTRx = 0,

where the columns of T span kernel(A).
A Gauß–Newton flow for the nonlinear equation g(t, x) = 0 based on the given class of generalized inverses of Lemma 5

is given by

ẋ = −gx(t, x)−g(t, x), (33)

where gx(t, x)− = R(t, x)−1(gx(t, x)R(t, x)−1)+ with an appropriately chosen smooth, pointwise nonsingular matrix
function R. The smoothness of R together with the smoothness and constant rank of g give the smoothness of the
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Moore–Penrose pseudoinverse and hence guarantee the smoothness of g(t, x)−. Note that the standard Gauß–Newton flow
is included as a special case for the choice R(t, x) = In in which case g(t, x)− = g(t, x)+.
We now combine the Gauß–Newton flow (33) with the original flow (29) in the form

ẋ = f (t, x)− Cgx(t, x)−g(t, x), (34)

where C ∈ Rn,n is a couplingmatrixwhichwe are still free to choose to suit our purposes. Note that we have two parameters
at our disposal, R and C . It is obvious that a solution of (29) which satisfies the constraint g(t, x) = 0 also solves (34). The
question now is how a solution x̃ of (34) behaves when g(t, x̃(t)) is sufficiently small in norm.
We shall use the implicit function theorem. For this consider

H(t, x, x̃) =
[

g(t, x)
T (t, x)TR(t, x)TR(t, x)(x̃− x)

]
,

where the columns of T (t, x) form a smoothly parameterized (orthonormal) basis of kernel(gx(t, x)). We then have that
H(t, x, x) = 0 for all (t, x) ∈ g−1({0}). Note that

Hx(t, x, x) =
[

gx(t, x)
−T (t, x)TR(t, x)TR(t, x)

]
. (35)

Weneed (35) to be nonsingular.Multiply (35) on the right by [ T ′ T ]where T ′ is such that [ T ′ T ] is pointwise orthogonal.
Then (35) becomes[

gx(t, x)T ′(t, x) 0
∗ −T (t, x)TR(t, x)TR(t, x)T (t, x)

]
. (36)

The matrix in (36) is nonsingular since gx(t, x)T ′(t, x) is nonsingular due to the full row rank of gx(t, x) and since RT is full
column rank. Hence, the equation H(t, x, x̃) = 0 can be locally solved for x in terms of (t, x̃), say according to x = S(t, x̃).
The solution x̃ of (34) therefore defines locally a function x by

x(t) = S(t, x̃(t)). (37)

By construction, the function x satisfies

g(t, x(t)) = 0, (38a)
gt(t, x(t))+ gx(t, x(t))ẋ(t) = 0, (38b)

gx(t, x(t))−gx(t, x(t))(x̃(t)− x(t)) = x̃(t)− x(t). (38c)

Note that at this point x(t) from (37) is not a solution of a specific differential equation. It is just a point on the solution
manifold of the DAE at time t . Since g is related to a first integral according to (31), the property (30) implies

gt(t, x(t))+ gx(t, x(t))f (t, x(t)) = 0 (39)

and thus gx(t, x(t))ẋ(t) = gx(t, x(t))f (t, x(t)) from (38b). We are now able to evaluate (omitting obvious arguments of the
functions)

1
2
d
dt
‖x̃− x‖22 =

1
2
d
dt
‖gx(t, x)−gx(t, x)(x̃− x)‖22

=
1
2
d
dt
[(x̃− x)T(gx(t, x)−gx(t, x))T(gx(t, x)−gx(t, x))(x̃− x)]

= (x̃− x)Tgx(t, x)−gx(t, x)(˙̃x− ẋ)+ (x̃− x)T
d
dt
[gx(t, x)−gx(t, x)](x̃− x). (40)

For the first term of (40) we get

(x̃− x)Tgx(t, x)−gx(t, x)(˙̃x− ẋ) = (x̃− x)Tgx(t, x)−gx(t, x)(f (t, x̃)− Cgx(t, x̃)−g(t, x̃)− f (t, x))
= (x̃− x)Tgx(t, x)−gx(t, x)fx(t, x)(x̃− x)
− (x̃− x)Tgx(t, x)−gx(t, x)Cgx(t, x)−gx(t, x)(x̃− x)+ (x̃− x)Tr(t, x, x̃)(x̃− x)

by Taylor expansion, wherewe used the fact in the last step that g(t, x) = 0 holds. The remainder term is bounded according
to r(t, x, x̃) = O(‖x̃− x‖2). Let L be a constant such that∥∥∥∥gx(t, x)−gx(t, x)fx(t, x)+ ddt [gx(t, x)−gx(t, x)] + r(t, x, x̃)

∥∥∥∥
2
≤ L. (41)

If R = I , then ‖gx(t, x)−gx(t, x)‖2 = 1. Under the assumption that

vTgx(t, x)−gx(t, x)Cgx(t, x)−gx(t, x)v ≥ λ‖v‖22 (42)
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for all v ∈ range(gx(t, x)−gx(t, x)), it then follows that

1
2
d
dt
‖x̃− x‖22 ≤ (L− λ)‖x̃− x‖

2
2. (43)

Note that given L, then (42) scales linearly in C, λ. Thus by increasing C we can get L− λ < 0.

Theorem 6. Suppose that L is given by (41). Pick λ > L. Choose the coupling matrix C ∈ Rn,n in such a way that (42) holds. Then
for a solution x̃ of (34) with g(t, x̃(t)) sufficiently small in norm we have

‖x̃(t)− x(t)‖2 ≤ Me(L−λ)t (44)

with an appropriate constant M > 0 and x(t) satisfies g(t, x(t)) = 0.

Proof. The claim follows directly from (43) by application of Gronwall’s lemma, see, e.g., [16]. �

Remark 7. The property (42) always holds for the choice C = λIn. In the case of gx(t, x)− = gx(t, x)+ the condition (42) is
equivalent to

vT(gx(t, x)+gx(t, x))TC(gx(t, x)+gx(t, x))v ≥ λ‖v‖22,

which holds for every v ∈ range(gx(t, x)+gx(t, x)) if C ∈ Rn,n is an arbitrary symmetric positive definitematrix with λ being
its smallest eigenvalue.

Remark 8. The claim of Theorem 6 remains valid if g only represents an invariant according to

gt(t, x)+ gx(t, x)f (t, x) = 0 for all (t, x)with g(t, x) = 0,

which is sufficient to guarantee (39).

Example 9. Consider the ODE

ẋ1 = 1, ẋ2 = x2 (45)

together with

g(x1, x2) = x2e−x1 .

The solution manifold of g(x) = 0 is just {(x1, 0)T | x1 ∈ R}. Because of

gx(x)f (x) =
[
−x2e−x1 e−x1

] [ 1
x2

]
= 0,

the function g represents a first integral of (45). With the choice

gx(x)− =
[
0
ex1

]
and C = λI in (34), we get that (45) becomes the ODE[

ẋ1
ẋ2

]
=

[
1
x2

]
− λ

[
0
ex1

]
x2e−x1 =

[
1

(1− λ)x2

]
.

Obviously, the solution manifold of g(x) = 0 is stable only for λ > 1. This contradicts Propositions 2.1 and Proposition 2.2
in [9], where it is claimed that λ > 0 already guarantees stability. The problem is that g(x) tending to zero does not imply
that x approaches the solution manifold of g(x) = 0. For example, g goes to zero for ẋ1 = 1, ẋ2 = 1

2x2 but x2 does not go to
zero. Moreover, arguing with the help of a Lyapunov function requires the solution manifold to be bounded, see [17]. This
is reflected in the presence of our bound L.

4.2. Application to DAEs

The completions of Sections 2 and 3 have the property that they introduce a trivial dynamics with respect to the original
constraints in the sense that the computed constraints for the DAE represent a first integral of the completion. In particular,
the completions fit into the framework of Section 4.1 when we take I as the part of the index reduced DAE that describes
the constraints and set I0 = 0.
In the case of linear DAEs with variable coefficients the constraint equation is ZT2 (Nx+ g) = 0. Adding the corresponding

(standard) Gauß–Newton flow to (14), we obtain the stabilized completion

ẋ = V TM−(Nx+ g)− C(ZT2N)
+ZT2 (Nx+ g). (46)
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In the nonlinear case, let (26) imply ẋ = f (t, x). The constraint equation is here given by L(t, x) = 0. Adding the
corresponding (standard) Gauß–Newton flow to (26), we obtain the stabilized completion

ẋ = f (t, x)− CLx(t, x)+L(t, x). (47)

Theorem 6 is applicable in both cases.
In the special case that the index reduced problem is an index one semi-explicit DAE one can also proceed in a slightly

different way. Let

ẋ1 = f (t, x1, x2), 0 = g(t, x1, x2) (48)

be a semi-explicit DAE of index ν = 1, i.e., let the constraint equation g(t, x1, x2) = 0 be solvable and let gx2(t, x1, x2) be
invertible on the corresponding solution set. The DAE (48) then satisfies Hypothesis 4 with µ = 0, the quantities d and a
being the sizes of x1 and x2. The completion described in Section 3 is given by

ẋ1 = f (t, x1, x2), (49a)

ẋ2 = −gx2(t, x1, x2)
−1(gt(t, x1, x2)+ gx1(t, x1, x2)f (t, x1, x2)). (49b)

The stabilization (47) modifies both right-hand sides in (49). If the original first equation should be preserved in a stabilized
version, one can proceed as follows. Defining

gx(t, x1, x2)− =
[

0
gx2(t, x1, x2)

−1

]
(50)

we get a generalized inverse of gx(t, x1, x2)which is covered by Lemma 5. With this choice we obtain (omitting arguments)

g−x gx =
[
0 0

g−1x2 gx1 I

]
and v ∈ range(g−x gx) if and only if v

T
= [ 0 wT ]with arbitrary vectorw. Taking

C =
[
0 0
0 C̃

]
and observing vTv = wTw, we see that (42) holds if and only ifwTC̃w ≥ λ‖w‖22. Hence Theorem 6 is applicable if we choose
C̃ symmetric and positive definitewith λ being its smallest eigenvalue. Due to the block structure of C and g−x , the stabilizing
Gauß–Newton flow only affects the (49).

Remark 10. Stabilized differentiation, or Baumgarte stabilization [10], for (48) yields ẋ1 = f (t, x1, x2) together with

gt(t, x1, x2)+ gx1(t, x1, x2)ẋ1 + gx2(t, x1, x2)ẋ2 = −λg(t, x1, x2).

Solving for ẋ2 gives the ODE

ẋ1 = f (t, x1, x2), (51a)

ẋ2 = −gx2(t, x1, x2)
−1(gt(t, x1, x2)+ gx1(t, x1, x2)f (t, x1, x2))− λgx2(t, x1, x2)

−1g(t, x1, x2). (51b)

Comparing (51) with (34), we see that (51) just corresponds to the choice (50) of the generalized inverse together with the
choice C̃ = λI in the coupling matrix C .

Example 11. As in [6] we consider the semi-explicit DAE

ẋ1 = βx1, 0 = eαt(x1 − x2)

of index ν = 1. Due to its structure the completion presented in this paper coincides with the least-squares completion
of [6] and is given by

ẋ1 = βx1, ẋ2 = (α + β)x1 − αx2.

Note that this completion is a linear ODE with constant coefficients. The eigenvalues are {β,−α} indicating that the
additional dynamics described by −α may be stable or unstable. Since g(t, x) = eαt(x1 − x2), we have gx(t, x) =
eαt [ 1 −1 ] and hence

gx(t, x)+ =
1
2
e−αt

[
1
−1

]
, gx(t, x)− = e−αt

[
0
−1

]
.

Using the standard Gauß–Newton flow with C = λI the stabilized ODE has the form

ẋ1 = βx1 −
1
2
λ(x1 − x2), ẋ2 = (α + β)x1 − αx2 +

1
2
λ(x1 − x2)
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with eigenvalues {β,−(α + λ)}. Using the Gauß–Newton flow on the basis of g−x with C̃ = λI on the other hand gives the
stabilized ODE

ẋ1 = βx1, ẋ2 = (α + β)x1 − αx2 + λ(x1 − x2)

which also has eigenvalues {β,−(α+λ)}. Both systems only differ in the eigenvector that belongs to the second eigenvalue.
Obviously we must choose λ > −α to obtain stable systems.

5. Numerical experiments

Since the stabilized ODEs in Example 11 are linear with constant coefficients it is at once clear how they behave under
numerical discretization. For our numerical experiments we therefore choose the nonlinear DAE

ẋ1 = x4, ẋ4 = 2x1x7, (52a)
ẋ2 = x5, ẋ5 = 2x2x7, (52b)
ẋ3 = x6, ẋ6 = −1− x7, (52c)

0 = x21 + x
2
2 − x3 (52d)

due to [13]. It describes the three-dimensional motion of a mass point restricted to an upright parabolic bowl under gravity.
It is known to satisfy Hypothesis 4 with µ = 2, d = 4, and a = 3. As described earlier, a stabilized completion may
be computed directly from the derivative array of (52). However, it is instructive to exploit the structure of example (52).
Differentiating the constraint and eliminating the differentiated variables with the help of the other equations of the DAE
yields the hidden constraint

0 = 2x1x4 + 2x2x5 − x6. (53)

Differentiating once more and eliminating derivatives gives

0 = 2x24 + 4x
2
1x7 + 2x

2
5 + 4x

2
2x7 + x7 + 1. (54)

Observing that the constraints (52d), (53) and (54) can be solved for (x3, x6, x7), an equivalent index reduced DAE is given
by

ẋ1 = x4, ẋ4 = 2x1x7, (55a)
ẋ2 = x5, ẋ5 = 2x2x7, (55b)

0 = x21 + x
2
2 − x3, (55c)

0 = 2x1x4 + 2x2x5 − x6, (55d)

0 = 2x24 + 4x
2
1x7 + 2x

2
5 + 4x

2
2x7 + x7 + 1. (55e)

The completion of Section 3 is then obtained by replacing the constraints g(x) = 0, where

g(x) =

 x21 + x
2
2 − x3

2x1x4 + 2x2x5 − x6
2x24 + 4x

2
1x7 + 2x

2
5 + 4x

2
2x7 + x7 + 1

 ,
by

gx(x)ẋ = 0 (56)

and then solving (56) along with (55a) and (55b) for ẋ. A straightforward computation yields

ẋ1 = x4, ẋ4 = 2x1x7,
ẋ2 = x5, ẋ5 = 2x2x7,
ẋ3 = 2x1x4 + 2x2x5,
ẋ6 = 2x24 + 4x

2
1x7 + 2x

2
5 + 4x

2
2x7,

ẋ7 = −16x7(x1x4 + x2x5)/(1+ 4x21 + 4x
2
2).

Observing that

gx(x) =

 2x1 2x2 −1 0 0 0 0
2x4 2x5 0 2x1 2x2 −1 0
8x1x7 8x2x7 0 4x4 4x5 0 1+ 4x21 + 4x

2
2


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Fig. 1. Norm of constraint residual for λ = 0 and λ = 1 using gx(t, x)+ .
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Fig. 2. Norm of constraint residual for λ = 0 and λ = 1 using gx(t, x)− .

natural stabilizations are given by gx(x)+ and by

gx(x)− =

0 0 −1 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1/(1+ 4x21 + 4x

2
2)

T .
Both completions have been solved with various choices of λ in C = λI and C̃ = λI using the classical Runge–Kutta

method with fixed stepsize. Figs. 1 and 2 show the behavior of ‖g(t, x)‖2 for λ = 0, i.e., for the un-stabilized completion,
and for λ = 1 when we use gx(t, x)+ and gx(t, x)−, respectively. Recall that using gx(t, x)− corresponds to Baumgarte
stabilization. The constant stepsize was h = 0.01. One can easily observe the drift effect for λ = 0, which disappears in the
stabilized version. It should be mentioned that it is clear that the discretization becomes unstable for too large values of hλ.

6. Conclusions

We have examined the problem of constructing computable completions of vector fields for nonlinear DAEs. This was
done by using a family of weighted Gauß–Newton flows. By varying the weights R, C in the definition of the flow we
were able to unify the development of some of the previously presented completions for the linear time-varying case.
For the nonlinear DAEs we do not require the explicit representation of constraints in the original DAE. Our constraint
characterization is based on pointwise numerical calculations and thus applies to general solvable nonlinear DAEs. Our
results also correct some earlier results in the literature.
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Many software modeling packages assume an ODE model. This paper lays the groundwork for having that ODE model
given by a call to a subroutine that generates the right-hand side of a stabilized completion of the DAE of interest. We note
that most of the needed numerical subroutines used to generate the submatrices needed in the completion have already
been written and tested in such codes as GENDA [14,15] where they are used for a different purpose.
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