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a b s t r a c t

In the Sparse Point Representation (SPR) method the principle is to retain the function
data indicated by significant interpolatory wavelet coefficients, which are defined as
interpolation errors by means of an interpolating subdivision scheme. Typically, a SPR
grid is coarse in smooth regions, and refined close to irregularities. Furthermore, the
computation of partial derivatives of a function from the information of its SPR content
is performed in two steps. The first one is a refinement procedure to extend the SPR by the
inclusion of new interpolated point values in a security zone. Then, for points in the refined
grid, such derivatives are approximated by uniform finite differences, using a step size
proportional to each point local scale. If required neighboring stencils are not present in the
grid, the corresponding missing point values are approximated from coarser scales using
the interpolating subdivision scheme. Using the cubic interpolation subdivision scheme,
we demonstrate that such adaptive finite differences can be formulated in terms of a
collocation scheme based on thewavelet expansion associated to the SPR. For this purpose,
we prove some results concerning the local behavior of such wavelet reconstruction
operators, which stand for SPR grids having appropriate structures. This statement implies
that the adaptive finite difference scheme and the one using the step size of the finest level
produce the same result at SPR grid points. Consequently, in addition to the refinement
strategy, our analysis indicates that some caremust be taken concerning the grid structure,
in order to keep the truncation error under a certain accuracy limit. Illustrating results are
presented for 2D Maxwell’s equation numerical solutions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Sparse Point Representation (SPR) method is an adaptive finite difference strategy introduced in [1] to calculate
numerical solutions of partial differential equations (PDE) constrained by initial and boundary conditions. Our goal in this
paper is to showhow the truncation error in the SPR evaluation of partial derivatives can be controlled, by regarding possible
perturbations coming from the presence of irregular grids and the use of local scales as the step size.
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The SPRmethod combines the simplicity and accuracy of traditional finite difference schemes with the ability of wavelet
coefficients in the characterization of local regularity of functions. In this sense, the method has two basic parts: the
operational part, and the representation part. In the operational part, the background context is of an accurate and stable
finite difference scheme LjFD in a uniform grid X

j. In the representation part, the tools come from interpolating wavelet
analysis. The data is organized by levels of resolution 0 ≤ ` ≤ j, j being the finest scale level. In such a multilevel context,
the key role is played by interpolating subdivision schemes,which are the basis for the definition of reconstruction operators,
wavelet coefficients being precisely the interpolation errors at the new points occurring when going from one level of
discretization to the next finer one. In the construction of SPR grids, the idea is to use the wavelet coefficients as indicators
of the local smoothness of the solution. This is the main ingredient in the definition of the thresholding operator: only
those points corresponding to wavelet coefficients of magnitude greater than a prescribed threshold ε should be kept in the
adaptive grid Γ jε ⊂ X

j. A reduced number of points are found in Γ jε , the grid being less refined in regions where the variation
of the function is smooth. For PDE simulations in SPR grids, the scheme considers an adaptive finite difference version Lja.
Even though the grid spacing in a SPR grid is not uniform, at each of its points the FD formula is applied using a uniform
step size. Since required neighboring stencils may not be present in the grid, such missing point values are approximated
from coarser scales by the interpolating subdivision scheme of the same order. Two aspects of this SPR scheme should
be emphasized. Firstly, the rule is to choose the step size proportional to each point local scale. The goal is to be more
economical, in terms of the number of operations to be done, than the procedure of calculating the stencils up to the most
refined level. In fact, for those points in smooth regions with wide local scales, the number of stencil interpolations required
for the application of Lja may be significantly reduced. Secondly, the SPR grid of a function may not be convenient for the
SPR representation after the application of the finite difference operator. Therefore, before the application of Lja, the SPR grid
should be refined by the inclusion of a security zone of new (interpolated) point values.
For this adaptive finite difference strategy, a generalization of the concept of truncation error, which is the familiar basis

of the analysis of difference schemes, is presented in [2] for unidimensional domains and for schemes of arbitrary orders.
In the present paper, we extend the consistency analysis in [2] to bidimensional domains, for the particular case of the
cubic interpolating subdivision scheme, and of fourth order FD discretizations of partial derivatives Lr f = ∂ f

∂r , r ∈ {x, y}.
The purpose is to analyse the effect of using the directional local scale in the SPR scheme Lr,ja instead of computing the FD
formula with the spacing of the finest scale level.
The sections of the present paper are organized as follows. In Section 2, we describe the main wavelet tools required

for the representation part of the SPR method. In Section 3 we prove some results concerning the local behavior of the
reconstruction operators, which stand for SPR grids holding appropriate directional local scales. We show that for grids
having a certain tree structure it is possible to define such directional local scales properly. Section 4 is dedicated to the
study of SPR adaptive finite difference schemes Lr,ja . Firstly, in combination with the local behavior of the reconstruction
operators, it is shown that Lr,ja can be formulated in terms of a collocation scheme based on thewavelet expansion associated
to the SPR. This fact implies that the SPR derivative can give the same result either using the point directional local scale
as step size or using the spacing of the finest scale level. Consequently, the consistency analysis indicates that, in order to
keep the truncation error under a certain accuracy limit, some care must be taken concerning two aspects. In addition to a
reliable refinement strategy, it is also important to have an appropriate definition of the directional local scale which holds
for certain grid structures. In Section 5, we present some illustrating examples of SPR derivatives for magnetic fields arising
in the numerical simulation of 2D Maxwell’s equations. Concluding remarks are included in Section 6.

2. Multiresolution analysis on irregular grids

As explained before, our goal in this paper is to show how the truncation error can be controlled, regarding possible
perturbations coming from the application of an adaptive SPR scheme. Before going to this point in the following sections,
we shall describe here the required tools from wavelet analysis in more detail.
In a multiscale framework, functions are represented in different scale levels, and the main tools are appropriate

transformations relating the information at the finest scale level j to the lower ones, and vice versa. In the context of
interpolating multiresolution analyses, the input data f j contains the sample values at a grid on the finest scale level. After
a transformationWT j, the output contains the information f 0 in the coarsest level, and d` that keeps the details between a
scale level ` and the next upper level `+ 1. Schematically, we have

f j
WT j
→ f jMR = (f

0, d0, . . . , dj−1).

In a uniform setting in 2D, each scale level ` corresponds to a uniform grid X`. Starting from X0, the grid at the coarsest
level with spacings∆0x in the x-direction and∆

0
y in the y direction, the hierarchy of uniform grids X

`, ` ≥ 1 is

X` =
{
γ = (k∆`x,m∆

`
y), 0 ≤ k ≤ N

`
x , 0 ≤ m ≤ N

`
y

}
,

where∆`x = 2
−`∆0x and∆

`
y = 2

−`∆0y . As indicated in Fig. 1, its dyadic refinement X
`+1,

X`+1 =
{
γ = (k∆`+1x ,m∆`+1y ), 0 ≤ k ≤ 2N`x , 0 ≤ m ≤ 2N

`
y

}
,
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Fig. 1. Uniform dyadic grids: ◦- points in X` , •- points in X`+1 \ X` .

is obtained by the inclusion of new midpoints γ = (2k∆`+1x , (2m + 1)∆`+1y ), γ = ((2k + 1)∆`+1x , 2m∆`+1y ), and
γ = ((2k+ 1)∆`+1x , (2m+ 1)∆`+1y ).
In a non-uniform setting, the principle is also to have the information data hierarchically organized by different levels

of resolution. On this matter, we are concerned with a sequence of embedded grids Γ `
⊂ Γ `+1. It shall be assumed that

Γ 0 = X0. For ` ≥ 0, Γ `+1
⊂ X`+1 is constructed from Γ ` by including some new points of X`+1 \ X`. We shall denote by

Λ` the set of such new points in Γ `+1
\ Γ `.

Let f ` = (f `γ ) be the set of sample values labeled by the points γ ∈ Γ
`. As described in the following algorithms, for the

definition of WT j and its inverse (WT j)−1, the main ingredients are reconstruction interpolation operators R`(ν; f `) that
predict f (ν) at any location ν from the knowledge of its discrete sample values f ` at Γ `. The wavelet coefficients d`γ are
defined for points γ ∈ Λ` as the errors in this prediction.

Analysis - f j
WT j
→ (f 0, d0, . . . , dj−1)

• For ` = j− 1, . . . , 0
Define f `γ = f

`+1
γ if γ ∈ Γ `

If γ ∈ Λ`, calculate f̃ `+1γ = R`(γ , ; f `), and set d`γ = f
`+1
γ − f̃ `+1γ

Synthesis - (f 0, d0, . . . , dj−1)
(WT j)−1
→ f j

• For ` = 0, . . . , j− 1
Define f `+1γ = f `γ if γ ∈ Γ

`

If γ ∈ Λ`, calculate f̃ `+1γ = R`(γ ; f `) and set f `+1γ = d`γ + f̃
`+1
γ .

Reconstruction interpolation operators

For input data f ` sampled at uniform grids X`, the definition of the interpolation operator R`(ν, f `), at any point ν,
uses a classical interpolation subdivision scheme, which is done iteratively, as suggested in [3]. On the first step, we set
R`(ν; f `) = f `ν , ν ∈ X

`. Having R`(ν; f `) being defined for all ν ∈ Xq, q ≥ `, then the definition is refined to Xq+1 by
means of an interpolating prediction operator Pq+1q : sq → sq+1, where sq = (sqk,m) and s

q+1
= (sq+1k,m ) are sequences

labeled according to the points (k∆qx,m∆
q
y) ∈ Xq and (k∆

q+1
x ,m∆q+1y ) ∈ Xq+1, respectively. For other non dyadic points,

the definition is set by a limit procedure.
For non-uniform grids Γ ` $ X`, the definition of the interpolation operatorsR`(ν; f `) uses a simple modification of the

classical interpolation subdivision scheme, as introduced in [4]. On the coarsest level, we setR`(ν; f `) = f 0ν , ν ∈ X
0. Having

R`(ν; f `) being defined for all ν ∈ Xq, 0 ≤ q < `, then the definition is extended to Xq+1 \Γ ` bymeans of the prediction in-
terpolation scheme Pq+1q , and it is setR`(ν; f `) = f `ν , if ν ∈ Γ

`
∩Xq+1. For points ν ∈ Xq, q > `, the definition is set as in the

classical subdivision scheme. Consequently, for practical implementations of the analysis and synthesis algorithms the cru-
cial ingredient is the prediction operator Pq+1q , which is iteratively used in the formulation of the reconstruction operatorR`.
For linear prediction operators Pq+1q , the reconstruction operators R`(ν; f `) can be expressed as R`(ν; f `) =∑
γ∈Γ ` f

`
γΦ

`
γ (ν), whereΦ

`
γ (ν) = R`(ν; δ`) is the reconstruction of the delta-sequence δ`γ = δ(η− γ ), η ∈ Γ

`. Therefore,
Φ`
γ satisfies the interpolatory property Φ

`
γ (η) = δ(η − γ ), η ∈ Γ `. From its definition, the reconstruction operators can
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also be expressed as

R`(ν; f `) =
∑
γ∈X`

f̃ `γ φ
`
γ (ν), (1)

where f̃ `γ = fγ if γ ∈ Γ
`, and f̃ `γ = R`(γ ; f `) if γ ∈ X` \ Γ `, and φ`γ (ν) are the interpolatory scaling functions for the

uniform grid case Γ `
= X`. Furthermore, it can be proved that the multilevel wavelet representation holds

R`(ν; f `) =
∑
γ∈X j0

f 0γ φ
0
γ (ν)+

j−1∑
`=0

∑
γ∈Λl

d`γψ
`
γ (ν), (2)

whereψ`
γ (ν) = φ

`
γ (ν), ν ∈ Λ

`. Under this functional point of view, the transformations f j ↔ (f 0, d0, . . . , dj−1) correspond
to the change between the basis {Φ jγ , γ ∈ Γ

j
} and {φ0γ , γ ∈ X

0
} ∪ {ψ0γ , γ ∈ Λ

0
} ∪ . . . ∪ {ψ j−1γ , γ ∈ Λj−1}. In the case of

uniform grids X j, this interpolating wavelet approach was introduced in [5]. In the context of nonuniform grids, it was first
considered in [4], and then extended in [6] to discretizations by cell averages on the interval.

SPR method

In the above discussion, multiresolution analyses for point values on a pre-established irregular grid have been
considered. The connection between the grid and the particular function under analysis has not been covered. However,
in wavelet analysis this kind of irregular grid appears after the thresholding of wavelet coefficients. Therefore, different
grids are usually associated to distinct functions and threshold parameters. The terminology Sparse Point Representation
introduced in [1] is related to this kind of mapping between functions and grid point values.
As interpolation errors, the wavelet coefficients can be used as indicators of local smoothness. Indeed, suppose that a

connected region N , with diameter . 2−`, contains γ ∈ Λ` and the corresponding interpolating points required for the
computation of d`γ . Suppose also that the function f presents a regularity σ in a Sobolev spaceWσ ,∞(N ), 1 ≤ σ ≤ 2p. Then,

|d`γ | ≤ inf
g∈Pσ−1

max
ν∈N
|f (ν)− g(ν)|

. 2−` σ‖f ‖Wσ ,∞(N ),

where Pσ−1 is the space of the polynomial with degree less or equal σ − 1. This fact leads to the definition of a point index
iε(γ )which is based on the significance of the wavelet coefficients associated to γ , as compared to a certain given threshold
ε. Therefore, according to these principles, the point index iε is defined by

iε(γ ) =
{
0 if |d`γ | ≤ ε for γ ∈ Λ`

1 otherwise.
This isthe main ingredient in the definition of the thresholding operator Tε .

Thresholding operator (grid coarsening) Γ j
Tε
→ Γ jε

• If iε(γ ) = 1, keep γ in the adapted grid Γ jε .
• If iε(γ ) = 0, remove γ from the adapted grid Γ jε .

This procedure led to sparse representations f jSPR,ε = (f
j
γ , γ ∈ Γ

j
ε) where only the sample values required to reconstruct f

j

with error less than ε are retained.

A note about the notation

In applications of this paper, there are several grids involved, with discretizations and reconstructions operators
associated to them, and thus severalmultiresolution analyses. It is useful to keep a unified notation formost of the operations
involved, independently of which sparse grid the discretization and reconstruction operators are associated with. For
instance, we have already used the convenient notation f̃ jγ = Rj(γ ; f j), γ 6∈ Γ j. Similarly, the multiresolution transform,
and the thresholding operators are persistently referred to asWT j and Tε , independently of the multiresolution analysis at
hand. It is clear that always Tεf j = Tε f̃ j.

3. Local behavior of the reconstruction operators

From hereon, we shall be concerned with the case of multiresolution analysis corresponding to the prediction operator
defined by central cubic polynomial interpolation.

Cubic interpolating prediction operator Pq+1q

• At the old points ν = (2k∆q+1x , 2m∆q+1y ) ∈ Xq, define sq+12k,2m = s
q
k,m.



M.O. Domingues et al. / Journal of Computational and Applied Mathematics 234 (2010) 2377–2389 2381

• At the new points ν ∈ Xq+1 \ Xq, use the formulae

sq+12k,2m+1 =
∑
n

h(2n+ 1)sqk,m−n,

sq+12k+1,2m =
∑
n

h(2n+ 1)sqk−n,m,

sq+12k+1,2m+1 =
∑
n

h(2n+ 1)sq+12k,2m−2n+1,

where the coefficients h(n) are symmetric h(−n) = h(n) and vanish for even integers n 6= 0 and all integers such that
|n| ≥ 4. The non vanishing coefficients are h(0) = 1, h(1) = h(−1) = 9/16 and h(3) = h(−3) = −1/16.

For the definition of SPR discretizations of partial derivatives, we need the concept of directional local scales ajr(γ ) >
0, γ ∈ Γ j, where r ∈ {x, y}. We have particular interest in directional local scales satisfying the following conditions.

Local scale conditions

(A) There is some 0 ≤ q ≤ j such that ajr(γ ) = ∆
q
r .

(B) If ajr(γ ) = ∆
q
r , then γ ∈ Γ q.

(C) If γ ∈ Λ`, then ajr(γ ) ≤ ∆`+1r , 0 ≤ ` ≤ j− 1.

Under such conditions, we shall prove the following local behavior of the reconstructionsRj(ν; f j) close to a point γ ∈ Γ j,
which is the basis for the consistency analysis of the next section.

Lemma 1. Let us consider reconstructions operators based on a cubic interpolating prediction for a nonuniform grid Γ j. Suppose
that at each point in Γ j we have defined directional local scales satisfying conditions (A–C). Let γ = (γx, γy) ∈ Γ j be such that,
for r ∈ {x, y}, ajr(γ ) = ∆

q
r , q = q(γ , r) ≤ j. Then ∀ν ∈ S`r (γ ), q ≤ ` ≤ j,

Rq(ν; f q) = Rj(ν; f j),

where

S`x (γ ) = {ν = (γx + k∆
`
x, γy), |k| ≤ 2}

and

S`y (γ ) = {ν = (γx, γy +m∆
`
y), |m| ≤ 2}.

Proof. By construction,Rj(ν; f j) andRq(ν; f q) coincide on Xq. By condition (B), we know that γ ∈ Γ q. Then Sqx (γ ) ⊂ Xq,
and thus the assertion is true for ` = q. The proof advances by induction for ` ≥ q+ 1. Let r = x. For ν = (γx ± 2∆`x, γy) ∈
S`−1x (γ ), we already know that the result is true from the previous step. The points ν = (γx ± ∆

`
x, γy) ∈ Λ

`−1 are not in
Γ j. Indeed, if ν ∈ Γ j, condition (C) implies that ajx(γ ) ≤ ∆`x < ∆

q
x , which is a contradiction. Consequently, Rj(ν; f j) and

Rq(ν; f q) are obtained by cubic interpolation from their corresponding values at the four points in X`−1 closest to ν in the
x-direction. For ν = (γx −∆`x, γy), the interpolation points are

(γx − 2∆`−1x , γy), (γx −∆
`−1
x , γy), (γx, γy) and (γx +∆

`−1
x , γy).

For ν = (γx +∆`x, γy), the interpolation points are

(γx −∆
`−1
x , γy), (γx, γy), (γx +∆

`−1
x , γy) and (γx + 2∆`−1x , γy).

In both cases, the result of the previous induction step implies that Rj(.; f j) and Rq(.; f q) coincide at the interpolation
points. Therefore, they coincide at ν as well. The proof for the stencil points in the vertical direction is similar. �

As indicated in [2], to prove a similar result for one dimensional reconstruction operators based on polynomial
interpolation of higher degrees, in addition to conditions (A–C), the size of the stencils S`r (γ ) should be wider and other
requirements should be satisfied. The generalization of such conditions to higher dimensions is an open question.

Example

For γ = (γx, γy) ∈ Γ j, let us consider the following directional local scales a
j
r(γ ), r ∈ {x, y}:

ajx(γ ) = min{∆
q
x, |γx − ηx|, η = (ηx, γy) ∈ Γ

j, η 6= γ } (3)

ajy(γ ) = min{∆
q
y, |γy − ηy|, η = (γx, ηy) ∈ Γ

j, η 6= γ }, (4)

where q = 0 for γ ∈ X0, and q = `+ 1 for γ ∈ Λ`, 0 ≤ ` ≤ j− 1.
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Fig. 2. Example of grid for which the local scale (3) does not fulfill the condition (A).

Fig. 3. Neighbors points (circle) of γ (bullet).

The statements (B) and (C) always hold for the directional local scales (3) and (4). In fact, note that, if γ ∈ Λ`, 0 ≤ ` ≤
j−1, then, by definition, ajr(γ ) ≤ ∆`+1r , and condition (C) holds. Condition (B) is always true for γ ∈ X0 ⊂ Γ q, independently
of q. For γ ∈ Λ`, 0 ≤ ` ≤ j− 1, we know that∆qr = a

j
r(γ ) ≤ ∆

`+1
r . This implies that q ≥ `+ 1, i.e., γ ∈ Γ `+1

⊂ Γ q, and
the result is also true for this case.
However, the verification of condition (A) is more subtle and requires more structured grids. For instance, the x-

directional local scale (3) does not satisfy the condition (A) for the grid Γ 3 ⊂ X3 in Fig. 2. Indeed, for the point ν ∈ X0,
in the center of the grid, a3x(ν) =

3
4∆

0
x , which can not be represented as∆

q
x for any 0 ≤ q ≤ 3.

Tree condition

To facilitate the verification of condition (A), let us consider grids having a tree structure as follows. A grid Γ j satisfies
the tree condition if for 0 ≤ ` ≤ j− 1:

(a) for a point γ ∈ Λ` of the form γ = ((2k + 1)∆`+1x , 2m∆`+1y ), then the two neighbors in X`γ = (k∆`x,m∆
`
y) and

γ = ((k+ 1)∆`x,m∆
`
y) are in Γ

j (see Fig. 3 left).
(b) for a point γ ∈ Λ` of the form γ = (2k∆`+1x , (2m + 1)∆`+1y ), then the two neighbors in X`γ = (k∆`x,m∆

`
y) and

γ = (k∆`x, (m+ 1)∆
`
y) are in Γ

j (see Fig. 3 right).

Lemma 2. For a grid Γ j satisfying the tree condition, the directional local scales defined in (3) and (4) satisfy the local scale
conditions (A–C).

Proof. As observed before, it only remains to prove condition (A). Let us consider first the case r = x. We note that if the
result is not true for some γ ∈ Γ j, then there is some η = (ηx, γy) ∈ Γ j such that a

j
x(γ ) = |γx − ηx| < ∆

q
x , where q = 0

for γ ∈ X0, and q = ` + 1 for γ ∈ Λ`, 0 ≤ ` ≤ j − 1. We first consider the case γ ∈ X0. Therefore, η can not be a point
in X0. Furthermore, since ηy = γy, then η ∈ Λq, q ≥ 0 has the form ((2k + 1)∆

q+1
x , 2m∆p+1y ). By the tree condition (a),

the two neighbors (khpx,mh
p
y) and ((k + 1)h

q
x,mh

q
y) are in Γ j. Since one of them must coincide with γ , we obtain that

ajx(γ ) = |γx − ηx| = ∆
p
x . Similarly, if γ ∈ Λ`, ` ≥ 0, then η can not be a point in Γ `+1. Recalling that ηy = γy, we see that η

must has the form ((2k+ 1)∆p+1x , 2m∆p+1y ), for some p > `. Again, by the tree condition (a), the two neighbors (khpx,mh
p
y)

and ((k+ 1)∆qx,m∆
q
y) are in Γ j, and one of them must coincide with γ . Therefore, we obtain that a

j
x(γ ) = |γx − ηx| = ∆

p
x .

The proof for the case r = y is similar, where the tree condition (b) is used. �

The grid Γ in Fig. 2 is an example of a grid that does not have the tree structure. For instance, the two points in Λ2 do
not satisfy the tree condition, since at least one of the neighbors in X2 are not present in Γ .
We observe that the tree structure is a more relaxed restriction than the cone condition, as defined in [4]. Cone like grids

are supposed to have a smooth grid density variation. Tree like grids may occur with strong variation in the grid density, as
the one indicated in Fig. 4.
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Fig. 4. Example of a tree like grid with strong variation in the grid density.

4. Discretization of derivatives

In this section, the focus is on discretizations of partial derivatives Lr f = ∂
∂r f , r ∈ {x, y}, based on the approximation

schemeRj(ν; f j). For the uniform grid caseΓ `
= X`, it is known that interpolatory scaling functionsφ`γ (ν) are continuously

differentiable [3]. Recall from (1) that Rj(ν; f j) may be represented as Rj(ν; f j) =
∑

γ∈X j f̃
j
γφ
j
γ (ν), where f̃

j
γ = Rj(γ ; f j).

Therefore, the reconstruction operatorsRj(ν; f j) associated with irregular grids inherit the same C1 smoothness.

Collocation scheme

Given the node values f jγ of a function f on the grid Γ
j, the collocation scheme (Lr,jf j)γ is defined as the node values of

the partial derivative of the reconstructionRj(.; f j) computed at γ . That is,

(Lr,jf j)γ = (LrRj(.; f j))(γ ). (5)

Using the representation (1), (Lx,jf j)γ may be interpreted as the result of the action of the usual fourth order central finite
difference operator

(Lx,jf j)γ =
(
Lx,jFDR

j(.; f j)
)
(γ )

=
1

∆
j
x

∑
k

f̃ (γx − k∆jx, γy)β(k), (6)

with β(1) = 2/3 = −β(−1), β(2) = −1/12 = −β(−2), and β(k) = 0, |k| ≥ 3.
Similarly,

(Ly,jf j)γ =
(
Ly,jFDR

j(.; f j)
)
(γ )

=
1

∆
j
y

∑
m

f̃ (γx, γy −m∆jy)β(m). (7)

Adaptive Formulation: Lr,ja , r ∈ {x, y}

Holmström [1] introduced the idea of implementing the finite difference schemes (6) and (7) in an adaptive fashion. For
each point γ = (γx, γy) ∈ Γ j with directional local scales a

j
r(γ ), define

(Lx,ja f
j)γ =

1

ajx(γ )

∑
k

f̃ (γx − kajx(γ ), γy)β(k), (8)

(Ly,ja f
j)γ =

1

ajy(γ )

∑
m

f̃ (γx, γy −majy(γ ))β(m). (9)

In view of Eqs. (6) and (7) at level q, and assuming that the directional local scales ajr(γ ) satisfy the conditions (A–C),
these adaptive finite difference formulae can be formulated as adaptive collocation schemes.

Lemma 3. Suppose that for points in Γ j we have defined directional local scales ajr(γ ) satisfying conditions (A–C). If γ ∈ Γ j,
and ajr(γ ) = ∆

q
r , then (L

r,j
a f j)γ can be formulated as

(Lr,ja f
j)γ =

(
Lr,qFDRq(.; f q)

)
(γ ) =

(
LrRq(.; f q)

)
(γ ). (10)

As we will see below, the adaptive schemes Lr,ja f j may coincide with their non adaptive versions Lr,jf j.
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Theorem 4. Assume that for points γ ∈ Γ j directional local scales are defined satisfying (A–C). Then, the adaptive formulation
(Lr,ja f j)γ coincides with its non adaptive version (Lr,jf j)γ at the points γ ∈ Γ j.

Proof. Let γ ∈ Γ j with ajr(γ ) = ∆
q
r , q ≤ j. Lemma 1 assures that Rq(.; f q) and Rj(.; f j) coincide on the stencil points

required for the evaluation of Lr,j at γ . This means that

[Lr,jRq(.; f q)](γ ) = [Lr,jRj(.; f j)](γ ).

But, since γ ∈ Γ q,

[Lr,jRq(.; f q)](γ ) = [LrRq(.; f q)](γ ) = [Lr,qRq(.; f q)](γ ).

Therefore, according to the equivalent adaptive collocation formulation of Lemma 3, we obtain

(Lr,ja f
j)γ = [LrRq(.; f q)](γ ) = [Lr,jRq(.; f q)](γ ) = [Lr,jRj(.; f j)](γ ) = (Lr,jf j)γ . �

Consistency analysis

Let Lr,jFD, r ∈ {x, y} be the uniform finite difference operators as in (6) and (7). Given the samples f
j of a function in a grid

Γ j, consider the functions g r(ν) obtained by the application of Lr,jFD on the reconstructionRj(., f j):

g r(ν) = [Lr,jFDR
j(., f j)](ν).

For a refined grid Γ̂ j containing Γ j, let ĝ rγ = [L
r,j
a f̃ j](γ ), γ ∈ Γ̂ j be the result of applying the adaptive difference scheme

based on Γ̂ j. We are interested in the error TEr in approximating g r by the interpolation of ĝ r . That is,

TEr(ν) = g r(ν)−Rj(ν; ĝ r).

If we see the finite difference operator Lr,jFD as playing the role of the r–partial derivative, then TE
r can be interpreted as

the difference between the r–partial derivative of the reconstruction and the reconstruction of the adaptive discrete r–partial
derivative. In this sense, we call TEr the truncation error.
The contributions to this truncation error come from two sources.
• For points γ ∈ Γ̂ j, TEr(γ ) is the difference between g r(γ ), which represents the r–derivative computed by the FD scheme
using the spacing of finest scale level, and ĝ rγ , which is the result of using the FD with local directional scale. As stated
in the previous section, this error can be avoided for fourth order schemes if for points in Γ̂ j the directional local scales
satisfy the conditions (A–C). Precisely, as a consequence of Theorem 4, g r coincides at γ ∈ Γ̂ j with the adaptive finite
difference values ĝ rγ = [L

j
a f̂ j](γ ). This means that TEr(γ ) = 0 for all γ ∈ Γ̂ j.

• Assuming that the truncation error vanishes at Γ̂ j, then TEr(γ ) gives the interpolation errors of g r at points γ 6∈ Γ̂ j, that
is, thewavelet coefficients of g r . So, the question iswhat can be said about thewavelet content of g r outside Γ̂ j. According
to (2),Rj(ν; f j) only contains contributions of wavelets ψ lν, ν ∈ Γ

j. However, differentiation is an action that activates
some other wavelets. Thus, componentsψ lγ (ν), with γ ∈ X

j
\Γ j, may be present in g r(ν). Thus, given a precision ε > 0,

the goal of the refinement process is try to construct Γ̂ j to guarantee that |TEr(γ )| < ε for γ ∈ X j \ Γ̂ j.

As analysed in [7], in the context ofmultiresolution for cell averages, onemay expect that the second kind of perturbation
error can actually be controlled by a special refinement strategy for the construction of Γ̂ j. In the context of interpolatory
multiresolution analyses, this subject deserves further studies.

5. Numerical example

Our purpose here is to analyse the performance of the SPR discretization of spatial partial derivatives using either local
directional scales or the grid spacing of the finest scale level. As illustrating example,we consider the functions to be analysed
as numerical solutions of the TE mode system of Maxwell’s equations for the components of the electrical E = (Ex, Ey, 0)
and magnetic H = (0, 0,Hz) fields

µ
∂Hz

∂t
=
∂Ex

∂y
−
∂Ey

∂x
,

ε
∂Ex

∂t
=
∂Hz

∂y
,

ε
∂Ey

∂t
= −

∂Hz

∂x
,

where ε is the electrical permittivity and µ is the magnetic permeability for the free space. We restrict the problem to
the computational domain [0, 1] × [0, 1], and Perfectly Electrical Conducting (PEC) boundary conditions are enforced,
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meaning that the tangential electric field components vanish at the walls, i.e., Ey(0, y, t) = Ey(1, y, t) = 0 and Ex(x, 0, t) =
Ex(x, 1, t) = 0 for all 0 ≤ x, y ≤ 1 and t > 0. At t = 0, the initial conditions are Hz(x, y, 0) = e−3500(x−

1
2 )
2
e−3500(y−

1
2 )
2
, and

Ex(x, y, 0) = Ey(x, y, 0) = 0.
Both fields E andH are sampled at the same uniform grid X j, with spacing∆jx = ∆

j
y = 2−j. The fourth order FD scheme is

applied for the discretization of spatial derivatives. Since some extra virtual FD stencils outside the boundary are required,
we use the anti-symmetry properties for Ey at x = 0 and x = 1, and for Ex at y = 0 and y = 1. Consequently, symmetry
properties are assumed for themagnetic field at all boundary faces. During a time step n∆t ≤ t ≤ (n+1)∆t , the integration
in time uses a first order Euler scheme for which the components of the electrical field are taken at the initial time level n∆t
to obtain themagnetic field at the next time level (n+1)∆t . Then, themagnetic field at (n+1)∆t is used for the evolution of
the electrical field. To ensure stability and to get accuracy, the time step is constrained by the formula∆t = 0.35×

√
µε×2−j.

Such scheme is a generalization of the well known FDTD algorithm [8], in the sense that non-staggered grids are used in
place of staggered ones and a fourth order spatial FD scheme replaces the low order one of Yee’s scheme. We refer to [9] for
detailed dispersion and stability analysis of such a reference scheme as well as for 1D SPR simulations.
The plots in Fig. 5 (left) correspond to simulation results for the magnetic field at three different times (ns) t1 = 0.009,

t2 = 0.584, and t3 = 0.876 with a uniform grid corresponding to j = 7. On the right side of this figure we show the SPR of
such fields, using cubic subdivision interpolation, by thresholding the wavelet coefficients with the parameter εH = 10−4. It
can be observed that the SPR grids are non uniformly sampled, with density varying according to the evolution of the field.
For these instances of themagnetic field, we compute the two contributions to the truncation error for the SPR derivative

Lx. Namely, at each point of the sparse grid, we first evaluate the information of the error coming from the difference of
discretizations

max
γ
{|(Lx,jf )(γ )− (Lx,ja f )(γ )|}, (11)

corresponding to applying the FD operator either with the uniform grid spacing of the finest scale level or using the local
directional scales. We test this error for the grid obtained after the enforcement of the tree structure and for the grid given
by a refinement operation. Being sure that this difference of the SPR derivatives is negligible at all points in the sparse grid,
next we evaluate the contribution to the truncation error at the points elsewhere.
For the first contribution, the error is computed after the enforcement of the grid tree structure using the directional local

scale (3). As a consequence of Lemma 2, and in accordance with the statement of Theorem 4.1, we observe, within machine
precision, a zero truncation error. For comparison, we also consider local directional scales for γ = (γx, γy) ∈ Γ

j by just
taking

ajx(γ ) = min{|γx − ηx|, η = (ηx, γy) ∈ Γ
j, η 6= γ }, (12)

which do not satisfy the hypotheses (A–C) for general tree like grids. For this form of directional local scale, we observe a
significant truncation error of order 10−1.
Next we consider similar tests applied to refined grids. For these applications, we use the refinement procedure adopted

in [1] that for each point γ in Γ j corresponding to a significant wavelet coefficient, i.e. γ ∈ Λ`−1, 0 ≤ ` ≤ j− 1, its closest
eight neighbors in X` are included to form a refined grid Γ̂ j. Furthermore, if ` < j, then its closest eight neighbors in X`+1

are also included in Γ̂ j. This refinement procedure is illustrated in Fig. 6, where the original grid is formed by the coarsest
grid X0 and one point γ ∈ Λ2. To form the refined grid, the sixteen neighbors of this point γ are included, eight from X3
and eight from X4. For the refined grids associated to three time instances of the magnetic field, the differences (11) are also
zerowithinmachine precision, independently of the directional local scales used as step size. For this example, one observes
that the sparse grids that come after the thresholding and refinement operators naturally hold the directional tree structure.
Furthermore, both formulae for the directional local scale, (3) and (12), coincide.
Table 1 shows the percentage of points, with respect to the uniform grid in the finest scale level, present in each of the

sparse grids, either after the enforcement of the tree structure or the refinement operation. At the beginning, since the fea-
tures of the magnetic field are highly concentrated around the initial pulse, there is a large amount of data compression. As
time evolves, the circular wave front spreads towards the boundary, requiring more points to be represented. As expected,
the SPR refined grids aremore numerous than the grids obtained by just enforcing the tree structure. This table also displays
the number of interpolations used in the computation of the SPR derivatives using the directional local scale (3) expressed
as a percentage of the number of interpolations required to compute the derivatives using the step size of the finest scale
level. In both studies, the savings in interpolations range from 87% to 70%, for the tree like SPR grids, and from 88% to 73%, for
the refined SPR grids, the gain being more significant at the beginning of the simulation, when the grids have more sparsity.
Being sure that using the directional local scale (3) the resulting truncation error is practically zero at the points of the

sparse grids holding the tree structure, either with or without refinement, we turn to the analysis of the error contributions
at points located elsewhere.
We recall from Section 4 that outside the grid where the SPR derivative is evaluated the truncation error represents the

wavelet coefficients of the function Lx,jFDR
j(.,Hz j)(ν). Our purpose is to evaluate the efficiency of the refinement procedure

in capturing a good SPR for this derivative of the magnetic field. The results of such consistency analysis are presented in
Table 2, for tree like grids without refinement, and in Table 3, after the refinement operation. In both cases, we extend the
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Fig. 5. Time evolution of themagnetic field (left) and the corresponding SPR grid (right) for ε = 10−4 , at times (ns) t1 = 0.009, t2 = 0.584 and t3 = 0.876.
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Fig. 6. Illustration of the refinement process: Γ is formed by the coarsest grid X0 and one point γ ∈ Λ2 . The refined grid Γ̂ is formed by adding to Γ the
sixteen neighbors of this point γ , eight from X3 and eight from X4 .

Table 1
Percentage of used points and interpolations for the computation of SPR derivative after the enforcement of the tree condition and refinement.

Time With tree condition (%) With refinement (%)
Used points Interpolations Used points Interpolations

t1 5 13 9 12
t2 17 25 33 21
t3 23 30 50 27

Table 2
Truncation error in SPR derivatives: tests for tree structured grids without refinement.

Time Tree structure
j = 7 j = 8
TE error # points TE error # points

εH = 10−3

t1 5.400440× 10−1 381 5.598303× 10−1 381
t2 4.958390× 10−1 821 5.239063× 10−1 821
t3 5.431991× 10−1 1109

5.425516× 10−1
1117

εH = 10−4

t1 19.27483× 10−2 765 12.37215× 10−2 1037
t2 6.279617× 10−2 2757 6.329703× 10−2 2749
t3 5.862434× 10−2 3873

6.184630× 10−2
3913

εH = 10−5

t1 10.29540× 10−3 1157 11.87374× 10−3 2509
t2 8.507794× 10−3 4577 8.576567× 10−3 9501
t3 31.28736× 10−3 6525 23.81233× 10−3 13325

analysis by considering j = 7, and j = 8, and letting the thresholding parameter be εH = 10−3, 10−4 and 10−5. As expected,
a comparison of the results in both tables reveal that the refinement operation helps to reduce the truncation error, at the
cost of less sparsity. However, the ratio TEwr/TEr , of the truncation error without refinement and the truncation error with
refinement, seems to be greater than the ratio NPr/NPwr , of the number of points in the refined grid and the number of
points before refinement.
The plots in Fig. 7 illustrate this behavior for the magnetic fields at t = t1 (top) and t = t3 (bottom), for the variation of

the threshold parameter εH between 10−5 to 10−3. For instance, we conclude from the curves in the top-left part, for SPR
grids at j = 7 for the magnetic field at t = t1, that the refinement doubles the number of points but the truncation error
without refinement can be 15 to 30 times larger, especially for εH < 7× 10−4. At higher resolution j = 8, the curves in the
top-right part of Fig. 7 show that the gain in the truncation error double-compensates the increase in the number of points
in the refined grid, for ε ≥ 10−4. For smaller thresholding parameters ε < 5× 10−5, the impact of refinement is again very
important in reducing the truncation error with low cost in the additional number of points. A similar trend is verified for
the field at t = t3, as we can see in Fig. 7 (bottom), both for j = 7 (left) and j = 8 (right). These plots show that for larger
thresholding parameters there is a balance in the reduction of the truncation error with the increase of the number of points
in the refined grids. For smaller values of εH , the gain in the truncation error with refinement can be very significant, up to
40 or 12 times larger than without it, for j = 7 and 8, respectively, with very low extra cost.
The plots in Fig. 8 represent the normalized truncation error TE/(100 × εH) for the Hz field at t = t1 (left) and t = t3

(right). Since the truncation error represents the wavelet coefficients of the function Lx,jFDR
j(., Hz j)(ν), the conclusion drawn
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Table 3
Truncation error in SPR derivatives: tests for grids after refinement.

Time Refined grid
j = 7 j = 8
TE error # points TE error # points

εH = 10−3

t1 0.9880369× 10−1 1018 1.087488e× 10−1 1597
t2 1.223386× 10−1 1933 1.297945× 10−1 2622
t3 1.510714× 10−1 3437 1.845292× 10−1 3625
t4 1.224536× 10−1 5128

1.482000× 10−1
5154

εH = 10−4

t1 0.6293835× 10−3 1485 2.812171× 10−2 3332
t2 2.738631× 10−2 3118 2.305200× 10−2 6849
t3 0.9277954× 10−2 5552 1.877493× 10−2 12585
t4 1.380015× 10−2 8241

1.754093× 10−2
18203

εH = 10−5

t1 0.7332167× 10−3 1990 1.116536× 10−3 5005
t2 0.7992242× 10−3 3817 1.116536× 10−3 10769
t3 0.7992242× 10−3 6516 2.181932× 10−3 20178
t4 0.8040323× 10−3 9964 1.926749× 10−3 29610

Fig. 7. Comparison of truncation error and grid densities, in terms of the threshold parameter εH , for tree like grids with and without refinement: j = 7
(left), j = 8 (right); t = t1 (top), t = t4 (bottom).

from these plots is that, after the refinement of the εH–SPR of the magnetic field, we obtain a εE-SPR for its x–derivative,
where εE ≈ 100× εH .

6. Concluding remarks

In this paper we consider adaptive fourth order finite difference schemes Lr,ja f j, for partial derivatives in the r = x
and r = y directions, arising in the bidimensional SPR method. The information f j is formed by point values in a sparse
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Fig. 8. Normalized truncation error TE/(100× εH ) in terms of the threshold parameter εH ; t = t1 (left), t = t4 (right).

grid adapted to the function under consideration, and the main principle is to approximate directional derivatives by
uniform finite differences, using a step size proportional to each point local scale ajr(γ ) in the corresponding direction
of differentiation. Required neighboring stencils that are not present in the adaptive grid are interpolated by means of a
reconstruction operator. The main results of our study are:
• To preserve accuracy in such adaptive discretizations, the grid structure and the form of the directional local scales are
important. Under the conditions stated in (A–C), we prove a statement for the local behavior of the reconstruction op-
erator. This crucial result is the basis for the proof of Theorem 4.1 that guaranties that the adaptive SPR discretizations
Lr,ja f j coincide at the points of the adaptive SPR grid with their non adaptive formulations Lr,jf j, where the step size cor-
responds to the spacing of the finest scale level. This result is favorable to applications of the SPRmethod, in terms of the
number of operations to be done. In fact, the formulations Lr,ja f j are more economical than Lr,jf j, since they do not require
the calculation of the stencils up to the most refined level, for those points having large local scales ajr(γ )� ∆

j
r .

• A grid tree structure and directional local scales ajr(γ ) are defined satisfying conditions (A–C).
• Furthermore, the consistency analysis indicates that, in order to keep the truncation error under a certain given precision,
an adequate refinement strategy should be used.

Numerical tests are presented for functions representing magnetic fields occurring in the simulation of the Maxwell
equations. The numerical consistency analysis for such examples reveals that the structure of the grids that come from
the application of the thresholding and refinement operators are sufficient to ensure a small truncation error. In fact, for the
experiments of the present paper, the tree structure naturally holds for the SPR refined grids,which ensures that the adaptive
SPR finite difference schemes Lr,ja can be safely applied. However, in general SPR, the grids obtained after thresholding and
refinement operations may not have the tree structure. Therefore, before the application of adaptive SPR finite difference
schemes Lr,ja , the enforcement of the tree structure after refinement is recommended.

For further reading

[10].
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