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0. q)s =/ P(X)q(x)x"e *dx + P(0)'AQ(0), o > —1,
0

where p and q are polynomials with real coefficients,

Msc. Mo % p(0) q(0)

33C47 A= ( Iy M1> , P0) = (p/(O)) , Q) = (q’(O)) ,

g?;v:i(igﬁhogonal polynomials and A is a positive semidefinite matrix.

Laguerre polynomials We will focus our attention on their outer relative asymptotics with respect to the
Sobolev-type inner products standard Laguerre polynomials as well as on an analog of the Mehler-Heine formula for
Bessel function the rescaled polynomials.

Relative asymptotics © 2009 Elsevier B.V. All rights reserved.

Outer relative asymptotics
Mehler-Heine formula

1. Introduction

Orthogonal polynomials with respect to a Sobolev-type inner product

(p.q) = /P(X)Q(X)dM(X)+IP’(C)[AQ(C), (1)
R

where dy is a nontrivial probability measure supported on the real line, A € R*¥ is a positive semidefinite matrix, p, q are
polynomials with real coefficients, and Q(c) = (q(c), qe,..., q("*])(c))t have been introduced in [1].

When A = diag (Mg, My, ..., My_1), the so-called diagonal Sobolev-type case, many researchers were interested in the
analytic properties of the polynomials orthogonal with respect to (1). In particular, Koekoek [2] studied the second order
linear differential equation satisfied by such orthogonal polynomials when du = x*e ™ dx, @ > 1, and ¢ = 0. They also
satisfy a higher order recurrence relation as well as they can be represented as hypergeometric functions.

Later on, when k = 2 and My, M; > 0, in [3] the authors focus the attention in the location of the zeros of such orthog-
onal polynomials that are called Laguerre-Sobolev-type orthogonal polynomials. Finally, the analysis of their asymptotic
properties was done in [4] as well in [5].
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On the other hand, when k > 2 ifdu = x*e™*dx,c = 0,and My = M; = --- = My_, = 0, M;_; > 0 then the
same analog problems were studied in [6] in the framework of the zero distribution. From an algebraic point of view and
for more general measures, in [7] the authors deal with representations of Sobolev-type orthogonal polynomials in terms
of the polynomials orthogonal with respect to the measure © assuming the same constraints for the inner product (1) as
above.

The first situation of a nondiagonal Sobolev-type inner product like (1) was considered in [8]. Here the authors deal
with the measure du = e dx supported on R, ¢ = 0, and k = 2. In particular, they analyze scaled asymptotics for the
corresponding orthogonal polynomials (Mehler-Heine formulas) and, as a consequence, the asymptotic behaviour of their
zeros follows.

Taking into account that generalized Hermite polynomials appear as a consequence of the symmetrization process for
Laguerre orthogonal polynomials [9-11] it seems to be very natural to analyze polynomial sequences orthogonal with
respect to the inner product (1) when du = x%*e *dx, A € R®¥ is a nondiagonal positive semidefinite matrix with k > 2,
andc = 0.

In this contribution we focus our attention in the case k = 2. Thus we generalize some previous results from the diagonal
case (see [4,12,3]). The structure of the manuscript is the following. In Section 2 we present the basic background about the
properties of classical Laguerre polynomials which will be needed along the paper. Section 3 deals with the asymptotic
properties of the Laguerre-Sobolev-type polynomials, orthogonal with respect to the inner product

(. q) = / PRGN e dx + POYAQO), a > —1,
0

where A = (AKO ,Q]) is a positive semidefinite matrix and we denote Q(0) = (q(O), q’(O))t. We obtain the outer rela-

tive asymptotics of these polynomials in terms of Laguerre polynomials and a Mehler-Heine-type formula as well as the
behaviour of the Sobolev norm of the monic Laguerre-Sobolev-type orthogonal polynomials.

2. Preliminaries

Let {n},>0 be a sequence of real numbers and let u be the linear functional defined in the linear space P of the

polynomials with real coefficients, such that
(w,x")=pn, n=0,1,2,...

 is said to be a moment functional associated with {1}, . Furthermore p,, is the n-th moment of the functional .

Given a moment functional 1, a sequence of polynomials {Py},- is said to be a sequence of orthogonal polynomials with
respect to u if

(i) The degree of P, is n.

(ii) (u, Py(x)Pp(x)) = 0, m # n.
(iii) (4, P2(x)) #0,n=0,1,2,....

If every polynomial P, (x) has 1 as leading coefficient, then {P,},,- is said to be a sequence of monic orthogonal polynomials.

The next theorem, whose proof appears in [10], gives a necessary and sufficient condition for the existence of a sequence
of monic orthogonal polynomials {P,},~, with respect to a moment functional 1 associated with {i,},5¢ -

Theorem 1 ([10]). Let 1 be the moment functional associated with {it,},s. There exists a sequence of monic orthogonal poly-

nomials {Py},- associated with 1 if and only if the leading principal submatrices of the Hankel matrix [/,L,'_H']ijeN are nonsingular.

A moment functional such that there exists the corresponding sequence of orthogonal polynomials is said to be regular
or quasi-definite [10].
The proof of the next proposition can be founded in [9,10,13,14,11].

Proposition 1 (The Christoffel-Darboux Formula). Let {P,},-o be a sequence of monic orthogonal polynomials. If we denote the
nth kernel polynomial by

L\ Pi(y)Pi(x)
Kn(x,y) = Y =L
2]

then, for everyn € N,

1 Pn+l(X)Pn(V) _Pn(X)Pn—H(V).

Using the following notation for the partial derivatives of the kernel K;,(x, y)
I (Ka(x, )

dxaly =),
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we present some properties about these derivatives. Let {P,},~, be a sequence of monic orthogonal polynomials. From the
Christoffel-Darboux formula (2), we have

1 Pn(x)Pnfl(.Y) - Pnfl(X)Pn(y)

Ki1(x,y) =

< W, P,f 1) X—=Yy
The computation of the jth partial derivative with respect to y yields
1 (P () (Py(®)
K (x,y) = —(mo—( - ) Pr m—( - : (3)
(. P2_,) 9y \ x—y 3y \x—y

Using the Leibniz rule

V(PO _ JZ it PP
Y \x—y e k! (x — yy—ke1?

and replacing the last expression in (3), we get

j ] P(k) j i P)f‘k)
K% 6, y) = W, (P( Zf; T e RTC) Bf- T L )

— k! (X _ y)]—k+l

= (X_ G (P (x)Z k,Pﬁ"%(v)(x—y)k Pa- «x)Z k,P,ﬁ’”(y)(x—y)").

As a consequence,
Proposition 2 ([1,7]). Foreveryn € N,

J! _ .
m (Pn(X)Qj(X, 07 Pn—l) - Pﬂ—l(X)Qj(xa 07 Pn)) (4)

My Fp_q

K7 (x, 0) =

where Q;(x, 0; P,_1) and Q;(x, 0; P,) denote the Taylor polynomials of degree j of the polynomials P,_, and P, around x = 0,
respectively.

The Laguerre orthogonal polynomials are defined as the polynomials orthogonal with respect to the inner product

o0
®, qho = / pafedx, > —1,p,qeP. (5)
0

We will summarize some properties of the Laguerre monic orthogonal polynomials that we will use in what follows. The
details of the proof of Proposition 3 and Theorem 2, can be founded in [9,10,13,14,11].

Proposition 3. Let {L‘nx} be the sequence of Laguerre monic orthogonal polynomials.

n>0

(1) Foreveryn € N,
xLi(x) =L 0+ 2n+1+a)Li) +n(n+a)l;_; (), (6)

with[§(x) = 1,L{(X) =x — (e + 1).
(2) Foreveryn € N,

Ly = Ly () +nLy (). (7)
(3) Foreveryn € N,

|Le]2 = niC(n +a + 1). (8)
(4) Foreveryn € N

o N rm+oa+1)

[2(0) = (=1) Tern (9)
(5) Foreveryn e N

(L2) () = nLH (). (10)

(6) Foreveryn € N,
X(L2®) = nl%(X) +n@n+a) L2 X). (11)
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In particular, for Laguerre polynomials we get
Proposition 4. Foreveryn € N

Ly 1 OL (%)

I(n_](x, O) = m, (12)
©. =" (o2 D" ag
a0 = G R Y T it 2 ()
an __(=D'n—-1) Lot (=D"n Lo+
a0 = o rer 2 Yt o arer (14

The proof of (12) is given in [15]. For (13) see [12]. Finally, (14) is a consequence of (13) and (7).
Using (8) and (9) in (12)-(14) we obtain

Proposition 5. Foreveryn € N,

K,_1(0.0) = Frn+oa+1) 7 (15)
n— DM+ DI'(x +2)
K"9(0,0) = [nta+] _ e 0.0, (16)

(M= 2)T(@+ Dl (a +3) a+2

K090, 0) = rm+a+nmm+2%%a+n)_mm+2%%a+nﬂn—DK 0.0) (17)
n—2)T@+t2)l@+4  @+tD@+t2@t3s

Theorem 2 (The Mehler-Heine-Type Formula. See [11]). Let ], be the Bessel function of the first kind defined by
i (1Y (x/2)7+

hahzﬂjwo+a+n’
then
lim L(X/,(linﬂ)) = X", 2X). (18)

uniformly on compact subsets C and uniformly in j € N U {0}. Herefg‘(x) = (=D"/nlL¥ (x).

In what follows, as usual, a, ~ b, when n — oo means lim,_, o, a,/b, = 1.
3. Asymptotic behaviour

If p is a polynomial with real coefficients, then we will denote

w=(3)

Let p and q be polynomials with real coefficients. We define the following Sobolev-type inner product

mﬂk=/1mmwﬂfﬁﬂﬂwM@m,a>—L (19)
0

where

(Mo A
A‘(x M)’

My M; > 0, Ais a positive semidefinite matrix, i.e detA = |A| > 0. Notice thatif My = 0,M; > OorM; = 0, My > 0t
implies that A = 0. These situations have been considered in some previous papers by the authors (see [15,12]), as well as
in [4,12]. Notice that (p, q) is an inner product in the linear space P of polynomials with real coefficients.

Following [1] we will deduce the expression of {L¥} _ in terms of {L¥} _ . Let {L¥} _ be the sequence of monic

polynomials orthogonal with respect to (19). Consider the Fourier expansion of LY in terms of the sequence of Laguerre

monic orthogonal polynomials {L¢ }nzo

n—1

L0 =110+ ) andf ),

k=0
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where

(2@, ),

py = —————5 > 0<k<n-—1.
el
From (19), we get
(T2(0))" ALE(0)
el

ank = —

Asa consequence,

~ =1 (T2(0)) ALY (0
[ (x) = 1%(x) — Z M’“ﬁ()‘)
k=0

|| kll

= 12(x) — (T*(0)) AZ LOL®

=l

Kn 1(X 0)) (20)

L0 = L5 (0 — (E5(0)"A (K(o Dix, 0)
From the above expression we obtain
e oty (Kn1(0,0)
L2(0) = L3(0) — (L3 (0)) A <<(0 Do, 0))
o e (ray ~0 o 4 (KD (0, 0)

L) © = () © - (L) A (K,?_]])(Ov 0)) :
Thus

(T2(0)" = (L20))" - (L2(0))' AK,-1(0, 0), (21)
where

(K 100,00 K90, 0)>
K;-1(0,0) = (K(o 1)(0 0) K(1 1)(0 0)

As a consequence, from (21)

(L2(0)" (1 + AKy-1(0, 0)) = (L£(0))", (22)
where [ is the 2 x 2 identity matrix. Notice that
1 n—1

- 0 1
_ Ko_1(0, 0) 3
I+ AK;1(0,0) = Ky_1(0,0) | | fn-1 1 AL o1 e+ @) -1

0 K,_1(0, 0) Ca+2 (@ + V(e +2) (e + 3)

= Ku1(0.0) (j; ﬁ)

where

S D na
"~ K._1(0,0) Mot 2 )~ ar2

An? _( Mo (a + 3)A >n+ Mo A
(a+ 1)(a+3) a+2  (a+ D(a+2)(a+3) a+2 (¢+2)(x+3)

H, =

a—|—2n a4+ 2
M;n? 3 ( A Qo + 3)M; ) N A N M, N 1
@+D@+3) \a+2  (¢+(a+2)(a+3) a+2 (@+2)(@+3) Ki—1(0,0)

n =
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On the other hand
Il + AK,_1(0, 0)| = (Ky—1(0, 0))*

n—1
‘1 —_
! ! +2
x |:(Kn_1(0, o Tk o™ -1 (@42 ~@¥1)m-1
o+2 (@+ (e +2)(c + 3)
LA ((n(oc+2)—(a+l))(n— 1) B (n— 1)2)
(¢ + D+ 2) (o + 3) (o +2)2

(n@+2) —(@+1)@m-1) 2 (n_1)+MO)
(@ + D(e +2) (e + 3) +2

-1 n 1
+ (K110, 0))° |A| ((a+1)(oc+2)(a+3) (a+2)(a+3)>'

= 1+K;-1(0,0) <M1

As a consequence,

Proposition 6. Let A defined as in (19), thus
(1) If |A| > 0, then

|A| n2a+4

Il + AK,_1(0, 0)] ~ 5 (23)
(@ + D(a + 2)%(a + 3) (T(e + DT (a + 2))
(2) If |JA| =0, M; > 0, then
I+ AK,,_1(0, 0)| ~ My (24)
e (@+ (@ +3)(a+ Dl (@+2)
On the other hand, from (20) and (22)
(=D N+ 1) 0 "
Tox) = [* “ o)) - — DM (o + 2 L ()
Ly = L300 — (L5(0)" (1 +AKy- 0,07 A | (1= D +2) 1y (Lagz(x))
M=) (a+2) M—2)I'(x+2)
(—1)H7F(n+a+l) t 1
= 1) — Sl o+ 1) (Gn “n>_ A
" (=20 (@ +2)Kp1(0.0) | (_qyn-1 nrn+a+1 | \Jp K
MNa+2)
N _O[ +1 L()t+1(x)
n‘l_ 1 LOt+2(X)
Thus
—1 t -1 a+1
Ta iy _ o Gn  Hy —(x+1) 0 L7 (%)
@) =L 0 + (a : 1) (Jn Kn> A( n—1 n-— 1) (L"‘*]Z(x)) (25)

Furthermore, if we denote

G, H,
Mn = (Jn 1<n>’
then we get
K, —H,
My \=Jn G )’

1
M| = ———— [ + AK,_1(0, 0)] .
| n| (Kn_1(0, O))2 | n 1( )l

M, =

where
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Therefore, from (25), after some ¢

omputations we get

To a 1 2 A2 / ’ LZj}(X)
Lgm=Lﬂm+“w|@m-+mn+qu +@n+g)LMﬂ@,
n n—
with
A= A+ By=ay A+ 2
=a —_— =a e
n=o K,_1(0, 0) ne Kq—1(0, 0)
W —mAlt— B A —
T T K000 T T T K40, 0)
Cp = as |A| + s C = ag Al + —
T T k0,00 T T T G 4(0,0)
where
2 20
a; = ) a =
(a@+ D(x+2)(a +3) (a+ D(x +2)(a +3)
1 o
a3 P E—— a4 NN
(a+ 1)(a +2) (a+ D(x+2)
2 1
aGs=———""—+—, G=-—
(¢ +2)(x+3) o+2
M, M M
by = , by = —2A — . b= —A—
a—+1 a+1 a+1
b4 =A +M0(Ol + 1)
Let
~ =",
L) =——L,(x
@ (_])H'Ea
Q) = o 7 (%),
Then, from (26)
QY1) = L2 (%) + el (1) + & L2 (%)
with
v (7 n+B, + Cr
&n = — —
n |Mn| n n n
£, = L - +B + G
"Ta-DM U
where
M| PR ( M 2+R+T>
= n n
T (K-1(0,00)% T (Ka—1(0,0)) \ (o + D(ex + 3)

n2
+ Al

(o + D(a +2)2(a + 3)

+Rn+ T’) ,

R, T, R, and T'depend only on My, M1, A, and «. As a consequence

(1) If |A] > O,
i [Mn| Al
1m

oo 2 (@4 D@+
(2) If]A] = 0,

li I<n*‘l(07 0) |Mn|
1m =

2% +3)

M

n—o00 n2 - (o{

+ D@ +3)

(26)

(27)
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Therefore, for x € C \ [0, c0)

o oH—l a+2
im 2 ® _ i (1+ gy 1 ® L (X)>,

n—oo [o(x)  nm—oo L% (x) " L‘;(x)

and taking into account

{—2((1 +2) ifjA|>0

Jim nen =9 _ (o +3) if |a] =0,
oo Je+2)(«+3) if|Al>0
nlLrEo"S"—{(a+3) if |A| = 0,
and
n(=D/2%H ,
lim 7() = (—x)~0h/2, (28)

n—oo Lni—lll ( )

uniformly on compact subsets of C \ [0, c0), where j, | € R, h, k € Z, (see [4]) we get
Theorem 3 (Outer Relative Asymptotics).

L

n—o0 L‘; (x)

(29)

uniformly on compact subsets of C \ [0, 00).

Notice that this outer relative asymptotics does not depend on the matrix A.
We will find the corresponding Mehler-Heine formula for the Laguerre-Sobolev-type orthogonal polynomials L°‘ (x). As
mentioned above, in the first case, we will assume that |A| > 0. From (27) we get

o Tu Tu+1 n2 a+2
i S (Ln Gy | el o/m | gL (x/n)) .
n—00 no n—00 n« not+1 no+2
Thus,
Qy(x/m) —a/2 _ —(a+1)/2 —(a+2)/2
nLHolo T X «(23/%) — 2(c + 2)x Jat12V%) + (@ + 2)(a + 3)x Jat2(24/%)

uniformly on compact subsets of C. As a consequence, the second part of the previous expression is
X (Jo V0 = 2(@ + 22X 201 V0 + (@ + 2)(@ + 3K at2(2V)) -

But, taking into account that

Jo V%) 4 Jor2(23/x) = [ Ja+1(2f ),
then
nlim % =Xy 14(2V/%),

uniformly on compact subsets of C.
In a similar way if |A| = 0 and M; > 0,

f Qe (I‘:,f(x/n) el &/m anv‘*%(x/n))

n— 00 nv n— 00 n« net+l1 no+2

— x—oz/Z ot(z\/;() — (a + 3)X_(a+l)/2_]a+] (Zﬁ) + (a + 3)X_(a+2)/2]a+2 (2\/;() ’
uniformly on compact subsets of C. Then we get

Theorem 4. Let { QY }n>0 be the sequence of polynomials orthogonal with respect to (19) and assume |A| = 0, M; > 0. Then
(1) If |A| > O, then

lim % = X s (2VR), (30)

n—oo

uniformly on compact subsets of C.
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(2) If |A| = 0, then

Qna( /n) /2 (Ja(Z«/i)— v ]a+1 (2vR) + ]a+2 zﬂ) (31)

uniformly on compact subsets of C.

ﬂ—)OO

Notice that (30) coincides with [5] in the diagonal case, My, M; > 0 and (31) coincides with [4,12], where the cases
Mgy = 0 and A = 0 are studied.

In order to find a scaled outer strong asymptotic formula, we will write the Laguerre-Sobolev-type orthogonal
polynomials Q; (x) as a combination of the Laguerre orthogonal polynomials L‘“z(x), L"‘*f (x), and L"‘+2 (x). Replacing (7)
in (27) we get

QU (X) = 12" (%) + (80 — 2)L°T2(X%) + (&0 + 1 — )72 (x). (32)

This means that the sequence { QY }n>0 is quasi-orthogonal with respect to the Laguerre weight diie s = X*T2e*dx.

See [16] for more information about quasi-orthogonal families, in particular, the analysis of the zero distribution.
Introducing the change of variable nx in (32), we get

QY (nx) = L2 (nx) + (en — LT () + (& + 1 — £n) 1273 (nx)

thus
o Ta+2 Ta+2 a+2
g" () _ L/n\ (nx) ey — Z)L” 1 (nx) 41— n) L5 (%) ("X)
L% (nx) L% (nx) L% (nx) L%(n x)
Using that (see [4,11])
lim LE*‘W) =— ! (33)
n—co [ (nx) o ((x—2)/2)

uniformly on compact subsets of C \ [0, 4], where ¢ is the mapping of C \ [—1, 1] onto the exterior of the unit circle given
by

ex) =x+ Vx> —1,
Alvarez-Nodarse and Moreno-Balcazar proved in [4] that

L) (p(x=2)/2)+1)?
im <=5 = (34)
oo T2 (nx) p(x—2)/2
Then, using (33) and (34) we conclude that
Proposition 7. For n € N,
o IC(
fim 2 _ o W00 (35)

n—o0o Lgt (nx) n— o0 L‘r’: (nx)
uniformly on compact subsets of C \ [0, 4].
On the other hand, from (19) we get

~ 112 o2 o _
L2 ]|s = Lo | + Ly (0)'( + AKy—1(0, 0)) ~'AL(0).
If B is a nonsingular matrix, it is straightforward to prove that
0 u _ tp—1
v B = —|B|u'B"'v
where
_[(a b U= uq (N
“\c d)’ - u )’ v= Uy
Thus
B2 = 151 - oo sy 1At
nlls nlle |1 + AK,_;1(0, 0)| |AL;(0) I+ AK,_1(0,0)
s lar 0.00+| 0 L2 0)'/ |12
= - _ s n nilg
Il + AKy—1(0, 0)| " —ALZ(0) 1+ AKy_1(0,0)

I 1 moy s H
II + AKn—1(0, 0)| |—AL; (0)
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Finally, using the fact that

I + AK,(0,0) = I + AK,_1(0, 0) + L2 (0)LY(0)",

e

then
[E1s _ 11+ 4%, 0) 6)
[ I AR 0.0)]

Therefore using (36), (23) and (24) we get

Proposition 8. Let {fﬁ‘ }nZO be the sequence of polynomials orthogonal with respect to (19). Then

~Ol
lEl

o L]
o
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