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This paper is concerned with solving the Cauchy problem for an elliptic equation by
minimizing an energy-like error functional and by taking into account noisy Cauchy data.
After giving some fundamental results, numerical convergence analysis of the energy-like
minimization method is carried out and leads to adapted stopping criteria for the
minimization process depending on the noise rate. Numerical examples involving smooth
and singular data are presented.
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1. Introduction

The Cauchy problem considered here consists of solving a partial differential equation on a domain for which over-
specified boundary conditions are given on a part of its boundary, which means solving a data completion problem and
recover the missing boundary conditions on the remaining part of the boundary. This kind of problem arises in many
industrial, engineering or biomedical applications.

Since Hadamard’s works [1], the Cauchy problem is known to be ill-posed and an important numerical instability may
occur during the numerical resolution of this kind of problem. It provides researchers with an interesting challenge to
carry out a numerical procedure approximating the solution of the Cauchy problem in the particular case of noisy data.
Many theoretical and applied works were proposed about this subject, using the Steklov–Poincaré theory (see [2–4]),
regularization methods (see [5,6]), quasi-reversibility method (see [7]) or minimal error methods (see [8–10]).

In this paper, we focus on a method introduced in [11–13] based on minimization of an energy-like functional. More
precisely, in the approach proposed here, we introduce two distinct fields, each of them meeting only one of the over-
specified data. They are then solutions of two well-posed problems which avoids the need of regularization methods in
the case of free noise Cauchy data. Next, an energy-like error functional is introduced to measure the gap between these
two fields. Then, the Cauchy problem solution is obtained when the functional reaches its minimum. This method provides
hopeful results, nevertheless, as many other methods, it becomes unstable in the case of noisy data. In order to overcome
this numerical instability, we propose adequate stopping criteria parameterized by the noise rate by means of numerical
convergence analysis.

The outline of the paper is as follows. In Section 2, we give the Cauchy problem and report classical theoretical results. In
Section 3, we formulate the Cauchy problem as a data completion problem and introduce the relatedminimization problem.
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Fig. 1. An example of geometry.

In Sections 4 and 5, the finite element discretization, the convergence analysis and study of noise effects for the introduced
minimization problem are presented respectively. We give here a priori error estimates taking into account data noise and
propose stopping criteria to control instability of the minimization process. Finally, the numerical procedure and results are
presented.

2. Statement of problem

We consider a Lipschitz bounded domain Ω in Rd, d = 2, 3 with n the outward unit normal to the boundary Γ = ∂Ω .
Assume that Γ is partitioned into two parts Γu and Γm, of non-vanishing measure and such that Γu ∩ Γm = ∅. (See Fig. 1.)

A more common problem consists of temperature recovering in a given domain Ω assuming that the temperature
distribution and heat flux are given over the accessible region of the boundary. Given a source term f and a conductivity
field k in Ω , a flux φ and the corresponding temperature T on Γm, we would like to recover the corresponding flux and
temperature on Γu. The Cauchy problem is then written as:−∇ ·


k(x)∇u


= f in Ω

k(x)∇u · n = φ on Γm
u = T on Γm.

(1)

A problem is well-posed in the sense of Hadamard (see [1,14,5]) if it fulfills the three following properties: uniqueness
and existence of the solution and stability. The extended Holmgren’s theorem to the Sobolev spaces (see [14]) guarantees
uniqueness under regularity assumptions on a solution of the Cauchy problem. As the well-known Cauchy–Kowalevsky
theorem (see [15]) is applicable only in the case of analytic data, the existence of this solution is then a caution to the
verification of a compatibility condition which can hardly be explicitly formulated. This compatibility condition added to
the fact that, for one fixed data, the set of compatible data is dense in the set of all data (see [16]), which implies that
the stability assumption is not satisfied in the sense that the dependence of the solution u of (1) on the data (φ, T ) is not
continuous. Hereafter, we assume that data (φ, T ) are compatible.

Some notations: Let x be a generic point of Ω . The space of squared integrable functions L2(Ω) is endowed with a natural
inner product written (·, ·)L2(Ω). The associated norm is written ‖ · ‖0,Ω . We note H1(Ω) the Sobolev space of functions
of L2(Ω) for which their first order derivatives are also in L2(Ω). Its norm and semi-norm are written ‖ · ‖1,Ω and | · |1,Ω

respectively. Let γ ⊂ Γ , we define the space H1
0,γ (Ω) = {v ∈ H1(Ω); v|γ = 0} and H1/2

00 (γ ) is the space of restrictions to γ

of the functions of H1/2(Ω) = tr

H1(Ω)


. Its topological dual is written H−1/2

00 (γ ) =

H1/2

00 (γ )
′
. The associated norms are

written ‖ · ‖1/2,00,γ and ‖ · ‖−1/2,00,γ respectively and ⟨·, ·⟩1/2,00,γ states for the duality inner product.

3. Energy-like minimization method

Let f ∈ L2(Ω), k(x) ∈ L∞(Ω) positive, φ ∈ H−1/2
00 (Γm) and T ∈ H1/2

00 (Γm). The Cauchy problem can be written as a data
completion problem:

Find (ϕ, t) ∈ H−1/2
00 (Γu) × H1/2

00 (Γu) such that there exists u ∈ H1(Ω) solution of−∇ ·

k(x)∇u


= f in Ω

u = T , k(x)∇u · n = φ on Γm
u = t, k(x)∇u · n = ϕ on Γu.

(2)
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Remark 1. We note that in the case Γ̄u ∩ Γ̄m = ∅, as given in Fig. 2 illustrating the ring numerical tests of Section 6.2, the
spaces H−1/2(Γu) × H1/2(Γu) and H−1/2(Γm) × H1/2(Γm) for unknowns and data respectively would be more appropriate.
Nevertheless, the general functional framework is not restrictive because the spaces Hs

00(Γu) and Hs
00(Γm) are dense in

Hs(Γu) and Hs(Γm) for s = ±1/2, respectively.

The functional spaces being given, we introducemore precisely the concept of densitymentioned in the previous section.
We recall the following theorem:

Theorem 3.1. (i) For a fixed T ∈ H1/2
00 (Γm), the set of data φ for which there exists a solution u ∈ H1(Ω) to the Cauchy problem

(1) is everywhere dense in H−1/2
00 (Γm).

(ii) For a fixed φ ∈ H−1/2
00 (Γm), the set of data T for which there exists a solution u ∈ H1(Ω) to the Cauchy problem (1) is

everywhere dense in H1/2
00 (Γm).

Two proofs of this theorem, based on Hahn–Banach theorem and penalty method, are given in [16].
Following [11], we introduce now two distinct fields u1 and u2 solution of well-posed problems which differ by their

boundary conditions. We attribute to each of them one data on Γm and one unknown on Γu. Then, we have:
−∇ ·


k(x)∇u1


= f in Ω

u1 = T on Γm

k(x)∇u1 · n = η on Γu

(3)


−∇ ·


k(x)∇u2


= f in Ω

u2 = τ on Γu

k(x)∇u2 · n = φ on Γm.

(4)

We denote ai(·, ·) and li(·), i = 1, 2 the bilinear and linear forms associated to the weak forms of the problems (3) and
(4) respectively. They are given by:

ai(ũi, v) =

∫
Ω

k(x)∇ũi∇v dx i = 1, 2 (5)

l1(v) =

∫
Ω

f v dx − a1(ū1, v) + ⟨η, v⟩1/2,00,Γu (6)

l2(v) =

∫
Ω

f v dx − a2(ū2, v) + ⟨φ, v⟩1/2,00,Γm (7)

where ū1 and ū2 are the lifting of the boundary conditions (T , η) and (τ , φ) respectively and ũi = ui − ūi, i = 1, 2. Then,
we have by summation the following weak problem:

Find u = (ũ1, ũ2) ∈ V such that
a(u, v) = L(v), ∀v = (v1, v2) ∈ V (8)

with a(u, v) = a1(ũ1, v1) + a2(ũ2, v2)

and L(v) = l1(v1) + l2(v2)

where V = H1
0,Γm

(Ω) × H1
0,Γu

(Ω) and ‖v‖V = (‖v1‖
2
1,Ω + ‖v2‖

2
1,Ω)1/2 is the norm associated to the space V . It is easy

to show that the linear form L(·) is continuous and that the bilinear form a(·, ·) is continuous and V -elliptic. Then, by the
Lax–Milgram theorem, the weak problem (8) admits a unique solution.

We consider now the following energy-like functional in order to compare the fields u1 and u2:

E(η, τ ) =
1
2

∫
Ω

k(x)

∇u1(η) − ∇u2(τ )

2
dx (9)

and the following minimization problem:
(ϕ, t) = argmin

(η,τ )∈U

E(η, τ ), U = H−1/2
00 (Γu) × H1/2

00 (Γu)

with u1 and u2solutions of (3) and (4) respectively.
(10)

Using the convexity of the space U , and the existence and uniqueness of the Cauchy problem solution in the case of
compatible data, we are able to prove that the solution (η∗, τ ∗) of the minimization problem (10), if it exists and is unique,
is the solution of the data completion problem up to an arbitrary additive constant for the Dirichlet unknown τ . In other
words, if (ηd, τd) ∈ U is solution of the data completion problem, η∗

= ηd, τ ∗
= τd + κ , where κ is a constant.

Remark 2. (i) When E(η, τ ) reaches its minimum, ∇u1(η
∗) = ∇u2(τ

∗).
(ii) The energy-like functional is quadratic.
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Remark 3. The minimization problem (10) can be re-formulated as an optimal control problem as defined in [17]. We
assume more regularity on the field u2, say u2 ∈ H2(Ω) ∩ H1

0,Γm
(Ω). Thereby, we define the operators A ∈ L (V ′, V )

and B ∈ L (U , V ′) given by:

(Au, v)V ′,V = a(u, v) and

B(η, τ ), v


V ′,V = ⟨η, v⟩1/2,00,Γu − ⟨k(x)∇v · n, τ ⟩1/2,00,Γu (11)

and F ∈ V ′ such that (F , v)V ′,V = (f , v)L2(Ω). Then, the weak problem (8) can be written as

Au(η, τ ) = F + B(η, τ ). (12)

Furthermore, we define an operator C ∈ L

V , L2(Ω)


such that the energy-like functional could be written as follows

E(η, τ ) = ‖Cu(η, τ )‖L2(Ω). (13)

The functional being convex, it can be proven that, if it exists, the optimal control is unique. However, it is well-known that
conditions that guarantee existence can be hardly described. Nevertheless, it appears not as restrictive. Indeed, as seen later,
even without this condition one can produce a stable algorithm for finding a numerical solution (see [14]).

This formulation enables us to characterize the optimal control. We introduce the adjoint state v = (v1, v2) ∈ V . If (η, τ )
is the optimal control, v1 and v2 are solution of the two following adjoint problems:∇ ·


k(x)∇v1


= 0 in Ω

v1 = 0 on Γm
k(x)∇v1 · n = η − k(x)∇u2 · n on Γu

(14)

∇ ·

k(x)∇v2


= 0 in Ω

v2 = 0 on Γu
k(x)∇v2 · n = φ − k(x)∇u1 · n on Γm.

(15)

The gradient of the related functional is then given by:

∇E(η, τ ) =

v1|Γu , −k(x)∇v2 · n|Γu


. (16)

This optimal control problem is equivalent to a constrained optimization problem (see [18]) by introducing the following
Lagrangian:

L (η, τ , u, v) = E(η, τ ) − ⟨v, Au − F − B(η, τ )⟩V ′,V . (17)

4. Finite element discretization and error estimation

4.1. Finite element discretization

Let Xh be the finite element space for which the following classical assumptions are verified:

(i) Ω is polyhedral domain in Rd, d = 2, 3.
(ii) Th is a regular triangulation of Ω̄ i.e. h = maxK∈Th hK → 0 and maxK∈Th

hK
ρK

≤ c with c independent constant on h, hK

the element K diameter and ρK the K inscribed circle diameter.
(iii) Γu and Γm can be written exactly as a union of faces of some finite elements K ∈ Th.
(iv) The family (K , PK , ΣK ), K ∈ Th for all h is affine-equivalent to a unique reference finite element (K̂ , P̂, Σ̂) of class C 0.
(v) The following inclusion is satisfied: Pl(K̂) ⊂ P̂ ⊂ H1(K̂) for l ≥ 1.

These assumptions imply that Xh ⊂ H1(Ω). We define the following spaces:

Xuh = {vh ∈ Xh; vh|Γu = 0}
Xmh = {vh ∈ Xh; vh|Γm = 0}

and Vh = Xmh × Xuh ⊂ V the finite dimensional approximation space. So, we have the discrete problem associated to the
weak problem (8):

Find uh ∈ Vh such that
a(uh, vh) = L(vh), ∀vh ∈ Vh. (18)

The Lax–Milgram theorem guarantees that (18) admits a unique solution.
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4.2. Convergence analysis

Using standard procedures (see [19], Theorem 3.2.2.), we report the following error estimate:

Proposition 4.1. In addition to the assumptions stated above, assume that there exists an integer l ≥ 1 such that the following
inclusion is satisfied:

H l+1(K̂) ⊂ C s(K̂) with continuous injection (19)

where s is the maximal order of partial derivatives occurring in the definition of the set Σ̂ .
Then, if the solution u ∈ V of the variational problem (8) is also in the space


H l+1(K̂)

2
, there exists a constant C independent

on h such that

‖u − uh‖V ≤ Chl(|u1|
2
l+1,Ω + |u2|

2
l+1,Ω)1/2 (20)

where uh ∈ Vh is the discrete solution.

5. Noisy data, a priori error estimates and stopping criteria

5.1. A priori error estimates and data noise effects

In the case of given perturbed data, say (φδ, T δ), problem (18) writes as:

Find uδ
h = (uδ

1h, u
δ
2h) ∈ Vh such that

a(uδ
h, vh) = Lδ(vh), ∀vh ∈ Vh (21)

where Lδ(·) is the linear form with noisy data (φδ, T δ).

Proposition 5.1. Under assumptions of Proposition 4.1, if the solution u ∈ V of the variational problem (8) is also in the space
H l+1(K̂)

2
, then there exist two constants C1 and C2 independent on h and data such that

‖u − uδ
h‖V ≤ C1hl(|u1|

2
l+1,Ω + |u2|

2
l+1,Ω)1/2 + C2(‖T − T δ

‖
2
1/2,00,Γm

+ ‖φ − φδ
‖
2
−1/2,00,Γm

)1/2 (22)

where uδ
h is the solution of the discrete problem (21) associated to the noisy Cauchy problem.

Proof. Using the V -ellipticity property of the bilinear form a(·, ·), we have

α‖uh − uδ
h‖

2
V ≤ L(uh − uδ

h) − Lδ(uh − uδ
h). (23)

According to the trace theorem (see [20]), the trace operator is continuous and there exist two lifting operators R1 :

H1/2
00 (Γm) → H1(Ω) and R2 : H−1/2

00 (Γm) → H1(Ω) which are continuous and linear. Then, there exists a constant C > 0
such that

α‖uh − uδ
h‖

2
V ≤ C‖uh − uδ

h‖V

‖R1(T − T δ)‖2

1,Ω + ‖R2(φ − φδ)‖2
1,Ω

1/2
(24)

and by continuity, there exist two constantsM1, M2 such that

‖uh − uδ
h‖V ≤

C
α


M1‖T − T δ

‖
2
1/2,00,Γm

+ M2‖φ − φδ
‖
2
−1/2,00,Γm

1/2
. (25)

Using the triangular inequality, we have

‖u − uδ
h‖V = ‖u − uh + uh − uδ

h‖V ≤ ‖u − uh‖V + ‖uh − uδ
h‖V . (26)

We obtain (22) by applying (20) and (25) on (26). �

5.2. Stopping criteria for the minimization process

When noise is introduced on the Cauchy data, we observe during the optimization process that the error reaches a
minimum before increasing very fast and leading to a numerical explosion. At the same time, the energy-like functional
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attains asymptotically a minimal threshold, which is a strictly positive constant depending on the noise. Notice that this
constant vanishes for compatible Cauchy data. Now, the aim is to theoretically determine this threshold in order to propose
stopping criteria depending on the noise rate. This criteria will allow one to stop the minimization process just before
numerical explosion. Let

Eδ
h(η, τ ) =

1
2

∫
Ω

k(x)

∇uδ

1h(η) − ∇uδ
2h(τ )

2
dx (27)

be the perturbed discrete functional.

Proposition 5.2. Under assumptions of Proposition 4.1, if the solution u ∈ V of the variational problem (18) is also in the space
H l+1(K̂)

2
and if (η∗, τ ∗) is the solution of the minimization problem (10), then there exist two constants C1 and C2 independent

on h and data such that

Eδ
h(η

∗, τ ∗) ≤ C1h2l(|u1|
2
l+1,Ω + |u2|

2
l+1,Ω) + C2(‖T − T δ

‖
2
1/2,00,Γm

+ ‖φ − φδ
‖
2
−1/2,00,Γm

). (28)

Proof. Let (η∗, τ ∗) be the solution of the minimization problem (10) with compatible Cauchy data. After some algebraic
operations and taking into account the fact that ∇u1(η

∗) = ∇u2(τ
∗), we can write:

Eδ
h(η

∗, τ ∗) − E(η∗, τ ∗) =
1
2

∫
Ω

k(x)


∇uδ
1h(η

∗) − ∇u1(η
∗)

−

∇uδ

2h(τ
∗) − ∇u2(τ

∗)
2

dx. (29)

As seen previously E(η∗, τ ∗) = 0. Consequently:

Eδ
h(η

∗, τ ∗) ≤ ‖k‖L∞(Ω)


|∇uδ

1h(η
∗) − ∇u1(η

∗)|21,Ω + |∇uδ
2h(τ

∗) − ∇u2(τ
∗)|21,Ω


(30)

and then

Eδ
h(η

∗, τ ∗) ≤ ‖k‖L∞(Ω)‖u − uδ
h‖

2
V . (31)

Therefore, using Proposition 5.1, we derive (28). �

We immediately conclude that, when the discrete functional with noisy data (27) reaches its minimum, for h sufficiently
small, we have by (28):

Eδ
h(η

∗, τ ∗) ∼ O

‖T − T δ

‖
2
1/2,00,Γm

+ ‖φ − φδ
‖
2
−1/2,00,Γm


. (32)

In order to propose stopping criteria based on these theoretical estimates, let us denote by (X j
η, X

j
τ ) the discrete

optimization variables related to the unknown boundary conditions (η, τ ) where j points out on the current iteration. We
denote by Ej(X j

η, X
j
τ ) the value of the discrete noisy functional Eδ

h(η, τ ) at the iteration j. For more readability, we write
Ej := Ej(X j

η, X
j
τ ).

A consistent stopping criteria, based on the described behavior of Eδ
h(·, ·) and the estimate (28), could be:

|Ej − Ej−1| ≤ (‖T − T δ
‖
2
1/2,00,Γm

+ ‖φ − φδ
‖
2
−1/2,00,Γm

). (33)

6. Numerical issues

6.1. Numerical procedure

Let us describe the calculation method of the required elements for the optimization procedure, specifically the adjoint
states and the gradient of the functional. Assume that the triangulation Th of Ω is characterized by n nodes. Let p and q
denote the number of nodes on the boundaries Γu and Γm respectively and (ωi)1≤i≤n = (ω1i, ω2i)1≤i≤n the canonical basis
of Vh. We write Xη and Xτ as the unknowns. The vectors U1 and U2 correspond to the fields u1 and u2. We introduce the
following notations, (K1)kl = a1(ω1k, ω1l), (K2)kl = a2(ω2k, ω2l), (F1)k = l1(ω1k), (F2)k = l2(ω2k). The bilinear forms being
similar, we note K = K1 = K2.

Following [12,13], we have the linear systems:
KU1 + LTmp1 = F1(Xη)

LmU1 = Tδ (34)
KU2 + LTup2 = F2(Φδ)
LuU2 = Xτ

(35)
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where Lu ∈ Mp×n(R) and Lm ∈ Mq×n(R) are matrices that contain only 0 and 1, p1 and p2 are Lagrange multipliers laying
down Dirichlet conditions.

Based on (9) and (17), we can write the discrete functional:

E(Xη, Xτ ) =
1
2
(U1 − U2)

TK(U1 − U2) (36)

and the discrete Lagrangian:

L (U1,U2, λ1, λ2; Xη, Xτ ) = E(Xη, Xτ ) −

[
λ1
q1

]T [
KU1 + LTmp1 − F1
LmU1 − Tδ

]
−

[
λ2
q2

]T [
KU2 + LTup2 − F2
LuU2 − Xτ

]
. (37)

Let (X∗
η , X∗

τ ) be the optimum. Derivating this Lagrangian, we have:

∂L

∂Xη

=
dU1

dXη


2K(U1 − U2) − λT

1K − qT1Lm

− λT

1L
T
m
dp1
dXη

− λT
1
dF1
dXη

(38)

∂L

∂Xτ

=
dU2

dXτ


2K(U2 − U1) − λT

2K − qT2Lu

− λT

2L
T
u
dp2
dXτ

+ LuLTuq2. (39)

Therefore, given that ∂L
∂Xη

(X∗
η ) = 0 and ∂L

∂Xτ
(X∗

τ ) = 0 and the adjoint states corresponding to the Lagrange multipliers (see
(17)), we have by identification the discrete adjoint problems:

Kλ1 + LTmq1 = K(U1 − U2)
Lmλ1 = 0 (40)
Kλ2 + LTuq2 = K(U2 − U1)
Luλ2 = 0 (41)

and the gradient of the discrete functional is then given by:

∇E(Xη, Xτ ) =

[
Luλ1
Lu[K(U2 − U1) − Kλ2]

]
. (42)

We consider here the case of real applications where we have only measured and noisy data (Tδ, Φδ) given with a noise
rate 0 < a < 1.We are then not able to calculate exactly the norm of the difference between the exact and noisy data which
are involved in the stopping criteria (33). We have therefore to estimate these norm. We have:

T(x) − aT(x) ≤ Tδ(x) ≤ T(x) + aT(x), ∀x ∈ Γm (43)

⇐⇒
−a

1 − a
Tδ(x) ≤ T(x) − Tδ(x) ≤

a
1 + a

Tδ(x) (44)

and then ‖T − Tδ
‖1/2,00,Γm ≤ max


a

1 − a
,

a
1 + a


‖Tδ

‖1/2,00,Γm . (45)

Proceeding by the same way for the Neumann boundary condition, the stopping criteria (33) can be written as follows:

|Ej − Ej−1| ≤
a2

(1 − a)2

‖Tδ

‖
2
1/2,00,Γm

+ ‖Φδ
‖
2
−1/2,00,Γm


. (46)

6.2. Numerical results

We consider the following Cauchy problem on the domain Ω given by Fig. 2:
△u = 0 in Ω

u = fD on Γm
∂u
∂n

= fN on Γm

(47)

where fD and fN are the Cauchy data extracted from the exact solution which we intend to approximate.
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Fig. 2. Ring.

(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 3. Exact (�) and identified (⃝) boundary conditions, h = 0.03.

Fig. 4. Evolution of ‖u − uh‖1,Ω during the optimization procedure for different noise rates.

6.2.1. Analytic example
The Fig. 3 represents the exact analytic solution u(x, y) = ex cos(y) and the finite element solution of the data completion

problemobtained by energy-like functionalminimization.We can see that the recovered temperature and heat flux are close
to the exact ones.

The Fig. 6 represents the finite element discretization error with respect to the maximum edge size of the mesh. This
result is in agreement with the theoretical error estimates (20).

We introduce a Gaussian random noise on data with an amplitude which depends on a rate a. The Figs. 4 and 5 represent
the error and the energy-like functional at each iteration for different noise rates. These behaviors make it necessary to
introduce criteria to stop the optimization process.
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Fig. 5. Evolution of E(η, τ ) during the optimization procedure for different noise rates.

Fig. 6. Evolution of ‖u − uh‖1,Ω with respect to h.

Fig. 7. Evolution of ‖u − uh‖1,Ω and E(η, τ ) with respect to the noise norm.

Next we choose h such that the finite element error could be negligible in comparison with error due to noise and we
observe error and functional behaviorswith respect to the noise norm. These results, presented in the Fig. 7, are in agreement
with the error estimates (22) and (28).

The stopping criteria defined by (33) allows one to identify a consistent solution, as shown in Fig. 8, otherwise the solution
of the optimization algorithm numerically explodes.
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(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 8. Exact (�) and identified (⃝) boundary conditions with noisy data, a = 4%, h = 0.03.

(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 9. Exact (�) and identified (⃝) boundary conditions with noisy data, r = 0.4, a = 4%, h = 0.02.

6.2.2. Source point and stratified inner fluid examples
The next source point example deals with the reconstruction of singular data, coming from

u(x, y) = Re


1

z − r


, where z = x + iy (48)

where r is the position of the source point on the abscissa axis. Numerical results are illustrated by Fig. 9 in the case that the
source point is in the vicinity of the inner boundary and Fig. 10 if the source point is in the vicinity of the outer boundary.

Now, we explore the efficiency of proposed stopping criteria on the so-called stratified inner fluid case. We consider
therefore the reconstruction of temperature and flux in a pipeline of infinite length. This application arises in several
industrial processes. Indeed, knowledge of temperature on internal wall of a pipeline is necessary for controlling the
material’s safety: a stratified inner fluid generatesmechanical stresses, whichmay cause damage such as cracks.We assume
that the temperature does not depend on the longitudinal coordinate. We consider then the following problem on the
geometry defined by Fig. 2:

∇ · (k∇u) = 0 in Ω

k∇u · n + αu = T on Γ
(49)

where k = 17 W.m−1. °C−1 is the constant thermal conductivity, T is the temperature, α is the Fourier coefficient, Γu is
partitioned into two parts, the lower half circle Γu,lo = {(x, y) ∈ Γu; y < 0} and the upper half circle Γu,up = {(x, y) ∈

Γu; y ≥ 0}. The coefficients values are given in Table 1.
The Cauchy data are generated by solving the forward problem defined by (49). Then, a random noise is applied on

Dirichlet data and we assume that the flux is exactly known on Γm. The Fig. 11 shows the recovered temperature and heat
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(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 10. Exact (�) and identified (⃝) boundary conditions with noisy data, r = 1.1, a = 4%, h = 0.02.

Table 1
Coefficients values for a stratified inner fluid test.

T (°C) α (W.m−2. °C−1)

Γm 20 12
Γu,up 250 1000
Γu,lo 50 1000

(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 11. Exact (� resp. ⃝) and Identified (△ resp. �) temperature and flux respectively on Γu with noisy data, a = 4%, h = 0.1.

flux in comparison to the data given by numerical resolution of (49). Notice that the reconstructed field is close to the
solution to be recovered.

Finally, in order to illustrate the efficiency of the given stopping criteria, we increase the noise rate up to 10% and
perform numerical experiments. Fig. 12 shows the solution of the generic optimization algorithm. However Fig. 13 shows
the solution of the optimization algorithm with the stopping criteria defined by (33). A numerical explosion without the
proposed stopping criteria is then clearly observed.

7. Conclusion

In this work, we stated the Cauchy problem as a minimization one and presented classical theoretical results. Then,
we gave the finite element discretization and performed convergence analysis. We derived a priori error estimates
taking into account noisy data. Then we proposed stopping criteria depending on the noise rate in order to control the
numerical instability of the minimization process due to noisy data. We proposed a numerical procedure and performed
numerical experiments in agreement with error estimates. We illustrated the robustness and efficiency of the proposed
stopping criteria, especially in the case of singular data. The numerical analysis of noise effects and derivation of stopping
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(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 12. Exact (� resp. ⃝) and Identified (△ resp. �) temperature and flux respectively on Γu with noisy data and classical stopping criteria, a = 10%,
h = 0.1.

(a) Dirichlet condition on Γu . (b) Neumann condition on Γu .

Fig. 13. Exact (� resp. ⃝) and Identified (△ resp. �) temperature and flux respectively on Γu with noisy data, a = 10%, h = 0.1.

minimization criteria for parabolic (see [21,22]) and hyperbolic problems is under consideration. It will be a subject of a
forthcoming paper.
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