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a b s t r a c t

Weconsider the problemof determining the temperature u(x, t), for (x, t) ∈ [0, π]×[0, T )
in the parabolic equation with a time-dependent coefficient. This problem is severely
ill-posed, i.e., the solution (if it exists) does not depend continuously on the given data.
In this paper, we use a modified method for regularizing the problem and derive an
optimal stability estimation. A numerical experiment is presented for illustrating the
estimate.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a positive number, we consider the backward problem for the nonhomogeneous linear parabolic equation

ut(x, t) − a(t)uxx(x, t) = f (x, t), (x, t) ∈ [0, π] × (0, T ] (1)
u(0, t) = u(π, t) = 0, t ∈ [0, T ] (2)
u(x, T ) = g(x), x ∈ [0, π] (3)

where a(t) is a function such that there exists p, q > 0

0 < p ≤ a(t) ≤ q. (4)

Manyphysical and engineering problems in areas require the solution of the backwardproblem for the parabolic equation
with a time-dependent coefficient. In general, the backward problem for the parabolic equation is ill-posed in the sense that
the solution (if it exists) does not depend continuously on the given data. It means that a small perturbation on the data can
affect the exact solution largely. Hence, it is difficult to calculate the regularized solution closing the exact solution and a
regularization is necessary. In fact, the linear case has been studied in the past four decades by many scientists all over the
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world. Moreover, there were so many papers relating to the backward problem for the parabolic equation (see, e.g., [1–7]).
In [8], the authors introduced a method which was called the quasi-reversibility method (QRmethod). They regularized the
problem by using a ‘‘corrector term’’ in order to add it into the main equation. In a particular case, they investigated the
problem

ut + Ku − K ∗Ku = 0,
u(x, T ) = g(x).

We see that the above problem is useful if we can construct the adjoint operator K ∗. In fact, the other approximated
problem was more practical than the problem given in [9,10]

ut + Ku − Kut = 0,
u(x, T ) = g(x).

On the other hand, in 1983, Showalter presented the quasi-boundary value method (QBV method). By using the QBV
method, they regularized the problem by adding the ‘‘corrector term’’ into the final condition. Applying this method, Dense
and Bessila [2] used the final condition as follows

u(x, T ) − ϵux(x, 0) = g(x).

As stated above, there are many works on the backward problem for the parabolic equation with a constant coefficient,
the paper related to the time-dependent coefficient is very scarce. Recently, in [11], the authors consider the backward
problem for the heat equation (with a constant coefficient) and obtain the error estimates between the regularized solution
and the exact solution as follows

∥uϵ(., t) − u(., t)∥ ≤ Cϵ
t
T , for t > 0

∥uϵ(., 0) − u(., 0)∥ ≤
4√8C 4√T (ln(1/ϵ))−

1
4 , for t = 0.

We can easily see that the above estimate tends to zero slowly when t is in a neighborhood of zero. That is the
one disadvantage of this method (using in [11]). However, in [12], by requiring some acceptable assumptions of f and
the exact solution u, the authors also improved the method (using in [12]) in order to obtain the better error estimate
than [11]

∥uϵ(., t) − u(., t)∥ ≤ T1(1 +
√
M) exp


3L2TT 2

1 (T − t)
2


ϵt/T ln


T
ϵ

 t
T −1

.

Hence, in this paper a modified method is given for regularizing the backward problem with the time-dependent
coefficient and obtain the error estimate that tends to zero more quickly than the logarithmic order.

In this paper, we also approximate (1)–(3) by using the regularization problem

uϵ(g)(x, t) =

∞
m=1


exp{−m2F(t)}

β + exp{−m2F(T )}
gm −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

β + exp{−m2F(T )}
fm(s)ds


sin(mx) (5)

where

gm =
2
π

 π

0
g(x) sin(mx)dx,

fm(s) =
2
π

 π

0
f (x, s) sin(mx)dx,

F(t) =

 t

0
a(s)ds,

and β = β(ϵ) (denoting by β) are chosen later. The rest of this paper is divided into two sections. In Section 2, the
regularization results and the proof of main results are presented. A numerical experiment is shown in Section 3 to illustrate
the main results.

2. Regularization and error estimates

For clarity, we denote that ∥.∥ is the norm in L2[0, π].

2.1. Main results

In this section, we shall give the regularized solution of (1)–(3) and estimate the error between the regularized solution
and the exact solution. Hence, we need to find out the exact solution of (1)–(3). In fact, the exact solution of (1)–(3) satisfies
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u(x, t) =

∞
m=1


exp{m2(F(T ) − F(t))}gm −

 T

t
exp{m2(F(s) − F(t))}fm(s)ds


sin(mx), (6)

where

fm(s) =
2
π

 π

0
f (x, s) sin(mx)dx,

gm =
2
π

 π

0
g(x) sin(mx)dx,

F(t) =

 t

0
a(s)ds.

Hereafter, we need the following inequalities in order to evaluate error estimates.

Lemma 1. Let n ∈ R, γ > 0, 0 ≤ a ≤ b and b ≠ 0 then we have

ena

1 + γ enb
≤ γ −

a
b .

Lemma 2. Let a(t) be a function satisfying (4) and t ∈ [0, T ], 0 < β < 1. Then for m > 0, one has

exp

−m2

 t
0 a(s)ds


β + exp


−m2

 T
0 a(s)ds

 ≤ β
qt
pT −

q
p .

Lemma 3. Let a(t) be a function satisfying (4) and t ∈ [0, T ], 0 < β < 1. Then for m > 0, one has

β exp

−m2

 t
0 a(s)ds


β + exp


−m2

 T
0 a(s)ds

 ≤ β
pt
qT .

The next theorem is proved for the stability of the modified method given in this paper.

Theorem 1 (Stability of The Modified Method). Let uϵ(g) and uϵ(h) be defined by (5) corresponding to the final values g and h
in L2(0, π), respectively. Then we get

∥uϵ(g)(., t) − uϵ(h)(., t)∥ ≤ β
qt
pT −

q
p ∥g − h∥ ,

for every t ∈ [0, T ).

The following theorems give us the error estimate between the exact solution of (1)–(3) and the regularized solution (5)
corresponding to the noise data gϵ .

Theorem 2. Let ϵ ∈ (0, T ), gϵ, gex ∈ L2[0, π], u be the exact solution of problem (1)–(3) such that Q = 2 ∥u(., 0)∥2 < ∞ and

M = 4πT
∞

m=1

 T

0

 π

0

exp{m2F(s)}ut(x, s)
2 +

exp{m2F(s)}a(s)uxx(x, s)
2 dxds < ∞.

If β(ϵ) = ϵ
p
q and uϵ(gϵ)(., t) is given by (5) then one has, for every t ∈ [0, T ),

∥uϵ(gϵ)(., t) − u(., t)∥ ≤ C1ϵ
p2t
q2T ,

where C1 = 1 +
√
Q + M.

Finally, the error estimate between the exact solution of (1)–(2) and the regularized solution is presented.

Theorem 3. Let ϵ ∈ (0, T ), gϵ, gex ∈ L2[0, π] and u be the exact solution of problem (1)–(3) such that there exists a positive
number γ ∈ (0, qT ) satisfying for all t ∈ [0, T ],

π

2

∞
m=1

exp{2γm2
}u2

m(t) < A2
2,
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where um(t) =
2
π

 π

0 u(x, t) sin(mx)dx. If we assume that β = ϵ
pT

q(T+γ ) and uϵ(gϵ)(., t) is given by (5) then one has, for every
t ∈ [0, T ],

∥u(., t) − uϵ(gϵ)(., t)∥ ≤ ϵ
t+γ
T+γ + A2ϵ

pγ
q2(T+γ ) .

Remark.

1. In Theorem 2, it is easy to see that the error estimate between the exact solution and the regularized solution is C1ϵ
p2t
q2T .

Hence, if t closes to the initial time t = 0, the convergence rate is very slow. Especially, if t = 0 then the regularized
solution may not converge to the exact solution. To improve this point, we suggested another regularized parameter

β = ϵ
pT

q(T+γ ) (in Theorem 3) and obtain the better error than Theorem 2.
2. In Theorem 3, we required the condition on the expansion coefficient um(t) and we consider that the assumption

π
2


∞

m=1 e
2γm2

u2
m(t) < A2

2 does not depend on the function f (x, t). Hence, this condition is acceptable.

2.2. Proof of the main theorem

Proof of Lemma 1. We have

ena

1 + γ enb
=

ena

(1 + γ enb)
a
b (1 + γ enb)1−

a
b

≤
ena

(1 + γ enb)
a
b

≤ γ −
a
b .

This completes the proof of Lemma 1. �

Proof of Lemma 2. From Lemma 1, we obtain

exp

−m2

 t
0 a(s)ds


β + exp


−m2

 T
0 a(s)ds

 ≤


1
β

c(t)

,

where c(t) =

 T
0 a(s)ds−

 t
0 a(s)ds T

0 a(s)ds
.

From (4), we get

F(T ) =

 T

0
a(s)ds ≥

 T

0
pds = pT ,

F(T ) − F(t) =

 T

t
a(s)ds ≤

 T

t
qds = q(T − t).

Then we have

exp

−m2

 t
0 a(s)ds


β + exp


−m2

 T
0 a(s)ds

 ≤


1
β

 q(T−t)
pT

= β
qt
pT −

q
p .

This completes the proof of Lemma 2. �

Proof of Lemma 3. We have

β exp

−m2

 t
0 a(s)ds


β + exp


−m2

 T
0 a(s)ds

 ≤ β


1
β

c(t)

= β1−c(t)

≤ β
pt
qT .

This completes the proof of Lemma 3. �
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Proof of Theorem 1. From uϵ(g) and uϵ(h) as in (5) corresponding to the final values g and h, we get

uϵ(g)(x, t) =

∞
m=1

uϵ
m(g)(t) sin(mx),

uϵ(h)(x, t) =

∞
m=1

uϵ
m(h)(t) sin(mx),

where

uϵ
m(g)(t) =

exp{−m2F(t)}
β + exp{−m2F(T )}

gm −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

β + exp{−m2F(T )}
fm(s)ds,

uϵ
m(h)(t) =

exp{−m2F(t)}
β + exp{−m2F(T )}

hm −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

β + exp{−m2F(T )}
fm(s)ds

and

gm =
2
π

 π

0
g(x) sin(mx)dx,

hm =
2
π

 π

0
h(x) sin(mx)dx,

fm(s) =
2
π

 π

0
f (x, s) sin(mx)dx.

By applying Lemma 2, we obtain the following estimate

∥uϵ(g)(., t) − uϵ(h)(., t)∥2
=

π

2

∞
m=1

uϵ
m(g)(x, t) − uϵ

m(h)(x, t)
2

=
π

2

∞
m=1

 exp{−m2F(t)}
β + exp{−m2F(T )}

(gm − hm)

2
≤ β

2qt
pT −

2q
p ∥g − h∥2 .

Therefore, we get

∥uϵ(g)(., t) − uϵ(h)(., t)∥ ≤ β
qt
pT −

q
p ∥g − h∥ .

This completes the proof of Theorem 1. �

Proof of Theorem 2. From (5), we construct the regularized solution corresponding to the final values gϵ and gex

uϵ(gϵ)(x, t) =

∞
m=1

uϵ
m(gϵ)(x, t) sin(mx),

uϵ(gex)(x, t) =

∞
m=1

uϵ
m(gex)(x, t) sin(mx),

where

uϵ
m(gϵ)(t) =

exp{−m2F(t)}
β(ϵ) + exp{−m2F(T )}

gϵ
m −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

β(ϵ) + exp{−m2F(T )}
fm(s)ds,

uϵ
m(gex)(t) =

exp{−m2F(t)}
β(ϵ) + exp{−m2F(T )}

gex
m −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

β(ϵ) + exp{−m2F(T )}
fm(s)ds.

From Theorem 1, we get

∥uϵ(gϵ)(., t) − uϵ(gex)(., t)∥ ≤ β
qt
pT −

q
p ∥gϵ − gex∥

≤ β
qt
pT −

q
p ϵ. (7)

We get the exact solution of (1)–(3)

u(x, t) =

∞
m=1

um(t) sin(mx), (x, t) ∈ [0, π] × [0, T ],
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where

um(t) =
exp{−m2F(t)}
exp{−m2F(T )}

gm −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

exp{−m2F(T )}
fm(s)ds.

Thus, we have

um(0) = exp{m2F(T )}gm −

 T

0
exp{m2F(s)}fm(s)ds.

Hence, we get

um(t) − uϵ
m(gex)(t) =

exp{−m2F(t)}
exp{−m2F(T )}

gm −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

exp{−m2F(T )}
fm(s)ds

−


exp{−m2F(t)}

β + exp{−m2F(T )}
gm −

 T

t

exp{m2(F(s) − F(t) − F(T ))}

β + exp{−m2F(T )}
fm(s)ds


=

β exp{−m2F(t)}
β + exp{−m2F(T )}


exp{m2F(T )}gm −

 T

t
exp{m2F(s)}fm(s)ds


. (8)

From Lemma 3, we obtainum(t) − uϵ
m(gex)(t)

 ≤
β exp{−m2F(t)}

β + exp{−m2F(T )}

exp{m2F(T )}gm −

 T

t
exp{m2F(s)}fm(s)ds


≤ β

pt
qT

um(0) +

 t

0
exp{m2F(s)}fm(s)ds

 .
Therefore, we have

∥uϵ(gex)(., t) − u(., t)∥2
=

π

2

∞
m=1

uϵ
m(gex)(t) − um(t)

2
≤ β

2pt
qT

π

2

∞
m=1

um(0) +

 t

0
exp{m2F(s)}fm(s)ds

2
≤ β

2pt
qT

π

2

∞
m=1


2 |um(0)|2 + 2

 t

0
exp{m2F(s)}fm(s)ds

2


.

Hence, we obtain

∥uϵ(gex)(., t) − u(., t)∥2

≤ β
2pt
qT π

∞
m=1

|um(0)|2 + β
2pt
qT π

∞
m=1

 T

0

exp{m2F(s)}fm(s)
 ds2

≤ β
2pt
qT π

∞
m=1

|um(0)|2 + 2β
2pt
qT

∞
m=1

 T

0

exp{m2F(s)}
 π

0
f (x, s) sin(mx)dx

 ds2

= β
2pt
qT π

∞
m=1

|um(0)|2 + 2β
2pt
qT

∞
m=1

 T

0

exp{m2F(s)}
 π

0
(ut(x, s) − a(s)uxx(x, s)) sin(mx)dx

 ds2

= 2β
2pt
qT ∥uex(., 0)∥2

+ 2β
2pt
qT

∞
m=1

 T

0

 π

0
exp{m2F(s)} (ut(x, s) − a(s)uxx(x, s)) sin(mx)dx

 ds2

≤ 2β
2pt
qT ∥uex(., 0)∥2

+ 2Tβ
2pt
qT

∞
m=1

 T

0

 π

0

exp{m2F(s)} (ut(x, s) − a(s)uxx(x, s))
 dx2 ds.

Thus, we get

∥uϵ(gex)(., t) − u(., t)∥2
≤ 2β

2pt
qT ∥uex(., 0)∥2

+ 2πTβ
2pt
qT

∞
m=1

 T

0

 π

0

exp{m2F(s)}ut(x, s)

− exp{m2F(s)}a(s)uxx(x, s)
2 dxds
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≤ 2β
2pt
qT ∥uex(., 0)∥2

+ 4πTβ
2pt
qT

∞
m=1

 T

0

 π

0

exp{m2F(s)}ut(x, s)
2

+
exp{m2F(s)}a(s)uxx(x, s)

2 dxds
≤ β

2pt
qT (Q + M), (9)

where

Q = 2 ∥uex(., 0)∥2 ,

M = 4πT
∞

m=1

 T

0

 π

0

exp{m2F(s)}ut(x, s)
2 +

exp{m2F(s)}a(s)uxx(x, s)
2 dxds.

Hence, from (7) and (9), we get

∥uϵ(gϵ)(., t) − u(., t)∥ ≤ ∥uϵ(gϵ)(., t) − uϵ(gex)(., t)∥ + ∥uϵ(gex)(., t) − uex(., t)∥

≤ β
qt
pT −

q
p ϵ + β

pt
qT

Q + M.

Let β(ϵ) = ϵ
p
q , we obtain the estimate

∥uϵ(gϵ)(., t) − u(., t)∥ ≤


ϵ

p
q
 qt

pT −
q
p
ϵ +


ϵ

p
q
 pt

qT 
Q + M

≤ ϵ
t
T + ϵ

p2t
q2T

Q + M

≤ C1ϵ
p2t
q2T ,

where C1 = 1 +
√
Q + M .

This completes the proof of Theorem 2. �

Proof of Theorem 3. From Theorem 1, we get

∥uϵ(gϵ)(., t) − uϵ(gex)(., t)∥ ≤ β
qt
pT −

q
p ∥gϵ − gex∥

≤ β
qt
pT −

q
p ϵ. (10)

From (8), we have

um(t) − uϵ
m(gex)(t) =

β

β + exp{−m2F(T )}
um(t).

Thus, we obtainum(t) − uϵ
m(gex)(t)

 =
β exp{−γm2

}

β + exp{−m2F(T )}
exp{γm2

} |um(t)|

≤ β
γ
qT exp{γm2

} |um(t)| .

Hence, we have

∥uϵ(gex)(., t) − u(., t)∥2
=

π

2

∞
m=1

uϵ
m(gex)(t) − um(t)

2
≤ β

2γ
qT

π

2

∞
m=1

exp{2γm2
} |um(t)|2

≤ β
2γ
qT A2

2. (11)

Thus, from (10) and (11), we get

∥uϵ(gϵ)(., t) − u(., t)∥ ≤ ∥uϵ(gϵ)(., t) − uϵ(gex)(., t)∥ + ∥uϵ(gex)(., t) − u(., t)∥

≤ β
qt
pT −

q
p ϵ + β

γ
qT A2.



T.M. Le et al. / Journal of Computational and Applied Mathematics 237 (2013) 432–441 439

Let β = ϵ
pT

q(T+γ ) , we obtain the estimate

∥uϵ(gϵ)(., t) − u(., t)∥ ≤


ϵ

pT
q(T+γ )

 qt
pT −

q
p

ϵ +


ϵ

pT
q(T+γ )

 γ
qT

A2

= ϵ
t+γ
T+γ + A2ϵ

pγ
q2(T+γ ) .

This completes the proof of Theorem 3. �

3. Numerical experiment

Consider the linear nonhomogeneous parabolic equation with the time-dependent coefficient

ut(x, t) − a(t)uxx(x, t) = f (x, t), (x, t) ∈ [0, π] × (0, 1]

where

a(t) = 2t + 1, f (x, t) = −
sin(t) sin(x)
exp(t2 + t)

. (12)

The exact solution of the equation is

uex(x, t) =
cos(t) sin(x)
exp(t2 + t)

. (13)

Then we obtain

uex(x, 1) = gex(x) =
cos(1) sin(x)

exp(2)
. (14)

From (3), we obtain

uex(x, 1) = gex(x) =
cos(1) sin(x)

exp(2)
. (15)

Let t = 0, from (13), we have

uex(x, 0) = sin(x). (16)
Consider the measured data

gε(x) =


1 + ε


4 exp(4)

π(cos(2) + 1)


gex(x), (17)

then we have

∥gε − gex∥2 = ε


4 exp(4)

π(cos(2) + 1)
∥gex∥2 = ε. (18)

From (5) and (17), we have the regularized solution for the case t = 0

uε(gε)(x, 0) =

∞
m=1

uϵ
m(gϵ)(0) sin(mx),

where

uϵ
m(gϵ)(0) =

1
β(ϵ) + exp{−2m2}

gϵ
m −

 T

t

exp{m2(s2 + s − 2)}
β(ϵ) + exp{−2m2}

fm(s)ds.

We consider ε1 = 10−1, ε2 = 10−5, ε3 = 10−50, ε4 = 10−60, ε5 = 10−100. We get the following table for the case
t = 0.

ε
uεi(gϵi)(., 0) − uex(., 0)


ε1 = 10−1 9.231542e−001
ε2 = 10−5 6.520434e−001
ε3 = 10−50 4.298486e−008
ε4 = 10−60 9.260810e−010
ε5 = 10−100 3.253301e−016

We have the following graphs (Figs. 1 and 2) of the exact solution uex(., t) and the regularized solution uεi(gεi)(., t), i =

1, 2, 3, 4, 5.
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Fig. 1. The exact solution uex(., t) and the regularized solution uεi (gεi )(., t), i = 1, 2.

Fig. 2. The regularized solution uεi (gεi )(., t), i = 3, 4, 5.

Now, the figure can represent visually the exact solution and the regularized solution at initial time t = 0.
Notice that, in Fig. 3, the curve number 0 expressing the exact solution is indistinguishable from the curve number i

expressing the regularized solution corresponding εi, i = 3, . . . , 5.



T.M. Le et al. / Journal of Computational and Applied Mathematics 237 (2013) 432–441 441

Fig. 3. The exact solution and the regularized solution at initial time t = 0.
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