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a b s t r a c t

For large sparse systems of weakly nonlinear equations, based on the separable property
and strong dominance between the linear and the nonlinear terms, Bai and Yang stud-
ied two nonlinear composite iteration schemes called Picard-HSS and nonlinear HSS-like
methods (see [Z.-Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear
systems, Appl. Numer. Math. 59 (12) (2009) 2923–2936]). In this paper, we generalize
these methods and propose a class of generalized nonlinear composite splitting iteration
schemes called Picard-GPHSS and nonlinear GPHSS-like iteration methods, to solve the
large sparse systems of weakly nonlinear equations. We derive conditions for guarantee-
ing the local convergence of these iterative methods and derive some special case of iter-
ative methods by choosing different parameters and preconditioned matrices. Numerical
experiments are used to demonstrate the feasibility and effectiveness. And an efficient pre-
conditioner is presented for the new methods in actual implementation. The efficiency is
effectively testified by some comparisons with numerical results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider the solution of the system of weakly nonlinear equations

Ax = φ(x), or F(x) := Ax − φ(x) = 0, (1.1)

where A ∈ Cn×n is a large, sparse, positive real matrix, and φ : D ⊂ Cn
→ Cn is a continuously differentiable function.

The system of nonlinear equations (1.1) is said to be weakly nonlinear if the linear term Ax is strongly dominant over the
nonlinear term φ(x) in certain norm [1,2].

The systemofweakly nonlinear equations (1.1) often arise inmany areas of scientific computing and engineering applica-
tions, and in particular in discretions of certain nonlinear partial differential equations [3–7], in collocation approximations
of nonlinear integral equation [8], and in saddle point problems from image processing [9,10].

For a general system of nonlinear equations F(x) = 0, the Newton iteration method is the most popular, classic and
important one

F ′(x(k))1x(k) = −F(x(k)), x(k+1)
= x(k) +1x(k),
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where F : D ⊂ Cn
→ Cn is a continuously differentiable function. However, at each iteration step, the Newton method

requires not only the explicit form of the Jacobianmatrix but also the exact solution of the corresponding Newton equations,
which are very costly and complicated in actual application [11,12]. In order to overcome these disadvantages and improve
the efficiency of the Newton iteration method, many variants in terms of approximate, quasi-update, inner/outer or inexact
Newton methods have been established and analyzed. See [2,4,5,13]. By making use of the HSS iteration as the inner solver
for the Newton method, Bai and Guo [14] established a class of Newton-HSS methods for solving large sparse systems of
nonlinear equations with positive definite Jacobian matrices at the solution points.

For the system of weakly nonlinear equations (1.1), Bai [4] established a class of sequential two-stage iteration methods
by taking into account concrete properties of the involved matrix and mapping. Based on the matrix multi-splitting
technique, Bai [15] presented efficient parallel generalizations of the sequential two-stage iteration methods. Furthermore,
Bai and Huang [16] proposed asynchronous multi-splitting two-stage iteration methods. These asynchronous methods
have the potentials of converging much faster than their synchronous counterparts in [15], especially when there is load
imbalance. Moreover, based on the fact that the linear and the nonlinear terms Ax and φ(x) are well separated and the
former is strongly dominant over the latter, Bai and Yang [2] presented the Picard-HSS and the nonlinear HSS-like iteration
methods, and Zhu and Zhang [17] presented the Picard-CSCS and the nonlinear CSCS-like iteration methods for the special
case when A is a Toeplitz matrix, for weakly nonlinear systems whose linear terms are positive definite.

In this paper, tomake thesemethods in [2] more attractive, we establish two new nonlinear composite splitting iteration
schemes, namely, Picard-GPHSS and nonlinear GPHSS-like iterationmethods respectively, for solving the large scale system
of weakly nonlinear equations (1.1).

The remainder of the paper is organized as follows. In Section 2 we review the HSS and GPHSS iteration methods for
the non-Hermitian positive definite linear systems. In Section 3, we establish the Picard-GPHSS and nonlinear GPHSS-
like iteration methods and discuss their convergence properties. In Section 5, by choosing different preconditioned matrix
and parameters, we derive several existing and new iterative methods. Numerical examples are given to illustrate the
effectiveness of the new iteration methods in Section 6. Finally, in Section 7 we draw a brief conclusion.

2. The HSS and GPHSS iteration methods

When the nonlinear mapping φ : D ∈ Cn
→ Cn is a constant vector, i.e., φ(x) = b, the system of weakly nonlinear

equations (1.1) reduces to the system of linear equations

Ax = b, A ∈ Cn×n and x, b ∈ Cn. (2.1)

To solve the linear system (2.1) iteratively, efficient splitting of the coefficientmatrix A is required [18–20]. Since amatrix
A naturally possesses a Hermitian and skew-Hermitian splitting (HSS) A = H + S,

H =
1
2
(A + A∗) and S =

1
2
(A − A∗). (2.2)

Bai [21] presented theHSS iterationmethod and proved that for any positiveα theHSSmethod converges unconditionally to
the unique solution of the non-Hermitian positive definite system of linear equations (2.1). This method has caught people’s
great attention in recent years; see [21–24].
The HSS iteration method. ([21]) Given an initial guess x(0) ∈ Cn, compute x(k+1) for k = 0, 1, 2, . . . using the following
iteration scheme until {x(k)} satisfies the stopping criterion:(αI + H)x


k+ 1

2


= (αI − S)x(k) + b,

(αI + S)x(k+1)
= (αI − H)x


k+ 1

2


+ b,

(2.3)

where α is a given positive constant and I denotes the identity matrix.
Based on the HSS and preconditioned HSS methods, Yang, et al. [25] presented a generalized preconditioned Hermitian

and skew-Hermitian splitting (GPHSS) iteration method and studied its convergence property. This method is described as
follows.
The GPHSS iteration method. ([25]) Given an initial guess x(0) ∈ Cn, compute x(k+1) for k = 0, 1, 2, . . . using the following
iteration scheme until {x(k)} satisfies the stopping criterion:(αP + H)x


k+ 1

2


= (αP − S)x(k) + b,

(βP + S)x(k+1)
= (βP − H)x


k+ 1

2


+ b,

(2.4)

where α is a nonnegative constant, β is a positive constant, and P is a Hermitian positive definite matrix.
The GPHSS method is actually a two-parameter two-step iteration method. It becomes the PHSS method when α = β .

And HSS method is obviously a special case when α = β and P = I [25].
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3. The new iteration methods

3.1. The Picard-GPHSS iteration method

The linearization is a traditional strategy for solving systems of nonlinear equations. Based on the separability and strong
dominance between the linear term Ax and the nonlinear term φ(x) of the weakly nonlinear system (1.1), following [2] we
can use the Picard iteration method

Ax(k+1)
= φ(x(k)), k = 0, 1, 2, . . .

to solve the system of weakly nonlinear equations (1.1).
At each Picard iteration step, we need to solve a linear system. Applying the HSS or GPHSS iteration method to solve

these linear systems, the next iterate x(k+1) may be approximately computed. This naturally leads to the inexact Picard
iteration methods called Picard-HSS and Picard-GPHSS iteration methods. The former is established by Bai and Yang in [2].
The Picard-GPHSS iteration method is algorithmically described as follows.
The Picard-GPHSS iteration method. Let φ : D ⊂ Cn

→ Cn be a continuously differentiable function and A ∈ Cn×n be a
positive definite matrix, with H =

1
2 (A + A∗), S =

1
2 (A − A∗) be the Hermitian and skew-Hermitian parts of A respectively.

Given an initial guess x(0) ∈ D and a sequence {lk}∞k=0 of positive integers, compute x(k+1) for k = 0, 1, 2, . . . using the
following iteration scheme until {x(k)} satisfies the stopping criterion:

(a) x(k,0) := x(k);
(b) for l = 0, 1, 2, . . . , lk − 1, solve the following linear systems to obtain x(k,l+1):(αP + H)x


k,l+ 1

2


= (αP − S)x(k,l) + φ(x(k)),

(βP + S)x(k,l+1)
= (βP − H)x


k,l+ 1

2


+ φ(x(k)),

(3.1)

where α is a nonnegative constant, β is a positive constant, and P is a Hermitian positive definite matrix.
(c) x(k+1)

:= x(k,lk);
Note that the Picard-GPHSS iterationmethod becomes the Picard-PHSSmethodwhenα = β . And the Picard-HSSmethod

is obviously a special case when α = β and P = I .
Now, we consider the local convergence of the Picard-GPHSS iteration method.
Based on the iteration scheme of Picard-GPHSS, the (k + 1)-th Picard-GPHSS iterate x(k+1) can be expressed:

x(k+1)
= T (α, β)lkx(k) +

lk−1
j=0

T (α, β)jG(α, β)φ(x(k)), k = 0, 1, 2, . . . , (3.2)

where T (α, β) = (βP + S)−1(βP − H)(αP + H)−1(αP − S) and G(α, β) = (α + β)(βP + S)−1(αP + H)−1.
Suppose x∗

∈ D is a solution of the system of weakly nonlinear equations (1.1), then

x∗
= T (α, β)lkx∗

+

lk−1
j=0

T (α, β)jG(α, β)φ(x∗). (3.3)

Thus

x(k+1)
− x∗

= T (α, β)lk(x(k) − x∗)+

lk−1
j=0

T (α, β)jG(α, β)[φ(x(k))− φ(x∗)].

By utilizing the R-convergence and similar arguments of Theorem 3.1 in [2], we obtain the following local convergence
theory for the Picard-GPHSS iteration method.

Theorem 3.1. Let φ : D ⊂ Cn
→ Cn be G-differentiable on an open neighborhood N0 ⊂ D of a point x∗

∈ D at which φ′(x) is
continuous and F(x∗) := Ax∗

− φ(x∗) = 0. Suppose H =
1
2 (A+ A∗), S =

1
2 (A− A∗) are the Hermitian and the skew-Hermitian

parts of the matrix A respectively. Denote by

µ(α, β) = ∥T (α, β)∥ = ∥(βP + S)−1(βP − H)(αP + H)−1(αP − S)∥, ω = ∥A−1φ′(x∗)∥.

Then there exists an open neighborhood N ⊂ N0 of x∗ such that for any x(0) ∈ N and any sequence of positive integers lk, k =

0, 1, 2, . . . , the iteration sequence {x(k)}∞k=0 generated by the Picard-GPHSS iteration method is well-defined and convergent to
x∗, provided that l0 ≥ ⌊ln( 1−ω1+ω )/ ln(µ(α, β))⌋ (where ⌊·⌋ is used to denote the smallest integer no less than the corresponding
real number). Moreover, it holds that

lim sup
k→∞

∥x(k) − x∗
∥

1
k ≤ ω + (1 + ω)µ(α, β)l0 , l0 = lim inf

k→∞

lk;
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in particular, if limk→∞ lk = ∞, then the rate of convergence is R-linear, with the R-factor being at most ω, i.e.,

lim sup
k→∞

∥x(k) − x∗
∥

1
k ≤ ω.

Proof. The proof uses arguments similar to those in proof of the convergence Theorem of the Picard-HSS iteration method
in [2]. �

Theorem 3.1 shows that the convergence rate of the Picard-GPHSS iteration is essentially determined by the quantities
ω and µ(α, β). Usually, small ω and µ(α, β) will lead to fast convergence of the Picard-GPHSS iteration. For a system of
weakly nonlinear equations having an ill-conditionedmatrix A ∈ Cn×n, µ(α, β) is close to 1 and the Picard-GPHSS iteration
will converge very slowly even for reasonably large numbers of inner iteration steps, which is the same as the Picard-HSS.
But the convergence rate of the Picard-GPHSS iteration could be accelerated through choosing iteration parameters and
preconditioned matrix.

3.2. The nonlinear GPHSS-like iteration method

Since the Picard-GPHSS and the Picard-HSS iteration methods share the same drawback, that is the numbers of the inner
iteration steps lk, k = 0, 1, 2, . . ., are often problem-dependent and difficult to be determined in actual computations,
following [2] we propose the following nonlinear GPHSS-like iteration method to overcome the above disadvantage.

The GPHSS-like iteration method. Let φ : D ⊂ Cn
→ Cn be a continuously differentiable function and A ∈ Cn×n be a positive

definite matrix, with A = H + S,H and S be the Hermitian and skew-Hermitian parts of A, respectively. Given an initial
guess x(0) ∈ D, compute x(k+1) for k = 0, 1, 2, . . . using the following iteration scheme until {x(k)} satisfies the stopping
criterion:

(αP + H)x

k+ 1

2


= (αP − S)x(k) + φ(x(k)),

(βP + S)x(k+1)
= (βP − H)x


k+ 1

2


+ φ


x

k+ 1

2


,

(3.4)

where α is a nonnegative constant, β is a positive constant and P is a Hermitian positive definite matrix.
In the following we deduce the convergence property for the nonlinear GPHSS-like iteration method. We define

U(x) = (αP + H)−1((αP − S)x + φ(x)),
V (x) = (βP + S)−1((βP − H)x + φ(x))

(3.5)

and

ψ(x) = V ◦ U(x) := V (U(x)).

Then the nonlinear GPHSS-like iteration scheme can be equivalently expressed as

x(k+1)
= ψ(x(k)), k = 0, 1, 2, . . . .

Suppose x∗
∈ D is a solution of the system of weakly nonlinear equations (1.1), we can easily verify the following fact by

using the derivative chain rule

ψ ′(x∗) = V ′(x∗)U ′(x∗)

= (βP + S)−1(βP − H + φ′(x∗)) (αP + H)−1(αP − S + φ′(x∗)).

By making use of the Ostrowski Theorem, i.e., Theorem 10.1.3 in [3], we know that if ρ(ψ ′(x∗)) < 1, then x∗ is a point of
attraction of the nonlinear GPHSS-like iteration. Then we can obtain the following local convergence theory for the GPHSS-
like iteration method.

Theorem 3.2. Assume that φ : D ⊂ Cn
→ Cn is F-differentiable at a point x∗

∈ D such that Ax∗
= φ(x∗). Suppose A = H + S,

where H and S are the Hermitian and the skew-Hermitian parts of the matrix A, respectively. Denote by

T (α, β; x∗) = (βP + S)−1(βP − H + φ′(x∗)) (αP + H)−1(αP − S + φ′(x∗)).

If spectral radius ρ(T (α, β; x∗)) < 1, then x∗
∈ D is a point of attraction of the nonlinear GPHSS-like iteration.

Now we give a sufficient condition for guaranteeing the validity of ρ(T (α, β; x∗)) < 1.
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Corollary 3.3. Assume that the conditions of Theorem 3.2 are satisfied. Denote by

δ = max{∥φ′(x∗)(βP + S)−1
∥2, ∥φ′(x∗)(αP + H−1)∥2},

a = max
σi∈σ(P−1S)


α2 + σ 2

i
β2 + σ 2

i

, b = max
λi∈λ(P−1H)

β − λi

α + λi

 ,
where λ(P−1H) is the spectral set of P−1H and σ(P−1S) is the singular-value set of P−1S. Then ρ(T (α, β; x∗)) < 1 holds,
provided that

δ <
2(1 − ab)

(a + b)+

(a − b)2 + 4

. (3.6)

Proof. By straightforward computations we have

(βP + S)T (α, β; x∗)(βP + S)−1
= (βP + S)T (α, β)(βP + S)−1

+ (βP − H)(αP + H)−1φ′(x∗)(βP + S)−1

+φ′(x∗)(αP + H)−1(αP − S)(βP + S)−1

+φ′(x∗)(αP + H−1)φ′(x∗)(βP + S)−1,

where

T (α, β) = (βP + S)−1(βP − H)(αP + H)−1(αP − S),

and

∥T (α, β)∥ ≤ ∥(αP − S)(βP + S)−1
∥ ∥(βP − H)(αP + H)−1

∥

≤ max
σi∈σ(P−1S)


α2 + σ 2

i
β2 + σ 2

i

max
λi∈λ(P−1H)

β − λi

α + λi

 = ab.

Hence,

∥T (α, β; x∗)∥ = ∥(βP + S)T (α, β; x∗)(βP + S)−1
∥

≤ ∥(βP + S)T (α, β)(βP + S)−1
∥ + ∥(βP − H)(αP + H)−1φ′(x∗)(βP + S)−1

∥

+ ∥φ′(x∗)(αP + H)−1(αP − S)(βP + S)−1
∥ + ∥φ′(x∗)(αP + H)−1φ′(x∗)(βP + S)−1

∥

≤ ∥T (α, β)∥ + ∥(βP − H)(αP + H)−1
∥ ∥φ′(x∗)(βP + S)−1

∥

+ ∥φ′(x∗)(αP + H)−1
∥ ∥(αP − S)(βP + S)−1

∥ + ∥φ′(x∗)(αP + H)−1
∥ ∥φ′(x∗)(βP + S)−1

∥

≤ ab + (a + b)δ + δ2.

Now, under the condition (3.6), we have ρ(T (α, β; x∗)) ≤ ∥T (α, β; x∗)∥ < 1. �

Corollary 3.3 shows that ρ(T (α, β; x∗)) < 1 is valid if φ′(x∗) is reasonably small compared with the matrix A. Otherwise,
the nonlinear GPHSS-like iteration may be convergent slowly or even divergent. Thus, the optimal parameters and suitable
preconditioner are required.

4. Optimal parameters

Having studied the convergence properties of the Picard-GPHSS and nonlinear GPHSS-like iteration in the previous
section, we find that the convergent speed of iteration methods depends essentially on two factors: (1) weakly nonlinearity
of the weakly nonlinear systems and (2) finding the optimal parameters to guarantee the spectral radius of the iteration
matrix is less than 1. As the former is problem-dependent, we consider the latter in the following part.

We note that matrices αP + H and βP + S are nonsingular for any nonnegative constant α and positive constant β , one
can obtain the iteration matrix of the GPHSS method as follows:

T (α, β) = (βP + S)−1(βP − H)(αP + H)−1(αP − S).

The spectral radius of the iteration matrix T (α, β) satisfies clearly,

ρ(T (α, β)) = ρ((βP + S)−1(βP − H)(αP + H)−1(αP − S))
≤ ∥T (α, β)∥ ≤ ∥(αP − S)(βP + S)−1

∥ ∥(βP − H)(αP + H)−1
∥

≤ max
λi∈λ(P−1H)

β − λi

α + λi

 max
σi∈σ(P−1S)


α2 + σ 2

i
β2 + σ 2

i

:= v(α, β),



Z.-N. Pu, M.-Z. Zhu / Journal of Computational and Applied Mathematics 250 (2013) 16–27 21

and

(ᾱ, β̄) = argmin
α,β

{v(α, β)}.

Apparently, v(α, β) defines an upper bound of the contraction factor of the GPHSS iteration whose convergent speed
depends essentially on the choice of the two-parameters α and β . Consequently, we need the properties of the function
v(α.β)with respect to the two-parameters.

Theorem 4.1 ([25]). Denote

λmax = max
λk∈P−1H

{λk}, λmin = min
λk∈P−1H

{λk}, emax = max
iej∈P−1S

{|ej|}, emin = min
iej∈P−1S

{|ej|},

with i =
√

−1. The function v(α, β) has its minimum on a curve

β = β∗(α) =
α(λmax + λmin)+ 2λmaxλmin

2α + λmax + λmin
∈ [λmin, λmax].

And the optimal parameters are given by

(ᾱ, β̄) =

(α1, β
∗(α1)), λmaxλmin ≤ e2min,

(α0, β
∗(α0)), e2min < λmaxλmin ≤ e2max,

(α2, β
∗(α2)), λmaxλmin ≥ e2max,

(4.1)

with

α0 =


λmaxλmin,

α1 =

−(λmaxλmin − e2min)+


(e2min + λ2max)(e

2
min + λ2min)

λmax + λmin
,

α2 =

−(λmaxλmin − e2max)+


(e2max + λ2max)(e2max + λ2min)

λmax + λmin
.

The minimum value at the optimal parameters is

σ(ᾱ, β̄) =

σ(α1), λmaxλmin ≤ e2min,

σ (α0), e2min < λmaxλmin ≤ e2max,

σ (α2), λmaxλmin ≥ e2max,

where

σ(α) := σ(α, β∗(α)) =


β∗(α)− λmin

α + λmin


α2 + e2min

β∗(α)2 + e2min
, α > α0,

β∗(α)− λmin

α + λmin


α2 + e2max

β∗(α)2 + e2max
, α ≤ α0.

In Theorem 4.1, the optimal parameters ᾱ and β̄ minimize only the simplified upper bound v(α, β) of the spectral radius.
However, one usually cannot expect tominimize the spectral radii of iterationmatrices with these optimal parameters [25].

5. Several algorithms

By choosing preconditioned matrix P and the iteration parameters α, β , we can easily get the following special cases of
the Picard-GPHSS and the nonlinear GPHSS-like methods to solve the system of weakly nonlinear equations (1.1).

Case I: If P = I and α = β , then the Picard-GPHSS and the nonlinear GPHSS-like methods reduce to the Picard-HSS and
the nonlinear HSS-likemethods respectively. They are presented by Bai and Yang in [2] and can be algorithmically described
as follows.

Algorithm 5.1 ([2]). The Picard-HSS iteration method(αI + H)x

k,l+ 1

2


= (αI − S)x(k,l) + φ(x(k)),

(αI + S)x(k,l+1)
= (αI − H)x


k,l+ 1

2


+ φ(x(k)).

(5.1)



22 Z.-N. Pu, M.-Z. Zhu / Journal of Computational and Applied Mathematics 250 (2013) 16–27

Algorithm 5.2 ([2]). The nonlinear HSS-like iteration method
(αI + H)x


k+ 1

2


= (αI − S)x(k) + φ(x(k)),

(αI + S)x(k+1)
= (αI − H)x


k+ 1

2


+ φ


x

k+ 1

2


.

(5.2)

Case II: If P = I and α ≠ β , then the Picard-GPHSS and the nonlinear GPHSS-like methods reduced to Picard-AHSS and
nonlinear AHSS-like methods presented in [26], respectively.

Algorithm 5.3 ([26]). The Picard-AHSS iteration method(αI + H)x

k,l+ 1

2


= (αI − S)x(k,l) + φ(x(k)),

(βI + S)x(k,l+1)
= (βI − H)x


k,l+ 1

2


+ φ(x(k)).

(5.3)

Algorithm 5.4 ([26]). The nonlinear AHSS-like iteration method
(αI + H)x


k+ 1

2


= (αI − S)x(k) + φ(x(k)),

(βI + S)x(k+1)
= (βI − H)x


k+ 1

2


+ φ


x

k+ 1

2


.

(5.4)

In this case, if the iteration parameter α = 0, then the Picard-AHSS and nonlinear AHSS-like iteration methods become
single-parameter iteration methods given in [27], which are called Picard-LHSS and nonlinear LHSS-like methods respec-
tively.

Case III: If P ≠ I and α = β , then the Picard-GPHSS and the nonlinear GPHSS-like methods give the following new
iteration methods, which are called Picard-PHSS and nonlinear PHSS-like methods respectively.

Algorithm 5.5. The Picard-PHSS iteration method(αP + H)x

k,l+ 1

2


= (αP − S)x(k,l) + φ(x(k)),

(αP + S)x(k,l+1)
= (αP − H)x


k,l+ 1

2


+ φ(x(k)).

(5.5)

Algorithm 5.6. The nonlinear PHSS-like iteration method
(αP + H)x


k+ 1

2


= (αP − S)x(k) + φ(x(k)),

(αP + S)x(k+1)
= (αP − H)x


k+ 1

2


+ φ


x

k+ 1

2


.

(5.6)

Furthermore, it is noteworthy that through the selection of various preconditioned matrices, not only can different
iterationmethods bemade available, but also the convergence rate of iterationmethods can be accelerated. A natural choice
of the preconditioned matrix P is P = H , which is developed by Bertaccini etc. in [28].

6. Numerical results

In this section, we will give several numerical experiments to illustrate the effectiveness of our methods and to make
a further demonstration of the advantage of the Picard-GPHSS and the nonlinear GPHSS-like methods over the Picard-HSS
and the nonlinear HSS-like iteration methods.

The problem under consideration is the classical three-dimensional convection–diffusion equation
−(uxx + uyy + uzz)+ q(ux + uy + uz) = sin(u + 1), (x, y, z) ∈ Ω,
u(x, y, z) = 0, (x, y, z) ∈ ∂Ω,

(6.1)

on the unit cubeΩ = [0, 1] × [0, 1] × [0, 1], and q is a positive constant coefficient used to measure the magnitude of the
convective terms. Applying the seven-point finite difference and assuming that the numbers (N) of grid points in all three
directions are the same, we obtain the system of weakly nonlinear equations of the form (1.1), where n = N3, and for details
to [21,29,30]. Different q and N result in different matrix A.
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Table 1
The optimal parameters of iteration for the convection–diffusion equation
(N = 4).

q HSS AHSS GPHSS
α α β α β

0 3.5267 0 9.7526 0 1
1 3.5267 0 9.7526 0 1

10 3.5267 0.0039 9.7527 0.0039 1
50 3.5267 0.0966 9.7536 0.0983 1

100 3.5267 0.3864 9.7565 0.3933 1
500 3.5267 9.6146 9.8027 2.6196 1

Table 2
The optimal parameters of iteration for the convection–diffusion equation
(N = 8).

q HSS AHSS GPHSS
α α β α β

0 0.7019 0 11.2802 0 1
1 0.7019 0 11.2802 0 1

10 0.7019 0.0001 11.2802 0.0005 1
50 0.7019 0.0033 11.2802 0.012 1

100 0.7019 0.0133 11.2802 0.0478 1
500 0.7019 0.3314 11.2802 1 1

In our numerical experiments, we use the zeros vector as the initial guess and stop the iteration as soon as

∥F(x(k))∥2

∥F(x(0))∥2
≤ 10−6.

Meanwhile, the stopping criteria for the inner iterations of the Picard-HSS and the Picard-GPHSS methods are set to be

∥F ′(x(k))s(k,lk) + F(x(k))∥2

∥F(x(k))∥2
≤ ηk

where lk is the number of the inner iteration steps and ηk is the prescribed tolerance for controlling the accuracy of the
inner iterations at the k-th outer iterate. If ηk is fixed for all k, then it is simply denoted by η. The two sub-systems of linear
equations are solved in the way if Ax = b, then x = A−1b.

The Picard-GPHSS and the nonlinear GPHSS-like methods are compared with the Picard-HSS and the nonlinear HSS-like
methods for different problem sizes N (N = 4, 8) and tolerance η = 0.1, 0.01, 0.001, from aspects of numbers of outer,
inner and total iteration steps (denoted as ITout, ITint and IT, respectively) and total CPU time (denoted as CPU). To this end,
we need to choose an suitable preconditioner. The considered preconditioner used in our methods is P = H developed
in [28].

In our implementations, we adopt the optimal parameters α∗
=

√
λminλmax given in [21] for the Picard-HSS and the

nonlinear HSS-like methods and adopt the optimal parameters α∗, β∗ given in Theorem 4.1 for the Picard-GPHSS and
the nonlinear GPHSS-like iteration methods. See Tables 1–2. Admittedly, the optimal parameters α∗ and β∗ are crucial
for guaranteeing fast convergence speeds of these parameter-dependent iteration methods, but they are often problem-
dependent and are generally difficult to be determined [2].

In Tables 3–4, we list the numerical results corresponding to six choices of the q, i.e., q = 0, 1, 10, 50, 100, 500. From
these tables, we see that all experimented methods (i.e., the Picard-HSS, the nonlinear HSS-like, the Picard-AHSS, the non-
linear AHSS-like, the Picard-GPHSS and the nonlinear GPHSS-likemethods) can successfully produce approximate solutions
to the system of weakly nonlinear equations for all of the matrix dimensions (i.e., n = 43 and n = 83).

When the tolerance η for controlling the accuracy of the inner iterations becomes small and N is fixed, the number of
inner iteration steps, the amount iteration steps and the amount of CPU time of all iteration methods increase, but the
numbers of outer iteration steps are fixed or slightly increase. In general, the Picard-GPHSS iteration method is doing better
than the Picard-HSS iteration method.

With the increase in parameter q, the number of outer iteration steps are fixed and decrease slightly; the number of
inner iteration steps and the total iteration steps of the Picard-HSS and the Picard-GPHSS iterations decrease, but that of the
Picard-AHSS iterations increase. The total CPU time increases. The Picard-GPHSS and the nonlinear GPHSS-like methods are
more robust than the other iteration methods.

When the matrix dimension N increases, the numbers of outer iteration steps are fixed or increase slightly, but the
numbers of inner iteration steps increase quickly, so the total iteration steps also increase. And the amount of total CPU
time of all iteration methods increases quickly.
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Table 3
The numbers of iteration and the total times for the convection–diffusion equation (N = 4).

η Iteration q = 0 q = 1 q = 10 q = 50 q = 100 q = 500

10−3 Picard-HSS ITout 4 4 4 4 4 3
ITint 11 11 11 10 9 8
IT 44 44 44 40 36 24
CPU 0.0147 0.0176 0.0057 0.0066 0.0071 0.0147

Picard-AHSS ITout 4 4 4 4 4 3
ITint 1 2 3 5 7 8
IT 4 8 12 20 28 24
CPU 0.0013 0.0044 0.0041 0.0047 0.0052 0.0058

Picard-GPHSS ITout 4 4 4 4 4 3
ITint 1 1 1 1 1 1
IT 4 4 4 4 4 3
CPU 0.0028 0.0039 0.0036 0.0036 0.0034 0.0045

10−2 Picard-HSS ITout 4 4 4 4 4 3
ITint 7 7 7 7 6 6
IT 28 28 28 28 24 18
CPU 0.0207 0.0047 0.0055 0.0044 0.0084 0.0212

Picard-AHSS ITout 4 4 4 4 4 3
ITint 1 1 2 3 5 6.3333
IT 4 4 8 12 20 19
CPU 0.0017 0.0038 0.0039 0.0042 0.0064 0.0057

Picard-GPHSS ITout 4 4 4 4 4 3
ITint 1 1 1 1 1 1
IT 4 4 4 4 4 3
CPU 0.0022 0.0034 0.0036 0.0036 0.0039 0.0044

10−1 Picard-HSS ITout 6 6 6 6 6 5
ITint 4 4 4 4 3 3
IT 24 24 24 24 18 15
CPU 0.0059 0.0088 0.0051 0.0046 0.0134 0.0168

Picard-AHSS ITout 4 4 5 4 4 6
ITint 1 1 1 2 3 3
IT 4 4 5 8 12 18
CPU 0.0019 0.0037 0.0037 0.0042 0.0054 0.0055

Picard-GPHSS ITout 4 4 4 4 4 3
ITint 1 1 1 1 1 1
IT 4 4 4 4 4 3
CPU 0.0025 0.0034 0.0036 0.0036 0.0047 0.0052

Like-HSS IT 21 21 21 20 17 14
CPU 0.0029 0.0051 0.0055 0.0055 0.0066 0.0049

Like-AHSS IT 4 4 5 9 13 16
CPU 0.0015 0.0035 0.0036 0.0042 0.0074 0.0051

Like-GPHSS IT 2 2 2 3 3 3
CPU 0.0032 0.0031 0.0033 0.0033 0.0053 0.0036

On the whole, in terms of iteration step, the nonlinear GPHSS-like method and the Picard-GPHSS perform better than the
nonlinear HSS-like and the Picard-HSS iteration methods. In terms of CPU time, the situation is almost the same. Therefore,
the nonlinear GPHSS-like method and the Picard-GPHSS method are the winners for solving this test problem.

To this end, the nonlinear two-point boundary-value problem with a convective dominated term in one-dimensional
setting was to be considered to further prove the outstanding performances of the Picard-GPHSS and the nonlinear GPHSS-
like iteration methods:−ε

d2u
dx2

+ b(x)
du
dx

= f (u, x), x ∈ (0, 1),

u(0) = u(1) = 0,
(6.2)

where ε = 1, b(x) = 1000 and f (u, x) = sin(u). This problem (6.2) is singularly perturbed [31,32]. Here, the large sys-
tem (1.1) is generated by applying the central difference formula to approximate the second order derivation d2u

dx2
, and the

backward difference formula to approximate the first order derivation du
dx , with the step size1x = 1/(m+1), xj = j1x [17].

The Picard-GPHSS and the nonlinear GPHSS-like methods are compared with the following seven methods from aspects
of numbers of outer, inner and total iteration steps and total CPU time, namely, the Picard-HSS, Picard-AHSS, Picard-CSCS,
nonlinear HSS-like, nonlinear AHSS-like, nonlinear CSCS-like and Newton-GMRES iteration methods. The preconditioner
used in our methods is also P = H . The optimal parameters of iteration methods were listed in Table 5. And the numerical
results corresponding to η = 0.1 were listed in Table 6. A ‘‘1000+’’ means that convergence was not attained after 1000
iterations.
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Table 4
The numbers of iteration and the total times for the convection–diffusion equation (N = 8).

η Iteration q = 0 q = 1 q = 10 q = 50 q = 100 q = 500

10−3 Picard-HSS ITout 4 4 4 4 4 4
ITint 19.75 19.75 19.75 19.75 19 13
IT 79 79 79 79 76 52
CPU 0.6761 0.7002 0.7634 0.6221 0.6139 0.5518

Picard-AHSS ITout 4 4 4 4 4 4
ITint 1 2 2 3 4 13.5
IT 4 8 8 12 16 54
CPU 0.0926 0.3119 0.3049 0.3067 0.3192 0.4144

Picard-GPHSS ITout 4 4 4 4 4 4
ITint 1 1 1 1 1 1
IT 4 4 4 4 4 4
CPU 0.1894 0.2982 0.2891 0.2844 0.2869 0.2858

10−2 Picard-HSS ITout 4 4 4 4 4 4
ITint 13 13 13 13 13 8.25
IT 52 52 52 52 52 33
CPU 0.5917 0.6844 0.5447 0.5464 0.5467 0.4935

Picard-AHSS ITout 4 4 4 4 4 4
ITint 1 1 2 2 3 8.5
IT 4 4 8 8 12 34
CPU 0.0887 0.3757 0.2892 0.2984 0.311 0.3645

Picard-GPHSS ITout 4 4 4 4 4 4
ITint 1 1 1 1 1 1
IT 4 4 4 4 4 4
CPU 0.1784 0.4855 0.2859 0.2869 0.2862 0.2856

10−1 Picard-HSS ITout 7 7 7 6 6 6
ITint 6.8571 6.8571 6.8571 6.8333 6.8333 4.3333
IT 48 48 48 41 41 26
CPU 0.6144 0.561 0.5346 0.5135 0.5148 0.4738

Picard-AHSS ITout 4 4 4 6 4 6
ITint 1 1 1 1 2 4.8333
IT 4 4 4 6 8 29
CPU 0.0913 0.2598 0.2807 0.2928 0.2988 0.3572

Picard-GPHSS ITout 4 4 4 4 4 4
ITint 1 1 1 1 1 1
IT 4 4 4 4 4 4
CPU 0.2422 0.2885 0.287 0.2841 0.2889 0.3024

Like-HSS IT 40 40 40 39 38 24
CPU 0.1786 0.3712 0.3807 0.3804 0.3811 0.3454

Like-AHSS IT 4 4 4 6 8 27
CPU 0.1598 0.2914 0.2823 0.2919 0.3041 0.3516

Like-GPHSS IT 2 2 2 2 3 3
CPU 0.2167 0.3104 0.282 0.2803 0.2869 0.2838

Table 5
The optimal parameters of iteration for the nonlinear two-point
boundary-value problem (6.2).

m HSS AHSS GPHSS(P = H) CSCS
α α β α β α

20 0.2981 0.0444 0 0.0032 3.5754 0.0540
40 0.1531 0.0117 0 0.0001 3.8906 0.0073
80 0.0776 0.0030 0 0 3.9721 0.0009

160 0.0390 0.0008 0 0 3.9930 0.0001
320 0.0196 0.0002 0 0 3.9982 0

From Table 6, we see that the Picard-GPHSS and nonlinear GPHSS-like iteration methods do better and are superior to
the other methods. With the increase in matrix dimension N , the numbers of outer iteration steps of all iteration methods
except for the Newton-GMRES are fixed and increase slightly; the numbers of inner iteration steps and the total iteration
steps of the iteration methods such as the Picard-AHSS, Picard-CSCS and Picard-GPHSS decrease, but that of the Picard-
HSS and Newton-GMRES methods increase. The total CPU time increases. And the Picard-GPHSS and nonlinear GPHSS-like
iteration methods are more robust to other iteration methods.

Since the special Toeplitz structures of the coefficient matrix A is involved, the nonlinear CSCS-like iteration method is
more efficient when m = 160 and 320. However, the worst shortcoming of nonlinear CSCS-like iteration method is can be
applied only to the Toeplitz systems of weakly nonlinear equations [17].
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Table 6
The numbers of iteration and the total times for the nonlinear two-point boundary-value problem (η = 0.1).

Iteration m = 20 m = 40 m = 80 m = 160 m = 320

Picard-HSS ITout 8 9 9 9 9
ITint 14.125 29.8889 59.6667 117.4 234.8
IT 113 269 537 1057 2113
CPU 0.0031 0.0117 0.0347 0.4750 3.9598

Picard-AHSS ITout 7 7 7 7 7
ITint 21.7143 10.1429 5.1429 4 3
IT 152 71 36 28 21
CPU 0.0028 0.0024 0.0049 0.0247 0.1314

Picard-GPHSS ITout 6 6 6 6 6
ITint 3 2 1 1 1
IT 18 12 6 6 6
CPU 0.0010 0.0012 0.0033 0.0193 0.1072

Picard-CSCS ITout 1 1 1 1 1
ITint 484 279 202 162 136
IT 484 279 202 162 136
CPU 0.0075 0.0066 0.0145 0.0753 0.3031

Newton-GMRES ITout 9 25 66 257 1000+
ITint 4 8 10 10 10
IT 36 200 660 2570 10000+
CPU 0.0419 0.1681 0.6044 3.1128 39.5089

Like-HSS IT 91 198 394 783 1000+
CPU 0.0042 0.0141 0.041 0.4143 2.1578

Like-AHSS IT 131 51 22 12 9
CPU 0.0057 0.0034 0.0046 0.0188 0.1041

Like-GPHSS IT 13 7 6 6 6
CPU 0.0010 0.0023 0.0034 0.0176 0.1228

Like-CSCS CPU 22 11 8 6 5
CPU 0.0029 0.0021 0.0033 0.0077 0.0415

7. Concluding remarks

For large scale systems of weakly nonlinear equations, we have established the Picard-GPHSS and the nonlinear GPHSS-
like iteration methods and reduced some existing and new iteration methods which are special case of our methods.
Numerical examples show that the new iterationmethods with suitable preconditioner are feasible and efficient. Moreover,
these newmethods often do better than the Newton-GMRES, Picard-HSS, Picard-CSCS, nonlinear HSS-like and the nonlinear
HSS-like methods in our implementations.
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