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a b s t r a c t

In this work, we develop a continuous-time GARCH(1, 1) (COGARCH(1, 1)) model driven by
aNIG-Lévy process in order to analyze the volatility characteristics of Turkish interest rates.
To our knowledge, this is the first work considering NIG-COGARCH modeling of interest
rate data that utilizes the indirect inferencemethod for parameter estimation. The discrete-
time GARCH(1, 1) model has been used as a skeleton for building the NIG-COGARCH(1, 1)
model. Daily interest rates on the Turkish two-year maturity treasury bond for the period
between 02/01/2006 and 31/12/2010 have been used for the analysis. The empirical results
show that the NIG-COGARCH(1, 1)model successfully captures the volatility clustering and
heavy-tailed behavior of the interest rate returns and yields better in-sample estimations
for conditional volatility in terms of forecast error statistics than the discrete-time model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

There has been a massive amount of study dealing with the stochastic modeling of interest rate movements. The first
approach to specify the interest rate movements as a continuous-time Itó process was introduced by Merton [1] in 1973.
Later, in his seminal work in 1977, Vasicek [2] introduced an Ornstein–Uhlenbeck type of short rate model by incorporating
mean-reverting characteristics of the data. However, there is a possibility that thesemodels could generate negative interest
rates. Negativity is not a big problemwith real interest rates since they can often be negative, but nominal ones are unlikely
to be negative. Moreover, these models are not adequate models for the interest rates because they do not handle the con-
ditional volatility characteristics of the data. In order to overcome these issues, Cox, Ingersoll, and Ross (CIR) [3] introduced
their square-root model in the general equilibrium context. The mean-reverting and ‘level effect’ characteristics of the CIR
model helped in eliminating the possibility of negative interest rates and represent the conditional heteroskedasticity char-
acteristics of the data [4].

Another approach in modeling interest rate movements is the use of autoregressive conditional heteroskedasticity
(ARCH) models which were introduced by Engle [5] and later developed into generalized autoregressive conditional het-
eroskedasticity (GARCH) by Bollerslev [6], and to exponential GARCH (EGARCH) by Nelson [7]. These models have been
widely used in the literature to model interest rate movements and they indicated volatility persistence in an extremely
high degree,whichwas not addressed in the CIRmodel. In financial econometrics, discrete-timeGARCHprocesses arewidely
used to model the returns at regular intervals on financial assets. Specifically, a GARCH process typically represents the in-
crements of the logarithms (ln Pt − ln Pt−1) of the asset price. These models capture many of the so-called stylized features
of such data, tail-heaviness, volatility clustering and dependence without correlation [8].

There have been several studies dealing with the capturing of the abovementioned features of financial time series using
continuous-timemodels. The first study that links GARCH processes with continuous-timemodeling is the GARCH diffusion
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approximation of Nelson [9]. In this ground breaking work, price and volatility processes are driven by two independent
Brownian motions such as

dGt = σtdWt

dσ 2
t = θ


γ − σ 2

t


dt + ρσ 2

t dBt , t > 0. (1)
Another approach adopts the stochastic volatility model of Barndorff-Nielsen and Shephard [10] where the stochastic
volatility σ 2 follows an Ornstein–Uhlenbeck type of process. The stochastic volatility is driven by a Lévy subordinator and
evolves independently of the Brownian process in the price equation. The price and volatility equations satisfy

dGt = µdt + σtdWt

dσ 2
t = −ασ 2

t dt + dLt , t > 0. (2)
These straightforward diffusion limits of the discrete-time models loose most of the properties of the discrete-time GARCH
model—for example, the limit in terms of Brownian motion no longer has jumps, the discrete-time and continuous-time
models are not statistically equivalent, and the mechanisms of feedback between the price and volatility processes are lost
due to two sources of randomness. In order to address these problems, Klüppelberg et al. [11] adopted the idea of directly
constructing a continuous-time GARCH by using a single driving Lévy motion for price and volatility processes. Their con-
struction uses an explicit representation of the discrete-time GARCH(1, 1) process to obtain a continuous-time analogue.
The price and volatility processes evolve as

dGt = σt−dLt

dσ 2
t =


ω − ησ 2

t−


dt + ϕσ 2

t−d [L, L]
(d)
t . (3)

Although the COGARCH(1, 1) model has already been investigated and its implementation and applicability to financial
time series have been demonstrated, it is still an area of active research. For this study we have developed the Klüppelberg
et al. [11] COGARCH(1, 1) model by introducing a normal inverse Gaussian (NIG) process for the driving Lévy process and
an indirect inference method [12,13] for the parameter estimation. The rest of the paper is organized as follows. Section 2
examines the model building methodology along with the parameter estimation algorithm, and Section 3 gives the analysis
of the data used. Section 4 presents and discusses empirical results, and Section 5 concludes.

2. Methodology

We follow themethodology of Klüppelberg et al. [11] in using a discrete-timeGARCH(1, 1)model to build the continuous-
time analogue. Recall the discrete-time GARCH(1, 1) process given as

yn = σnzn

σ 2
n = ω + αy2n−1 + βσ 2

n−1 (4)
where the zn are i.i.d. zeromean and unit variance innovations andω, α andβ are constant parameters. The idea is to replace
thewhite noise sequence of the price equationwith the increments of a Lévy process. So, the price equation of the COGARCH
model reads as

Gt =

 t

0
σt−dLt . (5)

And we define the volatility process as a random recurrence equation and iterate the recurrence:
σ 2
n = ω + αy2n−1 + βσ 2

n−1

σ 2
n = ω + (β + αy2n−1)σ

2
n−1

...

σ 2
n = ω

n−1
i=0

n−1
j=i+1


β + αy2j


+ σ 2

0

n−1
j=0


β + ασ 2

j


.

On replacing the sum by an integral, the volatility process becomes

σ 2
n =


ω

 n

0
exp


−

|s|
j=0

log

β + αy2j


ds


+ σ 2

0


exp


n−1
j=0

log

β + αy2j


.

On replacing yj by jumps of a Lévy process L and taking ω = ω, η = − logβ, ϕ =
α
β
, we get the volatility process

σ 2
t =


ω

 t

0
eXsds + σ 2

0


e−Xt (6)

with the auxiliary process
Xt = tη −


0<t6t log


1 + ϕ (1Ls)2


, t > 0, where (Lt)t>0 is a Lévy process.
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Expressions (5) and (6), the price and volatility equations of the COGARCH(1, 1) model, can be expressed in terms of
stochastic differential equations as

dGt = σt−dLt (7)

dσ 2
t =


ω − ησ 2

t−


dt + ϕσ 2

t−d [L, L]
(d)
t (8)

where d [L, L](d)t =


0<s6t (1Ls)2 is the quadratic variation of the Lévy process. All details concerning the derivation of the
COGARCH(1, 1) model can be found in the original paper by Klüppelberg et al. [11].

2.1. The estimation procedure

Haug et al. [14] proposed a method of moments procedure for estimating the model parameters from the log-returns by
matching the empirical autocorrelation function and moments to their theoretical counterparts. However, their methodol-
ogy is only valid if the driving Lévy process has finite variance, e.g., is a Compound Poisson processwith normally distributed
jumps or a Variance-Gamma process. The study by Müller [15] shows that it is also possible to use Bayesian methods to es-
timate COGARCH parameters. This method is also limited to the case where the driving Lévy process is Compound Poisson.
Maller et al. [16] developed a pseudo-maximum likelihood (PML) method based on the GARCH approximation to COGA-
RCH [17].

Here, we propose a simulation based indirect inference approach in order to estimate the COGARCH(1, 1) model. The
basic idea of the indirect inference method (IIM) proposed by Gouriéroux et al. [12] and later developed by Gallant and
Tauchen [18], and Jiang [19], is that when a model leads to a complicated structural or reduced form and therefore to in-
tractable likelihood functions, estimation of the original model can be indirectly achieved by estimating an auxiliary model
which is constructed as an approximation of the original one.

For this paper, we follow the methodology proposed by Monfardini [20], where he applied an indirect inference method
to estimate the parameters of a discrete-time stochastic volatility model. Let us call the parameters of the COGARCH(1, 1)
model θ , with θ = (ω, η, ϕ). Then, the estimation of θ based on indirect inference can be summarized as follows.

1. Choice of the auxiliary model
The first step in the indirect inference estimation method is to choose an auxiliary model; the natural choice of auxiliary
model for the COGARCH(1, 1) model is the discretized version of the model where variance process can be written as a
GARCH-type recursion:

σ 2
t = ω + (1 − η)σ 2

t−1 + ϕy2t (9)

where yt is the observed log-returns.
2. Estimation of the auxiliary model

Let us define the parameter set of the auxiliary model as β = (ω, η, ϕ), and the likelihood function as QT (yT , β). Then, the
parameters of the auxiliary model can be estimated as follows:

β̂T = argmax {QT (yT , β)} (10)

where

QT (yT , β) = −
1
2

T
t=1


y2t
σ 2
t


−

1
2

T
i=1

log(σ 2
t ) −

T
2
log(2π).

Notice that the auxiliary parameter set β is defined implicitly in terms of the structural parameter vector θ , which is called
the binding function [12]:

b(θ) = E[β(y(θ))]. (11)

3. Path simulation of the original process and estimation of the auxiliary model based on a simulated sampling path
After we simulate the original model, we estimate the parameters of the auxiliary model from the observations of the
simulated sampling path via the PML method. Let us denote the simulated vector of yt ’s by yTH(θ) =


yh(θ), h = 1 . . . TH


.

After replacing the original observation with the simulated ones in (10), the binding function estimator is given by

β̃TH(θ) = argmax {QT [yTH(θ), β]} . (12)

4. Indirect estimation of the model parameters
An indirect estimator of β̂ , denoted by θ̃TH , is defined by choosing values of θ from which β̂T and β̃TH(θ) are as close as
possible, i.e.,

θ̃TH = argmin

[β̂T − β̃TH(θ)]′Ω[β̂TH − β̃TH(θ ]]


(13)

where Ω is a symmetric nonnegative matrix, defining the metric [13].



S. Bayracı, G. Ünal / Journal of Computational and Applied Mathematics 259 (2014) 464–473 467

Gouriéroux et al. [12] provide the expression for the optimal choice of the matrix Ω , which minimizes the asymptotic
variance–covariance matrix of the indirect estimator θ̃TH . Let us define the following matrices:

I0 = lim
T→∞

V0


√
T

∂QT

∂β


yh(θ0), β0


J0 = plim

T→∞

−
∂2QT

∂β∂β ′


yh(θ0), β0


where V0 represents the variance with respect to the true distribution of the y’s process. By using the above matrices, the
asymptotic variance–covariance matrix of θ̃TH can be written as

W (H, Ω) =


1 +

1
H


d(θ0, Ω)

∂b′

∂θ
ΩJ−1

0 I0J−1
0 Ω

∂b
∂θ ′(θ0)d(θ0, Ω)

with

d(θ0, Ω) =


∂b′

∂θ
(θ0)Ω

∂b
∂θ ′

(θ0)

−1

then, the optimal choice of Ω is given by:

Ω∗
= J0I−1

0 J0. (14)

On replacing Ω̂T with the consistent estimator of Ω∗

T in (13), we can compute the optimal indirect estimator θ̂TH . The
asymptotic normal variance–covariance matrix of θ̂TH is given by

W ∗

H = W

H, Ω∗


=


1 +

1
H


∂b′

∂θ
(θ0)J0I−1

0 J0
∂b
∂θ ′

(θ0)

−1

.

An alternative method for implementing the indirect inference procedure by calibrating the parameter set θ(ω, η, ϕ)
through the score function was proposed by Gallant and Tauchen [18]. By choosing the value of θ which minimizes the
score function of the auxiliary model, we can estimate the parameter of interest. The score function formula is given by

θ̂TH = argmin


∂QT

∂β ′


yTH(θ), β̂T


Σ̂T

∂QT

∂β


yTH(θ), β̂T


(15)

where Σ̂T converges to a positive definite matrix Σ . Gouriéroux et al. [13] prove that θ̂TH is asymptotically equivalent to
θ̂TH(J0Σ J0); then the minimum variance estimator is obtained when Σ∗

= J−1
0 Ω∗J−1

0 = I−1
0 .

3. Data

The data that we used for this analysis are the daily (business days) rates on the Turkish treasury bonds. We employ
log-returns of the Turkish Republic central bank’s two-year maturity bond rates from January 03, 2006, to December 31,
2010 (1286 observations). Fig. 1 exhibits the plots of the interest rates, log-returns, squared log-returns, the histogram of
the log-returns, and the autocorrelation functions (acf) of log-returns and squared log-returns.

In order tomodel the volatility, financial time series should be stationary; for the stationarity condition, time series should
not contain a unit root. For this purpose, augmented Dickey–Fuller, Phillips–Perron, and Zivot–Andrews unit-root tests are
applied to test the presence of a unit root in the log-return series. Table 1 presents the test statistics alongwith critical values
at 5% significance levels. According to all three test statistics, interest rate series do not have a unit root at the log-return level.

Table 2 provides the descriptive statistics of the log-returns. It is observed from the skewness and kurtosis that interest
rate log-returns are not normally distributed. And the autocorrelation plot of the squared log-returns and the ARCH-LM
test statistics indicate the presence of ARCH effects in the log-return series. Also, we applied Engle’s ARCH-LM [5] test to
investigate whether ARCH effects are present in the log-returns. The procedure for the ARCH-LM test can be summarized as
follows. Consider a time series:

yt = µ + ϵt

where µ is the conditional mean of the process yt , and ϵt is the innovation process. To test for the ARCH effects, regress the
squared innovations ϵ2

t on a constant andm lagged values:

ϵ2
t = α0 +

m
i=1

αiϵ
2
t−i.

The null hypothesis states that, in the absence of ARCH effects, the estimated αi parameters are equal to 0:

H0 : α0 = α1 = · · · = αm = 0.
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Fig. 1. (a) Interest rates, (b) log-returns, (c) squared log-returns, (d) the histogram of log-returns, (e) the acf of the log-returns, (f) the acf of the squared
log-returns.

According to the alternative hypothesis, for the existence of ARCH effects, at least one of the estimated αi parameters is sta-
tistically significant. The rejection of the null hypothesis states that there is a significant correlation of squared innovations.
The ARCH-LM test statistic from Table 2 suggests the rejection of the null hypothesis. Therefore, log-return series show sig-
nificant ARCH characteristics. From inspecting the empirical densities of log-returns from panel (d) of Fig. 1, we can identify
the distributional properties. Compared to a normal distribution, there is mass near the origin, less mass in the flanks, and
moremass in the tails, meaning that tinymovements occur with higher frequency, small andmiddle sizedmovements with
lower frequency, and big changes are much more frequent than predicted by the normal law. Therefore, GARCH(p, q) mod-
els are appropriate tools to use in modeling the log-returns of Turkish interest rates, as they show leptokurtic and volatility
clustering behavior.

4. Empirical results

Table 3 provides the results from the discrete-time GARCH(1, 1) model estimation for the interest rate log-returns. It is
evident from the estimation results that the GARCH(1, 1) model is successful at capturing the volatility clustering behavior,
as the coefficients for ARCH and GARCH terms have statistically significant t-values. The sum of the coefficients is less than
1, which means that the volatility process is covariance stationary. The Ljung–Box serial correlation test for the squared
residuals indicates non-persistence of the serial correlation, and the ARCH-LM test confirms no remaining ARCH effects for
the residuals. Thus, the discrete-time GARCH(1, 1) model is a good candidate model for conditional variance modeling. Al-
though the GARCH(1, 1) model successfully eliminates the ARCH effects from the data, the normality assumption for the
residuals is violated. The deviation from normality is evident for the standardized residuals, as the Kolmogorov–Smirnov
and Anderson–Darling statistics from Table 4 suggest that a NIG distribution provides a better fit than the normal one. Also,
density plots from panel (a) of Fig. 2 and quantile plots from panel (c) and panel (d) of Fig. 2 show that a NIG distribution
is more successful for capturing the leptokurtic characteristics of the standardized residuals than the normal distribution.
Hence, the distributional characteristics of the standardized residuals cannot be captured by the normal law, but can be cap-
tured by the hyperbolic law which was introduced by Eberlein [21] for financial applications. Later, Barndorff-Nielsen [22]
introduced the normal inverse Gaussian (NIG) distribution to model the financial returns. In order to achieve a better fit to
real-life data, we prefer the NIG process as the driving Lévy motion for the COGARCH(1, 1) model.

We fit a COGARCH(1, 1) model driven by a NIG-Lévy process by using the indirect inference algorithm, to the log-returns
of Turkish interest rates. We simulated 1000 samples of n = 1286 observations and chose the parameters from the simu-
lation minimizing the score function of the auxiliary model. Estimated parameters of the model are presented in Table 5.
In Fig. 3 we plotted an example of simulated sample paths for the NIG-COGARCH(1, 1) process G, the log-return process
dGt , the volatility process σ 2 and the driving NIG-Lévy process. The same random seed has been used in simulating all four
sample paths.

In order to check the performance of the IIM for parameter estimation, by using estimated parameters from Table 5 we
simulated 1000 sample paths with n = 1286 observations of the NIG-COGARCH(1, 1) log-return process dGt (the sample
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Table 1
Unit-root tests.

ADF test P–P test Z–A test

Interest rates (log-returns) −19.5211 −35.8993 −8.9886
(−2.57) (−2.86) (−4.80)

Notes: Regression equations for unit-root tests contain a drift term. The table
reports the statistics of the augmented Dickey–Fuller, Phillips–Perron and
Zivot–Andrews tests. Critical values at the 5% level are given in brackets.

Table 2
Descriptive statistics.

Interest rates (log-returns)

Mean −0.0005
Standard deviation 0.0146
Skewness 0.3917
Kurtosis 5.1440
Minimum −0.0838
Maximum 0.1028

ARCH test

Test statistics p-value

LM (35) 185.08 (2.2e−16)

Table 3
GARCH(1, 1) model estimation.

Estimate Standard
error

t-value Pr(> |t|)

ω 7.67e−6 3.60e−6 3.0132 0.0025
α 0.1091 0.0223 4.8797 0.0000
β 0.8584 0.0286 29.938 0.0000
Log-likelihood 3721.78

Test
statistics

p-value

LB2(35) 35.63 0.4790
ARCH-LM (35) 35.71 0.4756

Table 4
GARCH residual distributional tests.

Kolmogorov–Smirnov Anderson–Darling
Statistic p-value Statistic p-value

Normal 0.066 0.007 4.11 0.007
NIG 0.027 0.697 0.390 0.569

Table 5
COGARCH(1, 1) model estimation.

ω̂ η̂ ϕ̂

7.77e−06 0.107 0.073

Test statistics p-value

LB2(35) 41.01 0.2546
ARCH-LM (35) 41.97 0.2229

size is chosen as 1286 in order tomatch the length of the empirical data). We estimated parameters of the simulated sample
series via IIM and PML methods in order to allow comparison between parameter estimation methods. The results of our
simulation study are given in Table 6. The estimated parameters and the empirical mean of all simulated parameters, with
their standard deviations in brackets, are reported. We also estimated the root mean square error (RMSE), mean absolute
error (MAE) and average bias for the parameter values. The reported error statistics RMSE, MAE and bias suggest that IIM
method provides better estimates for parameters ω̂ and η̂. For estimating parameter ϕ̂, according to RMSE and average bias
statistics, the PML method outperforms IIM while IIM is superior to the PML method in terms of MAE statistic.

To investigate the model fit, we performed a Ljung–Box test for each sample of the squared residuals. We computed the
test statistic based on 35 lags, and had to reject the null hypothesis of no correlation 77 times out of 1000 simulations at
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Fig. 2. (a) Density of residuals (normal fitted), (b) density of residuals (NIG fitted), (c) normal QQ -plot, (d) NIG QQ -plot.

Fig. 3. Simulated (a) COGARCH(1, 1) process, (b) log-return process, (c) NIG-Lévy process, (d) volatility process.

the 0.05 level. Also, we performed an ARCH-LM test on residuals based on 35 lags, and the null hypothesis was rejected 71
times out of 1000 simulations at the 0.05 level.

4.1. Volatility estimation and comparison

It would be beneficial to estimate the volatility of the COGARCH(1, 1) model for the interest rate returns and compare
its estimation error with that of the discrete-time GARCH(1, 1) model from the econometric point of view. For this purpose,
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Table 6
Performance comparison of IIM and PML estimation methods.

IIM PML
ω̂ η̂ ϕ̂ ω̂ η̂ ϕ̂

Mean 9.16e−06 0.1232 0.085 9.302e−06 0.1239 0.084
(4.74e−06) (0.045) (0.028) (5.44e−06) (0.051) (0.033)

RMSE 4.37e−05 0.5108 0.3501 4.82e−05 0.5344 0.3475
MAE 3.24e−06 0.0324 0.0230 3.75e−06 0.0372 0.0262
Bias 0.0013 16.16 11.07 0.0015 16.89 10.98

The true parameter values are ω = 7.77e−06, η = 0.1070, ϕ = 0.073.

Table 7
Volatility estimation error statistics.

RMSE MAE MHSE

GARCH(1, 1) 0.138 0.0084 0.54
COGARCH(1, 1) 0.146 0.0080 0.41
t-statistic −3.9202 −11.514 −4.5753
p-value 9.31e−06 2.2e−16 5.21e−06

we employ a recursive estimator of the volatility process for given parameters ω, η, and ϕ. The procedure that we follow
here is that proposed by Haug et al. [14]. The estimator is then applied to the empirical data. The COGARCH(1, 1) volatility
process in (6) can be arranged as

σ 2
t = σ 2

t−1 + ω − η


n+1,n

σ 2
s ds + ϕ


n−1<s≤n

σ 2
s (1Ls)2. (16)

Since σs is latent and 1Ls is usually not observable, we have to approximate the integral and the sum on the right hand side.
For the integral, we use a simple Euler approximation:

n+1,n
σ 2
s ds ≈ σ 2

t−1, n ∈ N.

As we observe the log-price process G only at integer times, we approximate as follows:
n−1<s≤n

σ 2
s (1Ls)2 ≈ (Gt − Gt−1)

2
= (G(1)

t )2, n ∈ N.

Therefore, the recursive estimator of the volatility can be calculated as

σ̂ 2
t = ω̂ + (1 − η̂)σ̂ 2

t−1 + ϕ̂(G(1)
t )2, n ∈ N, (17)

where (G(1)
t )2 is the squared log-returns of the interest rates.

Fig. 4 presents the recursive estimation of the COGARCH(1, 1) volatility process along with the conditional volatility of
the GARCH(1, 1) model. For comparison purposes, we have applied root mean squared error (RMSE), mean absolute error
(MAE), and mean heteroskedastic squared error (MHSE) statistics for the estimation performance of the models. The error
statistics are given by the following formulas:

RMSE =

 n
t=1

(σt − σ̂t)2

n

MAE =
1
n

n
t=1

|σ̂t − σt |

MHSE =
1
n

n
t=1


σt

σ̂t
− 1

2

where σ̂t represents the predicted (GARCH or COGARCH) volatility, and σt represents the absolute log-returns as a proxy for
the true volatility.

Table 7 shows the error statistics of the models. While MAE statistics suggest that the two models have almost the same
prediction power, according to RMSE and MHSE statistics, COGARCH(1, 1) gives better in-sample predictions for the con-
ditional volatility, as it has a lower error statistic than the discrete-time GARCH(1, 1) model. One sample t-test has been
employed to test the significance of the differences of the error statistics. The t-statistics and p-values indicate that we
should reject the null hypothesis which assumes that the true mean of the differences is equal to zero. Therefore, the error
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Fig. 4. Estimated conditional volatilities versus absolute log-returns.

Table 8
COGARCH residual distributional tests.

Kolmogorov–Smirnov Anderson–Darling
Statistic p-value Statistic p-value

Normal 0.059 0.019 2.390 0.055
NIG 0.031 0.530 0.593 0.488

statistics (MAE, RMSE and MHSE) of the COGARCH(1, 1) model are significantly different than those of GARCH(1, 1) models.
The RMSE is a very popular error measurement tool among practioners but when volatility clustering occurs it is not suf-
ficient for accurate model comparison because it measures the error in terms of average deviations. We prefer MHSE over
RMSE and MAE statistics because MHSE measures the error as an average relative error and takes high and low volatility
periods into account.

4.2. Diagnostic tests

The robustness of the model estimation method is investigated via a residual analysis. The COGARCH(1, 1) residuals are
given by εt =

dGt
σ̂t

, where log-returns dGt are divided by the estimated volatility σ̂t .
The correlation of squared log-returns is checked by Ljung–Box serial correlation testing. We also performed an ARCH-

LM test on the residuals to investigate the ARCH effects. The test statistics used 35 lags of the corresponding empirical
autocorrelation functions. The null hypothesis was not rejected up to 35 lags for both tests. The p-value for the Ljung–Box
test is 0.2546, and for the ARCH-LM test it is 0.2229 (see Table 5). Thus, both test results confirm that the COGARCH(1,
1) model is successful at removing the ARCH effects from the data. These results are also confirmed by Fig. 5 where the
empirical autocorrelation function of the squared residuals is plotted in panel (b), showing no significant correlations of the
squared residuals.

Distributional properties of the COGARCH(1, 1) residuals are given in panel (a) and panel (b) of Fig. 4. Density and
quantile plots of the residuals show that the residuals areNIG distributed. Also, Kolmogorov–Smirnov andAnderson–Darling
statistics from Table 8 confirm that the NIG distribution provides a better fit than the normal distribution.

5. Conclusion

In this paper, we have applied discrete-time and continuous-time GARCH(1, 1) models to analyze the interest rate
dynamics in the Turkishmarket. The COGARCH(1, 1)models provided excellent results inmodeling the interest rate series, as
they capture the characteristics of the volatility process and yielded better conditional volatility estimates than the discrete-
time counterparts. The main advantage of the COGARCH(1, 1) model over other two-factor stochastic volatility models is
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Fig. 5. (a) acf of residuals, (b) acf of squared residuals, (c) density of residuals, (d) NIG QQ -plot of residuals.

that it is driven by a single background Lévy process; therefore, themechanisms of feedback between the price and volatility
processes are not lost. TheCOGARCH(1, 1)model could be a good tool to use in extending one-factor continuous-time interest
rate models such as the Vasicek and CIR models by incorporating the Lévy driven stochastic volatility process to the model.
Also long-memory characteristics of the financial returns and volatility can be addressed by the COGARCH(1, 1) model by
extending it with a fractional NIG process as a driving source of randomness. Since the aim of this study is to demonstrate
that the COGARCH(1, 1) model is a continuous-time analogue of the discrete-time GARCH(1, 1) model, we only compared
COGARCH(1, 1) with the GARCH(1, 1) model. A further study comparing the COGARCH(1, 1) model with other approaches
like CIR and other GARCH families would be more beneficial in terms of testing the strength of the COGARCH(1, 1) model in
volatility modeling.
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