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Abstract We consider the interval quadratic programming problems. The aim
of this paper is to present a new method to compute the upper bound of the op-
timal values, under weaker conditions. Moreover, we discuss the relations between
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illustrated by some examples.
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1 Introduction

In many real world applications, system parameters or model coefficients are not
always known exactly and may be bounded between lower and upper bounds due
to a variety of uncertainties[1-3]. Over the past decades, interval mathematical
programming methods were developed to tackle such uncertainties [4-13]. Many
papers studied the problem of computing the range of optimal values of interval
linear programming problems,; see e.g.,[7, 10, 14-17] among others. Some authors
studied the problem of computing the range of optimal values of interval quadratic
programs (IvQP). It is known that finding the lower bound of the optimal value in
IvQP is polynomially solvable, whereas finding the upper bound of the optimal value
function is a computationally hard problem when the constraints include interval
linear equalities. While to determine the upper bound of the optimal value function,
the existing methods have to consider the dual of the primal problem, and the
condition that the duality gap is zero should be specified[18-20].

We study IvQP and our aim is to establish a new method to compute the upper
bound of optimal values, which is an analogue of the results in interval linear program
[7, 15, 16]. In this method, only primal program is taken into consideration. The
dual problem is not required and thus the condition that the duality gap is zero is
also removed.




2 Preliminaries
Following notations from [15], an interval matrix is defined as
A=[A A ={AecR™": A< AL A},

where A, A € R™" A < A, and “<” is understood componentwise. By

Ac= LA+ 7), A = S(A- 4),

we denote the center and the radius of A, respectively. Then A = [A.— A, A+ Anl.
An interval vector b = [b,b] = {b € R™ : b < b < b} is understood as one-column
interval matrix.

Let {#1}" be the set of all {—1,1} m-dimensional vectors, i.e.

{F1}" ={y e R"| |y |= ¢},

where e = (1,---,1)T is the m-dimensional vector of all 1’s and the absolute value
of a matrix A = (a;;) is defined by |A| = (|a;;]). For a given y € {£1}", let

T, = diag(ys, - - Ym)

denote the corresponding diagonal matrix. For each x € R", we define its sign vector

sgn x by
san oy, = {1 w20
sgn x); =
& 1 it <0,
where i = 1,--+ ,n. Then we have |z| = T,z, where z = sgn x € {+1}".

Given an interval matrix A = [A. — Aa, A. + Aal, for each y € {£1}" and
z € {£1}", we define matrices

Ay, = A, — T AAT,.
Similarly, for an interval vector b = [b. — ba, b. + ba] and for each y € {£1}"™, we

define vectors
by = b + Tba.

Let A € R™" B € R b € R™c € R',d € R¥ and Q € R™" be given,
consider the quadratic programming problem

min %xTQx + 'z subject to Az < b,Bx=d,z >0,
where () is positive semidefinite. Briefly, we rewrite the problem as
Min{%xTQx +c'z|Ar < b, Bx = d,x > 0}. (1)
The Dorn dual problem [21, 22] of the quadratic program (1) is
Max{—%uTQu — b — d"w|Qu + ATv + BTw + ¢ > 0,v > 0}. (2)
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Let
1
f(A,B,b,c,d, Q) = inf{§xTQa: + c'w|Ar < b, Bx = d,z > 0}

and
1
g(A,B,b,c,d, Q) = Sup{—§uTQu —b"v — d"w|Qu + ATv + BTw + ¢ > 0,v > 0}

denote the optimal value of (1) and (2), respectively.
Clearly, the following result of weak duality holds.

Theorem 2.1. (Weak duality) We have
f(A,B,b,C,d,Q) Z g(A,B,b,C,d,Q)'
The following result of strong duality is from [21].

Theorem 2.2. ( [21]) (i) If v = x¢ is an optimal solution to problem (1) then an
optimal solution (u,v,w)" = (ug, vy, wo)? exists to problem (2). (ii) Conversely, if
an optimal solution (u,v,w)T = (ug,vo,wo)? to problem (2) exists then an optimal
solution x = xo to problem (1) also exists. In either case,

f(A?B?b7c7d7Q):g(A7B7b7C7d7Q)'

The set of all m-by-n interval matrices will be denoted by IR™ " and the set
of all m-dimensional interval vectors by IR™. Given A € IR™" B € IR*™" b ¢
IR™, c € IR",d € IR* and Q € TR™™", the interval convex quadratic program

1
Min{ixTQx +c’z|Az <b,Bz =d,r > 0} (3)

is the family of convex quadratic programs (1) with data satisfying
Ae A, BeB,beb,cec,ded, @ €Q,

where @) is positive semidefinite for all ) € Q. The lower and upper bound of the
optimal values are respectively defined as

f(A,B,b,c,d, Q) = inf{f(A,B,becdQ|Ac A BeBbeb,cccded Qe Ql,

f(A,B,b,c,d, Q) = sup{f(A,B,b,c,d,Q)|A€ A,BeB,beb,cec,ded,Q <€ Q}.
For given A,B,b,c,d, Q denote f = f(A,B,b,c,d,Q), f = f(A,B,b,c,d, Q).
Theorem 2.3. (Proposition 6 in [20]) We have
1 - R
i = inf ixTQx +cx subject to Ax < b,Bxr <d,Bx > d,x > 0.

The following theorem from [23] characterizes solvability of interval linear sys-
tems, together with Theorem 2.1 and Theorem 2.2, will be used to obtain our main
results.




Theorem 2.4. Let A € IR"™ B € IR™" C € IR"™, D € IR*", b €
IR*, and d € TR, the following system

Ar+By=0b, Cx+Dy<d, x>0

is solvable for each A€ A, BeB, CeC, DeD, beb andd e d if and only if
for each s € {£1}* the system

A_gex + B—seyl - BseyQ = b—sa
Cz+ Dy' — Dy? < d,
z, yt ¥t >0

18 solvable.

3 Computing the upper bound

It is known that the computing of lower bound f is an easy task, but the calculation
for upper bound f is difficult [20]. The upper bound f is given in [20] by using the
Dorn dual problem of IvQP (3) when duality gap is zero. In this section, we present
a new method for computing f directly from scenarios of primal problem (3). No
dual problem is required and thus the condition that duality gap is zero is removed.

Theorem 3.1. We have

1 _ _
(A,B,b,c,d, Q) = mf{ixTQx +cTx|Ax < b,Br > d,Br <d,z >0}, (4)

(A,B,b,c,d,Q) = sup f(A By,bcd,Q). (5)
ye{£1}*

Proof: The formula (4) is given by Theorem 2.3 [20]. Here, we only prove (5).
Note that for each z > 0 we have

1
%xTQx +cle < EmTQ:E +cla,
soforeach Aec A, BeEB, beb,cec,ded, QeqQ
f(A7B7b7C7d7Q>Sf(A7B?b?E7d7@)

and hence y B o
f(A,B,b,c,d, Q) < f(A,B,b,c,d, Q). (6)

On the other hand, from Q € Q,¢ € ¢ we know that
?(A7B7b767d7§) S ?(AaBabaca d7 Q) (7)
Thus, from (6) and (7) we can obtain

?(A‘7B’b7 C? d) Q) :?(A?B?b?67 d?@)' (8)




Furthermore, the upper bound f can be determined by the least feasible region,
then we have

?(A’B7b767 d?@) :?(Z’ B’Q7E’ d’ @)7 (9)

since we are easy to obtain that Az < b,z > 0 is the least feasible region inequality
defined by Az < b,z > 0.

From (8) and (9) we are only required to prove
?(ZaBabaéa da@) = Ssup f( y€7b767 dan)

ye{£1}k

Let

@ = sup f( yeabédyaa)'
ye{£1}k

(i) Since By, € B, d, € d for each y € Y},, we are easily to obtain that

@ S Sup{f(z7 B?b767 d7©)|B 6 B7d E d} = ?(E7B7b)é7 d?@)'

(ii) Now we prove f(A, B,b,¢,d, Q) < % by showing that

f(A,B,b,¢,d,Q) <7 (10)

holds for each B € B,d € d. - B
Note that for each B € B,d € d, obviously, the value of f(A, B,b,¢,d, Q) can

be divided into three cases, they are —oo, oo and finite value. We discuss them
separately.

If f(A, B,b,¢,d,Q) = —cc for some B € B,d € d, (10) holds obviously.
,C,d

If f(A B,b ,Q) = oo for some B € B,d € d, then the quadratic program-
ming problem

min%xT@x +¢lz subject to Az <b,Bxr=d, >0 (11)
is infeasible. That is, there exist B € B, d € d such that the following system
Az <bBr=d, x>0
is not solvable. By Theorem 2.4, we have the system
Az < b, Byex =d

ys >0

is not solvable for some y € {£1}*. Thus we have

f(za Byeaba c, dy7@) =

for some y € {£1}*, which means (10) holds.

If f(A, B,b,¢ d,Q) is finite for some B € B,d € d, then from Theorem 2.2 we
know the Dorn dual problem to (11)

1 — _ _
max — §uTQu —b"v — dTw subject to Qu+ Ay +B'w+e>0,0>0 (12)



has an optimal solution (u*,v*, w*)?, then
Qu* +ZTU* +BTw* +¢>0,0*>0 (13)
and )
f(A,B,b,¢,d Q) = —§(u*)T©u* — bl — dPw. (14)
Let y = —sgn w*, then y € {£1}* and |w*| = —T,w*. Then consider the quadratic
program
1 — _
min§xTQ:U +¢"x subject to Az <b, Byex =d,, ¥ >0 (15)

and its Dorn dual problem
1 — -
max — iuTQu —b"v—(d,)"w subject to Qu+ATU +(Bye)"w+2 > 0,0 > 0. (16)
Also, form (13) we have
Qu+ A v + (By) w +¢ = Qu+A v+ (B.—T,Ba) w +¢
= Qu* + A v+ BIw* 4+ Balw*| +¢
> Qu +A v+ (B.+B-B,) w +¢
— Qu+A v+ BTw +e>0,
thus, the quadratic program (16) is feasible. Now, if the primal program (15) is
infeasible, then f(A, By, b,¢,d,, Q) = 00, so $ = oo, thus (10) holds. If the program
(15) is feasible, then from the feasibility of primal and dual program, together with
the duality Theorem 2.1 and Theorem 2.2, the problem (16) has an optimal solution
(4, 0,)7 satisfying

_ . 1/\ — R R
f(A7 Byeab7 C, dyv Q) = _iuTQU — bT — dgw,

then we have

1 — 1
_§(u*)TQu* —QTU* _A (dy)Tw* S _iaTQ,& _ QT,[} _ dz;ﬁ) S @

and from (14) we have

Zv 37 ba 67 d?@ = _1 U* T@u* - QTU* - dTw*
f( 5
1 _
= —i(u*)TQu* — b = (d, 4+ d — d)Tw*
1 _
< 5 Qut =¥ — (dfw* — diu’])

1 AV * * *
= —i(u ) 'Qu* — b"v* — (dXw* + dAT,w*)

1 -
= ) Qu B~ (d) e <
so (10) holds. Clearly, we have proved that (10) holds for each A € A,b € b, which
implies f(A,B,b,¢,d, Q) < %. Hence, by (i) and (ii), we can get f(A4,B,b,¢,d,Q) =
©, which completes the proof. [J
From Theorem 3.1 we are easy to obtain the following two corollaries.
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Corollary 3.1. Consider the [vQP
Min{%xTQx +clz|Az =b, v >0},
where Q is positive semifefinite for all Q € Q and b € IR*. We have
f(A,b,c,Q) = inf{%xTQm + cTw|Ax < b, Ax > b, > 0},
f(Ab,c,Q) = sup f(Ay,b,,C Q).

ye{E1}k

Corollary 3.2. Consider the IvQP
1
Min{ixTQx +clz|Ar < b, 2 >0},
where @) is positive semifefinite for all Q € Q. We have

1 _
f(A,b,c,Q) = inf{ixTQx + cTz|Ar < b,z > 0},

f(A,b,c,Q) = f(AbeQ)= inf{%xT@x + ¢l w|Ar < b,z > 0}.

The special case of IvQP considered in Corollary 3.2 has been discussed in |20,
24]. The result of Corollary 3.2 is the same as those described in the [20, 24].

4 Relations between two formulas of the upper
bound

We have presented the new formula of the upper bound in IvQP (3)

f(A,B,b,c,d, Q) = sup f(A, By,b,7,dy,Q)
ye{£1}k

in Theorem 3.1. Let

?1 = sup f(Zv By@vbv Ev dya Q)
ye{E1}*x

Consider the nonlinear program

L1 T T T
max — —u Qu—bv—d,w+dy|lw
5 b alwl (17)

subject to Qu + A+ Bfw+ BX|jw|+e>0,v>0.

Let f, be the optimal value of the problem (17). Hladik proved that f(A,B,b,c,d, Q) =
fo, when the Dorn duality gap is zero [20]. Now, we prove that two formulas of upper
bound are equivalent when the Dorn duality gap is zero.

For each certain y, the Dorn dual problem of (15) is

I = T T
max — -u Qu—>bv—(d,) w

SuQu— "0~ (d,) )
subject to Qu + Ay + (Bye)Tw +¢>0,v>0.

First we give the following proposition, which will be used to obtain our result.
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Proposition 4.1. If f, = oo, then f, = co.

Proof: If f, = oo, that is (17) is unbounded, which means the feasible region
of (17) is not empty. Let (ug, v, wp)” be an arbitrary feasible solution to problem
(17), then it satisfies

@Uo + ZTUO + BLT’U}O + B£1w0| +c Z O, Vo > 0. (19)

Put yo = —sgn wy, since yo € {£1}* and from (19) we can get

@Uo + ZT’UQ + (Byoe)TU)() +c = @UO + ZT’UQ + BZ%UQ — BZTyO’wo +c (20)
= Qug + A vy + BTwg + BX|wo| +¢ >0,

which means (ug, v, wg)? be a feasible solution to problem (18) corresponding to
Yo = —sgn wy € {£1}*. Now we prove the proposition by contradiction.
@ If £, is finite, then there exists a real number 7 such that for each y € {+1}*
there holds
f(A, Bye, b, ¢, dy»@) <7

From Theorem 2.1, we can get for each y € {£1}*
g(zv By@v ba Ev dzp@) g f(zv By67l_)7 67 dy7@) S r.
Thus, for any feasible solution (ug,vo,wp)? to problem (17), its objective value
satisfies
1

- §u§@u0 —bT, —dfwo +d£ |wo| = —

1 _ 3 _
§quuO_bTUO_(dy0)Tw0 S g(A7 Byoav b? c, dy07 Q) S r,
where g = —sgn wy € {£1}*.

So we have f, <, which is a contradiction.

@ If f, = —oo, that is for each y € {£1}* we have

f(z7 By€7b767 dyy@) = —0OQ.

From Theorem 2.1, we get
g(za Byeaba 67 dya@) S f(Za By&ba E7 dy7@) = —0Q,

which means for each y € {£1}* the problem (18) is infeasible, which is a contra-
diction. B
Thus, from the analysis of (D) and (2) we can get f; = oo. O

Theorem 4.1. If the Dorn duality gap of interval convex quadratic program (3) is
zero, then f1 = f,.

Proof:  Obviously, from the Proposition 8 in Hladfk [20] and Theorem 3.1 in
section 3 we are easy to obtain f, = f,. Here, we give a different proof, which does
not use the results in [20] and Theorem 3.1.



(i) First we prove f, < f, by showing that
fy = f(Z, Byevba Cy dy>@) < ?2 (21)

holds for each y € {£1}*. Because the zero gap is guaranteed, then from the Dorn
duality Theorem 2.2, we know

fy = ¢,
where ¢ is the optimal value of the problem (18). Moreover, for each y € {£1}* we
have df'w > dfw — d}|w| and Bfw + BX|w| > (Bye)"w, then

1 — 1 =
—5u Qu—bTv —djw < —Zu"Qu—b"v — (d{w — diJw])

1 .
= —§uTQu — b — dfw + dy|wl,
which implies that
1 — 1 —

max — iuTQu — bl — dgw < max — §uTQu — 0" — dTw + di|w). (22)

And also, if
@u+ZTU + (Bye)"w+2> 0,0 >0

we can get

Qu+A v+ B'w+Bllw|+e>Qu+A v+ (Be)w+e>00v>0, (23

which means the feasible region of (17) contains those of (18). Thus, (22)and (23)
implies ¢ < f,. Hence f, < f,, for each y € {£1}*. Thus, f; < f,.

(ii) Second we prove f, < f;.

(@ This is obvious if f, = —oc.

@ If f, = oo, by Proposition 4.1, we are easy to obtain f, = f,.

@ If f, is finite, then the nonlinear program (17) has optimal solutions. Let
(u*,v*, w*)T be an optimal solution of the problem (17), then

_ 1 &
fa= —i(u*)TQu* —b"v* — dFw* + dX |w| (24)
and B \ -
Qu* + A" v* + Bfw* + BX|w*| +¢ > 0,v" > 0. (25)
Let y = —sgn w*, then Bl w* + Bi|w*| = (Bye)"w* and djw* = dfw* — dj|w*|,

form (25) we have
Qu* + A+ (Bye)"w* +2>0,v" >0,

which implies (u*,v*,w*)? is an feasible solution to program (18). So we have

1 _
fy > —i(u*)TQU*—bTU*—dZUJ*
1 * ek * * *
= @) Qe — ¥~ dlw + d
= ?27




together with (D) and (@), which proves f, < f;.

Hence, from (i) and (ii) we obtain f, = f,. O

It is worth noting that the restrictive condition that the duality gap is zero,
which is required to obtain f,, is removed in our formula f,. In most situations, it
is not an easy task to verify whether this condition is satisfied when the data vary
inside intervals.

5 Illustrative examples and Remarks

Note that the formula of f, can equivalently be formulated as ([20])
fo=sup f, subject to z € {£}"
where

1 — —
fy = SuP{_iuTQu_bTU_(dz_dzTy)w’QU+ATU+(B(;T+BZTy)w+E > 0,v>0,Tow > 0}.

Thus, both formulas of upper bound in [20] and this paper contain 2* scenarios,
but they cannot be transformed to each other by a simple one-one corresponding
primal-dual relation.
Example 1 Consider the interval quadratic program
min [2, 3]2% + 225 — 22,25 + [5, =3z + [1, 2]z,
subject to [1,2]zy + z2 < [2,4],
2, 3]x1 + [—1, —0.5]xze < [3,4],
[4,5]x; + [—8, =T]ze = [1,1.5],
T1,xo > 0.
This is the same example discussed in Hladik [20]. The corresponding interval
matrices and vectors are

o= (4 7)o (a2 (03 alom)
b= (Ejﬂ) ,B=([4,5] [-8,-7]),d=([1,1.5]).

We only discuss the solution procedure of the upper bound of the optimal value
range, since the method for finding the lower bound is simple and it is the same in
[20]. Note that the interval vector d € IR' is one-dimensional and use Theorem 3.1,

we determine the upper bound by computing the following two quadratic programs.
D Let y =1, then

f(A, Bye, b,©,dy, Q) = f(A, B, b,¢,d, Q)
so we have
min Sx% + 2:103 — 2x1209 — 321 + 229
subject to 2xy + x9 < 2,

3331 — O5£C2 S 3,
4$1 - 8:132 = 15,
L1, L2 > 0.
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Solving this quadratic problem, the optimal value is f(A, B,b,¢,d, Q) ~ —0.7047.
@) Let y = —1, then

f(z) By@a b? Ea dy7 @) = f(za E; ba E; da @)
so we have

min Sxf + 2x§ — 221709 — 311 + 229
subject to 2x; + x4 < 2,

31 — 0.5y < 3,
533'1 — 7(52 = 1,
r1,29 > 0

The optimal value of this problem is f(A, B,b,¢ d, Q) ~ —0.5217. So the upper
bound is

F(A,B,b,c,d, Q) ~ maz{—0.7047, —0.5217} = —0.5217.

Due to the duality gap is zero, then we compute the upper bound by the method
proposed in [20] and obtain two corresponding optimal values f; ~ —0.5217 and
fa = —0.75 (see example 9 in [20]), we also obtain

f(A,B,b,c,d, Q) = max{fi, fo} = max{-0.75,-0.5217} = —0.5217.

Note that two sets {—0.75,—0.5217} and {—0.7047,—0.5217} are not the same.
Hence, this example shows that although two different computing methods obtain
the same upper bound, but the sets of optimal values of scenarios considered in two
methods are not one to one corresponding.

Example 2 Consider the interval quadratic program

min 227 + %x% — 2x129 + [—5, ]2y + [—4, =322
subject to  — 2z + [—2, 1]z, < [1,4],

[4, 5]z, — 225 = 2,

621 + [—4, =3|zy = 1.4,

x1, w9 > 0.

The corresponding interval matrices and vectors are

o~ <_42 —12> o= <[[__45_1%]> A= (=2 [-2,1]),

b=([1,4),B = <[4é5] [_;2_3]> d= <1?4> '

The lower bound of the optimal value function can be determined by convex
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quadratic program

min 2z7 + %x% — 22179 — bz — 479
subject to — 2x1 — 219 < 4,
4ay — 2x9 < 2,
0T — 2x9 > 2,
6x1 — 4y < 1.4,
621 — 319 > 1.4,
1, T2 > 0.
It can be shown that f = —oo (unbounded).

We first compute the upper bound by Theorem 3.1.
composed into four convex quadratic programs

1
min 21’% + 53:3 — 2x129 + 21 — 322

subject to — 2x1 + x5 < 1,
4551 - 21’2 = 2,
6%1 — 31‘2 = 14,

Ty, T2 2 O,

and

1
min 21% + 51:% — 22129 + 21 — 379

subject to —2x7 + x5 < 1,
4(E1 — 2I2 = 2,
63)1 — 4332 = 14,

x1, w9 = 0.

and

1
min Qx? + 5953 — 2x1%9 + 11 — 329

subject to — 2x1 + x5 < 1,
5I1 — 21‘2 = 2,
611 — 3y = 1.4,

Ty, T2 2 0,
and
: 2 1o
min 2x] + 5:}52 — 2x129 + 11 — 329

subject to — 2z + x5 < 1,

511 — 2T9 = 2,
63)1 — 4332 = 14,
x1,xe = 0.

12

This problem can be de-

(26)




We can get the program (26) is infeasible and hence the optimal value is co. The
optimal values of the three remaining problems are —3, — 3.8244, — 0.9972, re-
spectively. Thus, f = oo.

Now we compute this example by the method proposed in [20]. Consider four
problems

1
fi=sup — 2uf - §u§ + 2uiuy — v — 2wy — 1.4w,
subject to 4u; — 2us — 2v + bwy 4+ 6ws + 1 > 0,
—2uy +ug + v — 2wy — 3wy — 3 > 0,

U, Wy, W2 > 0.

and
2 1,
fo=sup —2uj — §u2 + 2u U — v — 2wy — 1.4wy
subject to 4u; — 2us — 20 4 bwy + 6wy + 1 >0,
—2uy +us + v — 2wy — 4wy — 3 > 0,
v, wy, —ws > 0.
and
2 1
fs=sup —2uj — §u2 + 2ujug — v — 2wy — 1.4w,
subject to 4uy — 2us — 2v + 4wy + 6ws + 1 > 0,
—2u1 4+ ug + v — 2wy — 3wy — 3 > 0,
v, —wi, wy > 0.
and
2 1o
fa=sup —2uj— §u2 + 2uquy — v — 2w — 1.4ws
subject to 4u; — 2us — 2v + 4wy 4+ 6ws + 1 > 0,
—2u1 + Uus + v — 2wy — 4wy — 3 > 0,
v, —wy, —wsy > 0.
It can be shown that four corresponding optimal values are f; = —22.5, fo =

40.6848, f3 = —oo and f; = 0.6650, respectively. Thus we have f, = 40.6848. Note
that the condition of zero duality gap is not satisfied in this example, so we only
know that f > f,. O

It is worth pointing out that, all the known methods for computing the upper
bound, though important theoretically, are applicable only in a small dimension.
This is not surprising in view of NP-hardness of the problem. Thus, an interesting
subject worthy of further research is to derive suitable methods for upper bound
approximations for interval quadratic program. An efficient method for finding the

approximation for upper bound of the interval linear program has been developed
in [17].
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