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GENERALIZED CONFORMABLE FRACTIONAL OPERATORS

TAHIR ULLAH KHAN1 AND MUHAMMAD ADIL KHAN1

Abstract. In [1] T. Abdeljawad has put an open problem, which is stated as: “Is it hard
to fractionalize the conformable fractional calculus, either by iterating the conformable
fractional derivative (Grunwald-Letnikov approach) or by iterating the conformable frac-
tional integral of order 0 < α ≤ 1 (Riemann approach)?. Notice that when α = 0 we
obtain Hadamard type fractional integrals”.
In this article we claim that yes it is possible to iterate the conformable fractional integral
of order 0 < α ≤ 1 (Riemann approach), such that when α = 0 we obtain Hadamard frac-
tional integrals. First of all we prove Cauchy integral formula for repeated conformable
fractional integral and proceed to define new generalized conformable fractional integral
and derivative operators (left and right sided). We also prove some basic properties which
are satisfied by these operators. These operators (integral and derivative) are the gener-
alizations of Katugampola operators, Riemann-Liouville fractional operators, Hadamard
fractional operators. We apply our results to a simple function. Also we consider a
nonlinear fractional differential equation using this new formulation. We show that this
equation is equivalent to a Volterra integral equation and demonstrate the existence and
uniqueness of solution to the nonlinear problem. At the end, we give conclusion and
point out an open problem.

1. Introduction and Preliminaries

The idea of fractional calculus has impelled a host of researchers towards it for a last few
decades. Work has been carried out on it on a large scale and everyone has awakened its
various aspects. The contributions of Euler, Laplace, Fourier, Abel, Liouville, Riemann,
Grunwald, Letnikov, Hadamard and in the present century, Weyl, Riesz, Marchaud, Kober
and Caputo are remarkable in this field [1–10]. Most of these researchers initially intro-
duced fractional integrals, on the basis of which the associated fractional derivative and
other related results were produced. Some of the most explored and commonly used defi-
nitions of fractional integrals are given below.
The right-sided Riemann-Liouville fractional integral operator of order β > 0 is given by
[20]:

Jβ
p+
φ(r) =

1

Γ(β)

r∫

p

(r − w)β−1φ(w)dw, with r > p, (1)
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which is based on the iteration of the Riemann integral operator
r∫
p
φ(w)dw. The Hadamard

fractional integral introduced by J. Hadamard [13], for β > 0 is given by:

Hβ
p+
φ(r) =

1

Γ(β)

r∫

p

(
log

r

w

)β−1
φ(w)

dw

w
, with r > p, (2)

which is based on iterating the integral operator
r∫
p
φ(w)dww . Udita N. Katugampola has

defined a generalized Katugampola integral operator [14], which for β > 0, τ 6= −1 is
given by:

τ
pI
β
r φ(r) =

(τ + 1)1−β

Γ(β)

r∫

p

(
rτ+1 − wτ+1

)β−1
φ(w)wτdw, r > p (3)

and is the generalization of both the above operators defined in (1) and (2). The operator

in (3) is based on the iteration of the integral operator
r∫
p
φ(w)wτdw. Concurrently with

the operators (1), (2) and (3) their corresponding left-sided versions were also determined.
Also by using these fractional integral operators, the associated fractional derivative op-
erators were defined [13,14,20].
Khalil et al. [4] have discovered novel definitions of fractional derivative and connected
integral which are given below.

Definition 1 ([4]). For φ : [0,∞)→ R, the conformable fractional derivative of φ of order
α ∈ (0, 1], at point w ∈ (0,∞) is defined as:

Tαφ(w) = lim
ε→0

φ(w + εw1−α)− φ(w)

ε
, (4)

for w = 0, it is defined as:

Tαφ(0) = lim
w→0+

Tαφ(w).

If the conformable fractional derivative of φ of order α exists, then we say that φ is
α-differentiable.

If φ is ordinary differentiable then the connection of conformable fractional derivative
with the ordinary derivative for w > 0 is given by:

Tαφ(w) = w1−αφ′(w), (5)

where φ′(w) denotes the ordinary derivative of φ at the point w. It is simple to prove
that a function could be α-differentiable at a point but not ordinary differentiable, see for
detail [4]. This new definition is simple and satisfies almost all basic properties which the
ordinary derivative does. These properties are given in the following theorem.
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Theorem 1 ([4]). Let α ∈ (0, 1] and φ1, φ2 be α-differentiable functions at a point w > 0.
Then for any µ1, µ2 ∈ R, we have:

(1) Tα (µ1φ1 + µ2φ2) = µ1Tα(φ1) + µ2Tα(φ2).

(2) Tα (tr) = rtr−α, ∀ r ∈ R.
(3) Tα (c) = 0, ∀ c ∈ R.
(4) Tα (φ1φ2) = φ2Tα(φ1) + φ1Tα(φ2).

(5) Tα

(
φ1

φ2

)
=
φ2Tα(φ1)− φ1Tα(φ2)

φ2
2

.

The authors in [4] have also defined the conformable fractional integral of order 0 <
α ≤ 1 (about which an open problem was posed in [1]). This is defined as under.

Theorem 2 ([4]). Let α ∈ (0, 1], the conformable fractional integral of the continuous
function φ : [p, q] ⊆ [0,∞)→ R, of order α is defined as:

Iα(φ)(w) =

q∫

p

φ(w)dαw :=

q∫

p

φ(w)wα−1dw, (6)

where the integral
q∫
p
dw, on the right side represents the classical Riemann integral.

The inverse property is given in the following Theorem:

Theorem 3 ([4]). For any continuous function φ in the domain of Iα, we have:

TαIαφ(r) = φ(r).

In this paper, to give answer to the open problem given in [1] we define new generalized
conformable fractional integral operators (right-sided and left-sided), by iterating con-
formable integral of order α ∈ (0, 1]. We prove semigroup property and linearity property
for these operators. After introducing new fractional integral operators, we define the as-
sociated right-sided and left-sided generalized conformable fractional derivative operators.
The semigroup property and linearity property are also proved for generalized conformable
fractional derivative operator. By making use of these operators we also define Riemann-
Liouville type conformable fractional operators. Our newly defined fractional operators
are the generalizations of the Katugampola fractional operators, Riemann-Liouville frac-
tional operators and Hadamard fractional integral operators. We apply our fractional
differential operator to a simple function. Also we consider a nonlinear fractional differ-
ential equation using this new formulation. We show that this equation is equivalent to
a Volterra integral equation and demonstrate the existence and uniqueness of solution to
the nonlinear problem. At the end, we give conclusion and point out an open problem.

2. Generalized conformable fractional integral operators

Throughout this paper, we consider α ∈ (0, 1], τ ∈ R such that τ +α 6= 0. Also we take

0 ≤ p < q, Lα[p, q] = {φ(w) :
q∫
p
φ(w)dαw < ∞}. Define an operator τ

αKp+ : Lα[p, q] → R
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by:

τ
αKp+φ(r) =

r∫

p

φ(w)wτdαw, r ∈ [p, q],

and τ
αKq− : Lα[p, q]→ R by:

τ
αKq−φ(r) =

q∫

r

φ(w)wτdαw, r ∈ [p, q].

Here
∫
dαw represents the conformable fractional integral, which was defined in (6).

To define new generalized conformable fractional integral operators we need to prove the
following result.

Theorem 4. (Cauchy Integral Formula for Repeated Conformable Integrals):
Let φ ∈ Lα[p, q]. Then the n times repeated right-sided and left-sided conformable frac-
tional integrals are given by the single conformable fractional integrals

τ
αK

n
p+φ(r) =

r∫

p

rτ1

r1∫

p

rτ2

r3∫

p

rτ2 ...

rn−1∫

p

φ(rn)rτndαrn...dαr2dαr1

=
1

(n− 1)!

r∫

p

(
rτ+α − wτ+α

τ + α

)n−1

φ(w)wτdαw (7)

and

τ
αK

n
q−φ(r) =

q∫

r

rτ1

q∫

r1

rτ2

q∫

r2

...

q∫

rn−1

φ(rn)rτndαrn...dαr2dαr1

=
1

(n− 1)!

q∫

r

(
wτ+α − rτ+α

τ + α

)n−1

φ(w)wτdαw, (8)

respectively.

Proof. First we prove (7). For n = 1, we have

τ
αK

1
p+φ(r) =

r∫

p

φ(w)wτdαw,

which is just the definition of ταKp+ and hence true.
Now we prove for n = 2. Let us define

ϕ(r) =

r∫

p

(
rτ+α − wτ+α

τ + α

)
φ(w)wτdαw, (9)
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which is the right hand side of (7) when n = 2. So we want to show that ϕ(r) = τ
αK

2
p+φ(r).

Since

ϕ(r) =
1

τ + α


rτ+α

r∫

p

φ(w)wτdαw −
r∫

p

wτ+αφ(w)wτdαw


 . (10)

By taking the conformable derivative of both sides of (10) with respect to r, we get

Tαϕ(r) =
1

τ + α

[
rτ+αTα

r∫

p

φ(w)wτdαw

+

r∫

p

φ(w)wτdαwTαr
τ+α − Tα

r∫

p

wτ+αφ(w)wτdαw

]

=
1

τ + α


rτ+αφ(r)rτ + (τ + α)rτ

r∫

p

φ(w)wτdαw − rτ+αφ(r)rτ




= rτ
r∫

p

φ(w)wτdαw = rτ ταKp+φ(r).

Since (9) implies that ϕ(p) = 0, so

ϕ(r) = ϕ(r)− ϕ(p) =

r∫

p

Tαϕ(w)dαw =

r∫

p

τ
αKp+φ(w)wτdαw = τ

αK
2
p+φ(r).

Generally for any n ∈ N, the proof is similar. First we expand the term (rτ+α−wτ+α)n−1

by the Binomial Theorem, and then write ϕ(r) as written in (10) and take all the terms
containing rτ+α outside the integral sign. The process is then similar as above, this shows
that (7) is true for every positive integer n.
The identity (8) can be proved in the similar way by iterating the single integral ταKq−φ(r) =
q∫
r
φ(w)wτdαw, instead of ταKp+φ(r) =

r∫
p
φ(w)wτdαw. �

Construction of new integral operators:

Consider the results obtained in Theorem 4.

τ
αK

n
p+φ(r) =

1

(n− 1)!

r∫

p

(
rτ+α − wτ+α

τ + α

)n−1

φ(w)wτdαw, (11)

τ
αK

n
q−φ(r) =

1

(n− 1)!

q∫

r

(
wτ+α − rτ+α

τ + α

)n−1

φ(w)wτdαw. (12)
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In these cases we are applying the conformable integral operators ταKp+ or ταKq− , n times.
Where n is restricted to be a positive integer. We generalize it and use a positive real num-
ber instead of positive integer n, which is what the fractional calculus requires, that is, the
generalization of integer-order differentiation or n-fold integration. As in the case of pre-
viously defined fractional operators (integral or derivative), replacing the positive integer
n by a positive real number β and using the gamma function, which is the generalization
of the factorial function, we get new right-sided and left-sided generalized conformable
fractional integral operators, which are defined below:

Definition 2. Let φ be a conformable integrable function on the interval [p, q] ⊆ [0,∞).

The right-sided and left-sided generalized conformable fractional integrals ταK
β
p+

and τ
αK

β
q−

of order β > 0 with α ∈ (0, 1], τ ∈ R, α+ τ 6= 0 are defined by:

τ
αK

β
p+
φ(r) =

1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

φ(w)wτdαw, r > p

and

τ
αK

β
q−φ(r) =

1

Γ(β)

q∫

r

(
wτ+α − rτ+α

τ + α

)β−1

φ(w)wτdαw, q > r,

respectively, and τ
αK

0
p+φ(r) = τ

αK
0
q−φ(r) = φ(r). Here Γ denotes the well-known gamma

function.

Remark 1. (1). For τ = 0 in the above Definition 2, we get the Riemann Liouville type
conformable fractional integral operators, which are given below:

τ
αK

β
p+
φ(r) =

1

Γ(β)

r∫

p

(
rα − wα

α

)β−1

φ(w)dαw, r > p (13)

and

τ
αK

β
q−φ(r) =

1

Γ(β)

q∫

r

(
wα − rα

α

)β−1

φ(w)dαw, q > r, (14)

respectively, and τ
αK

0
p+φ(r) = τ

αK
0
q−φ(r) = φ(r). Here Γ denotes the well-known gamma

function.
Note that the operators in (13) and (14) can also be obtained by taking the conformable

integral operators
r∫
p
φ(w)dαw and

q∫
r
φ(w)dαw and iterating in the manner as done above

in Theorem 4.
(2) Using the definition of conformable integral given in (6) and L’Hospital rule it is
straightforward that when α → 0 in (13) and (14), we get the Hadamard fractional
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integrals:

p+K
β
0 φ(r) =

1

Γ(β)

r∫

p

(
log

r

w

)β−1
φ(w)

dw

w
, r > p,

q−K
β
0 φ(r) =

1

Γ(β)

q∫

r

(
log

w

r

)β−1
φ(w)

dw

w
, r < q.

(3) For α = 1, we get the Riemann-Liouville fractional integrals:

p+K
β
1 φ(r) =

1

Γ(β)

r∫

p

(r − w)β−1 φ(w)dw, r > p,

q−K
β
1 φ(r) =

1

Γ(β)

q∫

r

(w − r)β−1 φ(w)dw, r < q.

(4) For the case β = 1 in Definition 2, we get the conformable fractional integrals. And
when α = β = 1, τ = 0 we get classical Riemann integrals.

Now we prove some basic properties for the obtained generalized operators.

Theorem 5. Let φ ∈ Lα[p, q], where 0 ≤ p < q. For α ∈ (0, 1], β > 0 we have

lim
β→0

τ
αK

β
p+
φ(r) = τ

αK
0
p+φ(r) = φ(r), (15)

lim
β→0

τ
αK

β
q−φ(r) = τ

αK
0
q−φ(r) = φ(r). (16)

Proof. Applying the relation (6), integration by parts and well-known property of Beta
function:

τ
αK

β
p+
φ(r) =

1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

φ(w)wτdαw

=
1

βΓ(β)
φ(p)

(
rτ+α − pτ+α

τ + α

)β
+

1

βΓ(β)

r∫

p

Tαφ(w)

(
rτ+α − wτ+α

τ + α

)β
dαw

=
1

Γ(β + 1)
φ(p)

(
rτ+α − pα
τ + α

)β
+

1

Γ(β + 1)

r∫

p

Tαφ(w)

(
rτ+α − wτ+α

τ + α

)β
dαw.

Taking limit as β → 0, we have

lim
β→0

τ
αK

β
p+
φ(r) = τ

αK
0
p+φ(r) = φ(p) +

r∫

p

Tαφ(w)wτdαw = φ(r).

The proof is similar for (16). �
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Now we prove semigroup property for this newly defined operator. This property makes
possible not only the definition of new integral, but also of new differentiation, by taking

enough derivatives of ταK
β
p+
φ(r) and τ

αK
β
q−φ(r), which we will discuss in next section.

Theorem 6. (Semigroup Property). Let φ : [p, q] ⊆ [0,∞) → R be a conformable
integrable function. Then for β1, β2 > 0 and α ∈ (0, 1] we have:

τ
αK

β1
p+
τ
αK

β2
p+
φ(r) = τ

αK
β1+β2
p+

φ(r)

=
1

Γ(β1 + β2)

r∫

p

(
rτ+α − wτ+α

τ + α

)β1+β2−1

φ(w)wτdαw. (17)

τ
αK

β1
q−
τ
αK

β2
q−φ(r) = τ

αK
β1+β2
q− φ(r)

=
1

Γ(β1 + β2)

q∫

r

(
wτ+α − rτ+α

τ + α

)β1+β2−1

φ(w)wτdαw. (18)

Proof. Consider

τ
αK

β1
p+
τ
αK

β2
p+
φ(r)

=
1

Γ(β1)

r∫

p

(
rτ+α − wτ+α

τ + α

)β1−1
τ
αK

β2
p+
φ(w)wτdαw

=
1

Γ(β1)Γ(β2)

r∫

p

(
rτ+α − wτ+α

τ + α

)β1−1

wτ
w∫

p

(
wτ+α − sτ+α

τ + α

)β2−1

φ(s)sτdαsdαw

=
(τ + α)2−(β1+β2)

Γ(β1)Γ(β2)

r∫

p

φ(s)sτ
r∫

s

(
rτ+α − wτ+α

)β1−1 (
wτ+α − sτ+α

)β2−1
wα−1+τdwdαs,

where in the last step we have exchanged the order of integration using Fubini’s Theorem
and applied the relation (6). Changing variables to l defined by, wτ+α = sτ+α + (rτ+α −
sτ+α)l, in the inner integral

τ
αK

β1
p+
τ
αK

β2
p+
φ(r)

=
(τ + α)1−(β1+β2)

Γ(β1)Γ(β2)

r∫

p

(
rτ+α − sτ+α

)β1+β2−1
φ(s)sτ

1∫

0

lβ2−1 (1− l)β1−1 dldαs

=
1

Γ(β1 + β2)

r∫

p

(
rτ+α − sτ+α

τ + α

)β1+β2−1

φ(s)sτdαs.

= τ
αK

β1+β2
p+

φ(r),
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where
1∫

0

lβ2−1 (1− l)β1−1 dl =
Γ(β1)Γ(β2)

Γ(β1 + β2)

is the well known Euler Beta function.
The equation (18) can be proved in the same way. This completes the proof. �

If we consider a bounded interval [p, q], such that p ≥ 0. The operators ταK
β
p+

and τ
αK

β
q−

associate the function τ
αK

β
p+
φ(r) and τ

αK
β
q−φ(r) to each conformable integrable function φ

on [p, q]. Thus these are linear operators, which is proved in the following theorem.

Theorem 7. (Linearity). The operators ταK
β
p+

and τ
αK

β
q− are linear operators on Lα[p, q].

That is, define

τ
αK

β
p+
, ταK

β
q− : Lα[p, q]→ Lα[p, q],

then

τ
αK

β
p+

(µ1φ1 + µ2φ2) = µ1
τ
αK

β
p+
φ1 + µ2

τ
αK

β
p+
φ2,

τ
αK

β
q− (µ1φ1 + µ2φ2) = µ1

τ
αK

β
q−φ1 + µ2

τ
αK

β
q−φ2.

For all φ1, φ2 ∈ Lα[p, q] and µ1, µ2 ∈ R.

Proof. The proof is simple, consider

τ
αK

β
p+

(µ1φ1 + µ2φ2) (r) =
1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

(µ1φ1 + µ2φ2) (w)wτdαw

=
µ1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

φ1(w)wτdαw

+
µ2

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

φ2(w)wτdαw

= µ1
τ
αK

β
p+
φ1(r) + µ2

τ
αK

β
p+
φ2(r).

Similarly

τ
αK

β
q− (µ1φ1 + µ2φ2) (r) = µ1

τ
αK

β
q−φ1(r) + µ2

τ
αK

β
q−φ2(r).

�

In the following theorem we prove that the operators τ
αK

β
p+

and τ
αK

β
q− are bounded on

the space Lα[p, q].
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Theorem 8. (Boundedness). The operators τ
αK

β
p+

and τ
αK

β
q− are bounded operators on

Lα[p, q]. That is, define

τ
αK

β
p+
, ταK

β
q− : Lα[p, q]→ Lα[p, q],

then ∥∥∥ταKβ
p+
φ
∥∥∥ ≤M ‖φ‖C ,

∥∥∥ταKβ
q−φ

∥∥∥ ≤M ‖φ‖C , (19)

where ‖φ‖C = maxr∈[p,q] |φ(r)|, M = |(τ+α)−β |
β+1 (qτ+α − pτ+α)β

Proof. The proof is simple, we consider

∥∥∥ταKβ
p+
φ(r)

∥∥∥ =

∥∥∥∥∥∥
1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

φ(w)wτdαw

∥∥∥∥∥∥

≤ |(τ + α)1−β|
Γ(β)

‖φ‖C
r∫

p

(
rτ+α − wτ+α

)β−1
wτ+α−1dw

≤ |(τ + α)1−β|
Γ(β + 1)

‖φ‖C
(
qτ+α − pτ+α

)β
. (20)

In the case of the right generalized conformable fractional integral operator τ
αK

β
q− , the

proof is similar. �

3. Generalized Conformable Fractional Derivative

Because the Riemann-Liouville approach to the generalized conformable fractional in-
tegrals began with an expression involving repeated conformable integration of a function.
One can adopt the Grunwald-Letnikov approach to construct a fractional derivative oper-
ator firstly, on the basis of which the fractional integral operator can be defined. However,
it is also possible to frame a definition for the generalized conformable fractional deriva-
tive using the definition already obtained above for the related integral. Now keeping the
above integral operators under consideration, we define the right and left sided generalized
conformable fractional derivative operators as follows:

Definition 3. Let φ be a conformable integrable function on the interval [p, q]. The right

and left sided generalized conformable fractional derivative operators τ
αT

β
p+

and τ
αT

β
q− of

order 0 < β < 1, α ∈ (0, 1] with p ≥ 0 are defined by:

τ
αT

β
p+
φ(r) =

r−τ

Γ(1− β)
Tα

r∫

p

(
rτ+α − wτ+α

τ + α

)−β
φ(w)wτdαw, r > p

τ
αT

β
q−φ(r) =

r−τ

Γ(1− β)
Tα

q∫

r

(
rτ+α − wτ+α

τ + α

)−β
φ(w)wτdαw, q > r,
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respectively, and τ
αT

0
p+φ(r) = τ

αT
0
q−φ(r) = φ(r). Here Γ denotes the gamma function and

Tα denotes the conformable derivative of order α .

To proceed further we need to prove the following theorem which shows the relation
between the fractional integral and derivative operators.

Theorem 9. Let φ : [p, q] ⊆ [0,∞) → R be a conformable integrable function. Then for
0 < β < 1 and α ∈ (0, 1] we have:

τ
αT

β
p+
φ(r) =

φ(p)(τ + α)β (rτ+α − pτ+α)
−β

Γ(1− β)
+ τ
αK

1−β
p+

(
r1−(τ+α) d

dr
φ(r)

)
(21)

Proof. Let u′(w) = wτ+α−1 (rτ+α − wτ+α)
−β

, v(w) = φ(w)− φ(p).
Consider

r∫

p

u′(w)v(w)dw =

r∫

p

wτ+α−1
(
rτ+α − wτ+α

)−β
(φ(w)− φ(p))dw

⇒ d

dr

r∫

p

u′(w)v(w)dw =
d

dr

r∫

p

wτ+α−1
(
rτ+α − wτ+α

)−β
(φ(w)− φ(p))dw

multiplying both sides by (τ+α)βr1−(τ+α)

Γ(1−β) , we get

(τ + α)βr1−(τ+α)

Γ(1− β)

d

dr

r∫

p

u′(w)v(w)dw

=
(τ + α)βr1−(τ+α)

Γ(1− β)

d

dr

r∫

p

wτ+α−1
(
rτ+α − wτ+α

)−β
(φ(w)− φ(p))dw

= I1 + I2, (22)

where

I1 =
(τ + α)βr1−(τ+α)

Γ(1− β)

d

dr

r∫

p

wτwα−1
(
rτ+α − wτ+α

)−β
φ(w)dw

=
r1−(τ+α)

Γ(1− β)

d

dr

r∫

p

wτ
(
rτ+α − wτ+α

τ + α

)−β
φ(w)dαw

=
r1−(τ+α).rα−1

Γ(1− β)
Tα

r∫

p

wτ
(
rτ+α − wτ+α

τ + α

)−β
φ(w)dαw = τ

αT
β
p+
φ(r). (23)
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Also

I2 =
(τ + α)βr1−(τ+α)

Γ(1− β)

d

dr

r∫

p

wτ+α−1
(
rτ+α − wτ+α

)−β
φ(p)dw

=
r1−(τ+α)(τ + α)β−1

Γ(1− β)

d

dr

r∫

p

(−(τ + α)wτ+α−1)
(
rτ+α − wτ+α

)−β
φ(p)dw

=
r1−(τ+α)(τ + α)β−1φ(p)

(β − 1)Γ(1− β)

d

dr

(
rτ+α − pτ+α

)−β+1

=
−φ(p)

Γ(1− β)

(
rτ+α − pτ+α

τ + α

)−β
. (24)

putting values in (22), we get

(τ + α)βr1−(τ+α)

Γ(1− β)

d

dr

r∫

p

u′(w)v(w)dw = τ
αT

β
p+
φ(r)− φ(p)

Γ(1− β)

(
rτ+α − pτ+α

τ + α

)−β
. (25)

Now considering the left side of (25) and differentiating the integral with respect to variable
r, we get:

(τ + α)βr1−(τ+α)

Γ(1− β)

d

dr

r∫

p

u′(w)v(w)dw =
(τ + α)β

Γ(1− β)

r∫

p

(
rτ+α − wτ+α

)−β
φ′(w)dw.

= τ
αK

1−β
p+

(
r1−(τ+α) d

dr
φ(r)

)
(26)

From (25) and (26) we get the required result. �

We prove the inverse property for the defined generalized operators in the following
theorem.

Theorem 10. (Inverse Property.)For any continuous function φ in the domain of
τ
αK

β
p+

, ταK
β
q−, ταT

β
p+

and τ
αT

β
q− we have

τ
αT

β
p+
τ
αK

β
p+
φ(r) = φ(r), τ

αT
β
q−
τ
αK

β
q−φ(r) = φ(r). (27)

Similarly

τ
αK

β
p+
τ
αT

β
p+
φ(r) = φ(r), τ

αK
β
q−
τ
αT

β
q−φ(r) = φ(r). (28)
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Proof. Consider

τ
αT

β
p+
τ
αK

β
p+
φ(r)

=
r−τ

Γ(1− β)
Tα

r∫

p

(
rτ+α − wτ+α

τ + α

)−β
τ
αK

β
p+
φ(w)wτdαw

=
r−τ

Γ(1− β)Γ(β)
Tα

r∫

p

(
rτ+α − wτ+α

τ + α

)−β
wτ

w∫

p

(
wτ+α − sτ+α

τ + α

)β−1

φ(s)sτdαsdαw

=
r−τ (τ + α)

Γ(1− β)Γ(β)
Tα

r∫

p

w∫

p

(
rτ+α − wτ+α

)−β (
wτ+α − sτ+α

)β−1
wτφ(s)sτdαsdαw.

Switching the order of integration and changing variables to u, define wτ+α = sτ+α +
(rτ+α − sτ+α)u,

τ
αT

β
p+
τ
αK

β
p+
φ(r) =

r−τ

Γ(1− β)Γ(β)
Tα

r∫

p

1∫

0

uβ−1 (1− u)−β φ(s)sτdudαs

= r−τTα

r∫

p

φ(s)sτdαs

= φ(r),

where

1∫

0

uβ−1 (1− u)−β du = B(β, 1− β) = Γ(β)Γ(1− β).

Similarly we can prove that

τ
αT

β
q−
τ
αK

β
q−φ(r) = φ(r).

To prove (28), we proceed as under:

Applying the operator ταK
β
p+

to both sides of (21) and using the relations (5) and (17), we
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get:

τ
αK

β
p+
τ
αT

β
p+
φ(r)

=
φ(p)(τ + α)β

Γ(1− β)
τ
αK

β
p+

(
rτ+α − pτ+α

)−β
+ τ
αK

β
p+

(
τ
αK

1−β
p+

(
r−τTαφ(r)

))

=
φ(p)(τ + α)β

Γ(1− β)

1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1 (
wτ+α − pτ+α

)−β
wτdαw

+τ
αKp+

(
r−τTαφ(r)

)

=
φ(p)(τ + α)

Γ(β)Γ(1− β)

r∫

p

(
rτ+α − wτ+α

)β−1 (
wτ+α − pτ+α

)−β
wτ+α−1dw + φ(r)− φ(p)

=
φ(p)(τ + α)

Γ(β)Γ(1− β)

r∫

p

(
rτ+α − wτ+α

)β−1 (
wτ+α − pτ+α

)−β
wτ+α−1dw + φ(r)− φ(p).

(29)

Changing variables to u defined by, wτ+α = pτ+α + (rτ+α − pτ+α)u, in the inner integral,
we get from (29):

τ
αK

β
p+
τ
αT

β
p+
φ(r) =

φ(p)

Γ(β)Γ(1− β)

1∫

0

u−β(1− u)β−1du+ φ(r)− φ(p)

=
φ(p)

Γ(β)Γ(1− β)
Γ(β)Γ(1− β) + φ(r)− φ(p)

= φ(r).

Which is the required proof. �

Theorem 11. (Linearity.)The generalized conformable fractional derivative operators
are linear on its domain, that is:

τ
αT

β
p+

(µ1φ1 + µ2φ2) = µ1
τ
αT

β
p+
φ1 + µ2

τ
αT

β
p+
φ2,

τ
αT

β
q− (µ1φ1 + µ2φ2) = µ1

τ
αT

β
q−φ1 + µ2

τ
αT

β
q−φ2,

for all φ1, φ2 ∈ Lα[p, q] and µ1, µ2 ∈ R.

Proof. The proof is similar to the proof of Theorem 7. �

Theorem 12. (Semigroup Property). Let φ : [p, q] ⊆ [0,∞) → R be a conformable
integrable function. Then for 0 < β1 < 1, 0 < β2 < 1 and α ∈ (0, 1] we have:

τ
αT

β1
p+
τ
αT

β2
p+
φ(r) = τ

αT
β1+β2
p+

φ(r)

τ
αT

β1
q−
τ
αT

β2
q−φ(r) = τ

αT
β1+β2
q− φ(r).
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Proof. The proof is similar to the proof of Theorem 6. �
We consider an example to illustrate the results. We shall find the generalized con-

formable fractional derivative of the power function and explore the response for different
values of α, β, λ and τ .

Example. Consider the function φ(r) = rλ, λ ∈ R, r ≥ 0. Then for 0 < β < 1,
α ∈ (0, 1] we have

τ
αT

β
0+
φ(r) =

Γ(1 + λ
τ+α)(τ + α)β−1

Γ(1− β + λ
τ+α)

r−β(τ+α)+λ.

Proof. The proof is simple by taking p = 0 in the above Definition 3, we get:

τ
αT

β
0+
rλ =

r−τ

Γ(1− β)
Tα

r∫

0

(
rτ+α − wτ+α

τ + α

)−β
wλwτdαw

=
r−τ (τ + α)β

Γ(1− β)
Tα

r∫

0

(
rτ+α − wτ+α

)−β
wλwτ+α−1dw. (30)

Making the substitution wτ+α = urτ+α in (30) and using the relations

1∫

0

ua−1 (1− u)b−1 du = B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
and Γ(t+ 1) = tΓ(t),

we get the required result. �
Remark 2. It is interesting to note that for α = 1, β = 1 and τ = 0, we obtain
0
1T

1
0+r

λ = λrλ−1, as one would expect the ordinary derivative.

4. Applications to integral equations and fractional differential
equations

As mentioned above that our newly obtained fractional operators generalize R-L oper-
ators, Hadamard operators, Katugampula operators, which have remarkable applications
in various fields [5–8,10,11]. One of the possible applications has been given below (after
this section) in the form of open problem related to image denoising. Moreover in the
following results, we apply our operators to the field of integral equations and fractional
differential equations. we observe that our integral operator is a kind of Volterra integral
operator and this can be used as a solution of the non-linear problem given below. Further
we prove the existence and uniqueness of that solution.

4.1. Equivalence Between the Generalized Non-Linear Problem and the Volterra
Integral Equation. Consider the non-linear fractional differential equation of order
β ∈ (0, 1).

τ
αT

β
p+
φ(r) = f (r, φ(r)) , r ∈ [p, q]. (31)



16 TAHIR ULLAH KHAN1 AND MUHAMMAD ADIL KHAN1

Where f : [p, q] × R → R is a continuous function with respect to all its arguments. We
seek condition that guarantee the existence and uniqueness of solution to the problem (31)
in the set of functions

A =
{
φ ∈ C([p, q]) : ταT

β
p+
φ(r) ∈ C([p, q])

}
.

First, let us observe that, for φ ∈ C([p, q]), the problem (31) is equivalent to the problem
of finding solution to the following Volterra integral equation

φ(r) =
1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

f (w, φ(w))wτdαw. (32)

Indeed, if φ ∈ C([p, q]) satisfies (31), then applying operator τ
αK

β
p+

to the both sides of

(31), and applying relation (28) we obtain equation (32). Conversely, taking r → p+ and

applying operator ταT
β
p+

to both sides of (32), using the relation (27), we arrive to problem

(31).

4.2. Existence and Uniqueness of Solution for the Non-Linear Problem. In the
following theorem the existence and uniqueness of solution to the problem (31) are proved.

Theorem 13. Let f : [p, q]× R→ R be a continuous function and Lipschitz with respect
to the second variable, i.e.,

|f(r, x1)− f(r, x2)| < L|x1 − x2| (33)

for all r ∈ [p, q] and for all x1, x2 ∈ R, L > 0. Then the problem (31) possesses a unique
solution.

Proof. We start by showing that for the problem (31), there exists a unique solution
φ ∈ C([p, q]). Let us recall that the problem (31) is equivalent to the problem of finding so-
lutions to the Volterra integral equation (32). This allows us to use the well known method
for nonlinear Volterra integral equations, where first we prove existence and uniqueness of
solutions on a subinterval of [p, q].
Let us choose p < r1 < q to be such that the following condition is satisfied

0 < L
(τ + α)−β

Γ(β + 1)
(rτ+α

1 − pτ+α)β < 1. (34)

We shall prove the existence of a unique solution φ to (32) on the subinterval [p, r1] ⊆ [p, q].
Let us define the following integral operator, S : C[p, q]→ C[p, q], by:

Sφ(r) =
1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

f (w, φ(w))wτdαw. (35)
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Note that S is well defined and is a bounded operator as proved in Theorem 8. Using
Theorem 8 and condition (33) we get:

‖Sφ1 − Sφ2‖C([p,r1]) =

∥∥∥∥∥∥
1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

(f (w, φ1(w))− f (w, φ2(w)))wτdαw

∥∥∥∥∥∥
C([p,r1])

=
∥∥∥ταKβ

p+
(f(w, φ1(w))− f(w, φ2(w)))

∥∥∥
C([p,r1])

≤ L
∥∥∥ταKβ

p+
(φ1(w)− φ2(w))

∥∥∥
C([p,r1])

≤ L
|(τ + α)−β|
β + 1

(qτ+α − pτ+α)β ‖φ1(w)− φ2(w)‖C([p,r1]) ,

and because condition (34) is satisfied, by the Banach fixed point theorem, there exists a
unique solution φ∗1 ∈ C([p, r1]) to the equation (32) on the interval [p, r1]. Moreover, if
we define the sequence φ1

m(r) := Smφ0(r), for m = 1, 2, 3, ....,

Smφ0(r) =
1

Γ(β)

r∫

p

(
rτ+α − wτ+α

τ + α

)β−1

f
(
w, Sm−1φ0(w)

)
wτdαw (36)

then, again, by the Banach fixed point theorem, we obtain the solution φ∗1 as a limit of
the sequence φ1

m, i.e.,

lim
m→∞

∥∥φ1
m − φ∗1

∥∥
C([p,r1])

= 0. (37)

Now, let us choose r2 = r1 + h1, with h1 > 0 such that r2 < q and

0 < L
(τ + α)−β

Γ(β + 1)
(rτ+α

2 − rτ+α
1 )β < 1. (38)

Consider the interval [r1, r2] and write equation (32) in the form of:

φ(r) =
1

Γ(β)

r∫

r1

(
rτ+α − wτ+α

τ + α

)β−1

f (w, φ(w))wτdαw

+
1

Γ(β)

r1∫

p

(
rτ+α − wτ+α

τ + α

)β−1

f (w, φ(w))wτdαw. (39)

Because on the interval [p, r1], equation (39) possesses a unique solution, we can rewrite
(39) as follows:

φ(r) = φ01(r) +
1

Γ(β)

r∫

r1

(
rτ+α − wτ+α

τ + α

)β−1

f (w, φ(w))wτdαw (40)



18 TAHIR ULLAH KHAN1 AND MUHAMMAD ADIL KHAN1

where

φ01(r) =
1

Γ(β)

r1∫

p

(
rτ+α − wτ+α

τ + α

)β−1

f (w, φ(w))wτdαw. (41)

By the same argument as before, we prove that there exists a unique solution φ∗2 ∈
C([r1, r2]) to equation (32) on [r1, r2]. Repeating the process as above, choosing rk =
rk−1 + hk−1 such that hk−1 > 0, tk < q,

0 < L
(τ + α)−β

Γ(β + 1)
(rτ+α
k − rτ+α

k−1 )β < 1. (42)

We see that equation (32) possesses a solution φ∗k ∈ C([φk−1, φk]) on each interval
[φk−1, φk], (k = 1, ..., l), where p = φ0 < φ1 < < φl = q and we conclude that for
problem (31), there exists a unique solution φ ∈ C([p, q]).

It remains to prove that φ ∈ A, i.e., we need to show that τ
αT

β
0+
φ(r) ∈ C([p, q]). Recall

that our solution φ can be approximated by the sequence φm(r) = Smφ0(r), i.e.,

lim
m→∞

‖φm − φ‖C([p,q]) = 0 (43)

with the choice of certain φm on each interval [p, r1], . . . , [rl−1, q]. Using (31) and the
Lipschitz type condition (33) we have:

∥∥∥ταT βp+φm −
τ
αT

β
p+
φ
∥∥∥
C([p,q])

= ‖f(r, φm)− f(r, φ)‖C([p,q]) ≤ L ‖φm − φ‖C([p,q])

Then taking m→∞, we get

lim
m→∞

∥∥∥ταT βp+φm −
τ
αT

β
p+
φ
∥∥∥
C([p,q])

= 0

Since τ
αT

β
p+
φm(r) = f(r, φm(r)) is continuous on [p, q] we have that τ

αT
β
p+

belongs to the

space C([p, q]). This completes the proof. �

5. Conclusions

According to the open problem asked by T. Abdeljawad in [1], “Is it possible to iterate
the conformable integral of order 0 < α ≤ 1”, we conclude that yes it is possible to iterate
the conformable integral of order 0 < α ≤ 1. For this, when we take the conformable inte-

gral operator
r∫
p
dαt and apply the Riemann-Liouville approach, we get Riemann-Liouville

type conformable fractional operators, where when α → 0 we get Hadamard fractional
operators. Here, just for the sack of generalizations, we apply the Riemann-Liouville

approach to the conformable integral operator
r∫
p
tτdαt instead of

r∫
p
dαt. As a result we

get a more generalized conformable fractional operator, i.e the generalization of all the
Katugampola operators, Riemann-Liouville fractional operators, Riemann-Liouville type
conformable fractional operators, Hadamard fractional operators and so on.
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Open Problem.

In [11], Hamid A. Jalab and Rabha W. Ibrahim have used a generalized Katugampola
integral operator for image denoising. They have used this generalized operator of two
parameters to construct fractional integral mask. Since our newly defined generalized con-
formable integral operators are of Katugampola type and contain three parameters. The
questions arises that is it possible to follow the approach of Hamid A. Jalab and Rabha
W. Ibrahim and use the generalized conformable fractional integral operators to construct
fractional integral mask and use it for image denoising?.
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