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a b s t r a c t

This study relates to nonzero-sum stochastic games with perfect information. It proposes
an efficient combined Chebyshev spectral collocation method (CSCM) with the policy
iteration (PI) algorithm for solving nonlinear coupled Hamilton–Jacobi (HJ) equations.
The proposed approach is comprised of two steps. First, the PI algorithm is used to
reduce the nonlinear coupled HJ equations to a sequence of linear uncoupled PDEs.
Then, these equations are approximated by the CSCM. The CSCM+PI is especially useful
when the CSCM fails due to the increasing number of collocation points for solving
the associated system of nonlinear algebraic equations. The main advantage of the
resulting method is that it converts nonlinear coupled HJ equations to the systems of
linear algebraic equations, which can be solved readily. Convergence analysis of this
method is also provided in detail. To confirm the accuracy and validity of the proposed
computational algorithm, several illustrative examples are presented.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Decision-making in real-world problems often involves situations with two or more decision-makers. Also, they may
consider uncertainties and nonlinearities. Researchers in the 1960s started working on what have been called stochastic
differential (dynamic) games. These problems have drawn a great deal of attention. They have been widely applied to many
problems in different fields ranging from physics to economics. The basic mathematical theory for stochastic differential
games is established in many literatures [1–10].

In this paper, we confine ourselves to nonzero-sum stochastic games with perfect information. Also, we assume that
all players act non-cooperatively and simultaneously. A feedback Nash equilibrium solution is desirable in this case. This
solution can be obtained by solving the coupled second order HJ PDEs resulting from dynamic programming [8–11]. These
equations do not have general closed-form solutions and are very difficult to solve for nonlinear problems. In most cases,
the coupled HJ equations must be solved numerically.

One of the earliest computational methods for obtaining numerical solutions of stochastic optimal control and
differential games is based on Markov chain approximation method (MCAM) [12–16]. The idea behind this method is
to approximate the controlled diffusion process by an appropriate Markov chain on a finite state space. This method
recomputes the transition matrix each time. Generally, it is not very easy to obtain numerical solution of stochastic
differential games by the MCAM.
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A combined multigrid method with the PI algorithm has been developed to solve a class of zero-sum stochastic
differential games [17]. This method seeks the solution on subdomains, and thus incurs the difficulty of dimensionality.

Adaptive dynamic programming (ADP) algorithms have been applied to solve a class of nonzero-sum deterministic
games with infinite horizon [18–21]. In this approach, the PI algorithm and critic neural network (NN) are utilized to solve
the coupled HJ equations. Because of the suitable choice of NN-activation functions, the number of neurons required, and
the training time, implementing this approach can be difficult. To the best of the author’s knowledge, this approach has
not been applied for solving differential games with finite horizon.

In the last two decades, the spectral methods due to their extremely accuracy for solving ODEs and PDEs have been
intensively studied [22–24]. The spectral methods based on the Chebyshev polynomials as basis functions are widely
used because of their exponential convergence rate in the approximation of functions. In this approach, the solution
of the problem is approximated by a linear combination of a finite set of Chebyshev polynomials. Using the derivative
operational matrix and collocation points, the CSCM reduces the problem into a system of nonlinear algebraic equations.
Compared to other numerical methods, it can be shown that the CSCM achieves high accuracy on the whole domain
with relatively fewer grid points [25–28]. However, some difficulties may arise to implement on nonlinear problems. For
instance, if we are not able to solve the system of nonlinear algebraic equations associated with the CSCM, then finding
the approximate solution of the problem may fail as well.

Our aim in this paper, is to present a simple and efficient computational method for solving the coupled second order
HJ equations arising in nonzero-sum stochastic games with finite horizon. This approach combines the PI algorithm and
CSCM. First, the PI algorithm is used to reduce the nonlinear coupled HJ equations to a sequence of linear uncoupled PDEs.
Then, these equations are approximated by the CSCM.

The remainder of the paper is organized as follows. In Section 2, we begin with the problem definition. Some
preliminary details about Chebyshev polynomials are given in Section 3. In Section 4, we describe the technical difficulty of
solving the coupled second order HJ equations by the CSCM. In this section, we develop the CSCM+PI for these equations
and also, convergence results for the method are discussed. Finally, a brief conclusion is given in Section 6.

2. Stochastic differential games with perfect information

Let (Ω,F, P) be a filtered probability space with filtration {Ft}. Consider a stochastic formulation for n-person nonzero-
sum differential game on a finite time interval [t0, tf ] described by the following Itô-sense stochastic differential equation
(SDE):

dx = F (t, x, u1, . . . , un)dt + σ (t, x)dw(t), x(t0) = x0, t ∈ [t0, tf ], (1)

where

F (t, x, u1, . . . , un) = f (t, x) +

n∑
i=1

gi(t, x)ui, (2)

and σ (t, x) are the drift and diffusion terms, respectively. Also, x0 is a given vector in Rk, x ∈ Σ ⊂ Rk is the state process
of system, ui ∈ Ui ⊂ Rmi is a feedback control function implemented by ith player for i = 1, 2, . . . , n.

Definition 2.1 ([29], pp. 130). A control process ui = ui(t, x) is admissible if it is adapted to {Ft} and satisfies a Lipschitz
condition on the closure of [t0, tf ] × Σ .

Let Ui be the set of the admissible control functions ui(t, x) with values in Ui, function F : R×Rk
×Rm1×· · ·×Rmn → Rk,

function σ : R × Rk
→ Rk×k, and the vector w = [w1, w2, . . . , wk]

T is a k-dimensional Wiener process.
The payoff functionals associated with each player are defined as:

Ji(t, x, ui, u−i) = E
[∫ tf

t0

Li(t, x, ui, u−i)dt + qi(tf , x(tf ))
]
, (3)

where

Li(t, x, ui, u−i) = xTQix +

n∑
j=1

uT
j Rijuj, (4)

E[.] denoting the expectation operation, matrices Qi ≥ 0, Rii > 0, and Rij ≥ 0 are symmetric. The non-own control vector
u−i = (uj : j ̸= i) denotes strategies vector of all players except for Player i, and when the game terminates at time tf ,
Player i receives a terminal payment of qi.

We assume that each player wants to minimize his own payoff.

Definition 2.2 ([30], pp. 2). The players’ control actions u∗

i (.) ∈ Ui, i = 1, 2, . . . , n constitute a feedback Nash equilibrium
if for all (t, x) ∈ [t0, tf ] × Rk and for all admissible control actions ui(.) ∈ Ui , i = 1, 2, . . . , n the following inequalities
hold:

Ji(t, x, u∗

i , u
∗

−i) ≤ Ji(t, x, ui, u∗

−i), ∀ui ∈ Ui. (5)
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The value functions Vi(t, x), i = 1, 2, . . . , n associated with the Nash equilibrium point (u∗

i , u
∗

−i) by starting at t and
state x are defined as:

Vi(t, x) = Ji(t, x, u∗

i , u
∗

−i).

Let the value functions Vi(t, x) ∈ C1,2([t0, tf ]×Σ), i = 1, 2, . . . , n. By applying the principle of optimality and Itô calculus,
an n-tuple of feedback strategies {u∗

i (t, x) ∈ U i
; i = 1, 2, . . . , n} provides a feedback Nash equilibrium solution to the

game (1)–(4), if there exist smooth functions Vi : [t0, tf ] × Σ → R, for i = 1, 2, . . . , n satisfying the following second
order parabolic PDEs:

−
∂

∂t
Vi(t, x) −

1
2
σ (t, x)σ (t, x)T

∂2

∂x2
Vi(t, x) =

min
ui

{
Li(t, x, ui, u∗

−i(t, x)) +
∂

∂x
Vi(t, x)T F (t, x, ui, u∗

−i(t, x))
}

,

Vi(tf , x) = qi(tf , x), i = 1, 2, . . . , n. (6)

Introducing the Hamiltonian functions:

H i(t, x, ui, u∗

−i,
∂

∂x
Vi(t, x)) = Li(t, x, ui, u∗

−i(t, x))

+
∂

∂x
Vi(t, x)T F (t, x, ui, u∗

−i(t, x)), i = 1, 2, . . . , n,

the associated optimal feedback control u∗

i can be obtained by:

∂H i

∂ui
= 0 ⇒ ui = u∗

i (t, x) = −
1
2
R−1
ii gi(t, x)T

∂

∂x
Vi(t, x), i = 1, 2, . . . , n. (7)

Substituting u∗

i from (7) into (6) yields:

∂

∂t
Vi(t, x) +

1
2
σ (t, x)σ (t, x)T

∂2

∂x2
Vi(t, x) +

∂

∂x
Vi(t, x)T f (t, x)

+xTQix −
1
2

∂

∂x
Vi(t, x)T

n∑
j=1

gj(t, x)R−1
jj gj(t, x)T

∂

∂x
Vj(t, x)

+
1
4

n∑
j=1

∂

∂x
Vj(t, x)Tgj(t, x)R−1

jj RijR−1
jj gj(t, x)T

∂

∂x
Vj(t, x) = 0,

Vi(tf , x) = qi(tf , x), i = 1, 2, . . . , n. (8)

The n coupled HJ equations do not have exact analytical solutions and are very difficult to solve because of the nonlinear
terms in (8).

3. Shifted Chebyshev polynomials and its derivative operational matrix

In this section, we review some basic properties of the shifted Chebyshev polynomials and its derivative operational
matrix on the interval [a, b].

Let Ti(x), i = 0, 1, 2, . . . be the Chebyshev polynomials on interval [−1, 1]. The shifted Chebyshev polynomials
Ti( 2

b−ax −
b+a
b−a ) on interval [a, b] be denoted by T ∗

i (x) and can be obtained by using the following recurrence formula:⎧⎪⎨⎪⎩
T ∗

0 (x) = 1,
T ∗

1 (x) =
2

b−ax −
b+a
b−a ,

T ∗

i+1(x) =
(
4
( x
b−a

)
− 2

( b+a
b−a

))
T ∗

i (x) − T ∗

i−1(x), i = 1, 2, . . . .

(9)

The derivative of the Chebyshev polynomials satisfies the following property [25]:

d
dx

Tj(x) =

j−1∑
k=0, j−k odd

2jTk(x)
ck

, j ≥ 1, (10)

where c0 = 2, and ck = 1, k ≥ 1. From the equality (10), we can find the derivative of shifted Chebyshev polynomials as
follows:

d
dx

T ∗

j (x) =

j−1∑
k=0, j−k odd

4j
ck(b − a)

T ∗

k (x), j = 0, 1, 2, . . . .
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Now suppose that the 1 × (N + 1)-shifted Chebyshev vector T ∗

N (x) is defined in the following form:

T ∗

N (x) = [T ∗

0 (x), T
∗

1 (x), . . . , T
∗

N (x)], (11)

in which the elements T ∗

i (x), i = 0, 1, 2, . . . ,N are the shifted Chebyshev polynomials on interval [a, b]. Let d
dxT

∗

N (x) =

T ∗

N (x)D, in which D = (Dij)(N+1)×(N+1) is the operational matrix of derivative on [a, b] and Dij for i, j = 0, 1, 2, . . . ,N is
defined as:

Dij =

{ 4j
ci(b−a) , if i + j is odd, and j > i,
0, o.w.,

(12)

where c0 = 2, and ci = 1, 1 ≤ i ≤ N .
In a spectral method, a smooth continuous function g(x, y) defined on [a, b]×[c, d] can be approximated by the shifted

Chebyshev polynomials as:

g(x, y) ≃ gM,N (x, y) =

M∑
i=0

N∑
j=0

gijT ∗

i (x)T
∗

j (y)

= (T ∗

M (x) ⊗ T ∗

N (y))G, (13)

where G is the (M + 1) × (N + 1)-vector as:

G = [g00, g01, . . . , g0N , . . . , gM0, gM1, . . . , gMN ]
T .

From (12) and (13), we can write the partial derivative of g(x, y) as follows:

∂k

∂xk
g(x, y) ≃

(
∂k

∂xk
T ∗

M (x) ⊗ T ∗

N (y)
)
G

=
(
T ∗

M (x)Dk
M+1 ⊗ T ∗

N (y)
)
G

= (T ∗

M (x) ⊗ T ∗

N (y))(D
k
M+1 ⊗ IN+1)G, (14)

where IN+1 is the (N + 1)× (N + 1)-identity matrix, Dk
M+1 is the (M + 1)× (M + 1)-shifted Chebyshev operational matrix

of derivative and superscript k that denotes the power of matrix D(M+1)×(M+1).

Theorem 3.1. If the function g(x, y) has second order continuous derivatives then

|gi,0| ≤
2γ2,0

(i − 1)2
, |gi,1| ≤

8γ2,0

π (i − 1)2
, i > 1,

|g0,j| ≤
2γ0,2

(j − 1)2
, |g1,j| ≤

8γ0,2

π (j − 1)2
, j > 1,

where g(x, y) =
∑

∞

i=0
∑

∞

j=0 gijTi(x)Tj(y), gM,N (x, y) =
∑M

i=0
∑N

j=0 gijTi(x)Tj(y), γ2,0 ≥ max{| ∂2g
∂x2

(x, y)| : x, y ∈ [−1, 1]}, and

γ0,2 ≥ max{| ∂2g
∂y2

(x, y)| : x, y ∈ [−1, 1]}.

Proof. See [27].

Theorem 3.2. If the function g(x, y) has second order continuous partial derivatives then

|g(x, y) − gM,N (x, y)| ≤
√
6

(
20γ 2

0,2

(N − 1)2
+

20γ 2
2,0

(M − 1)2
+

π2γ 2
1,1

6N
+

π2γ 2
1,1

6M

) 1
2

→ 0, (15)

and limM,N→∞ gM,N (x, y) = g(x, y) uniformly in [−1, 1].

Proof. See [27].

4. Approximate solution of n-player nonzero-sum stochastic games

In this section, we apply the CSCM to reduce (8) into a system of nonlinear algebraic equations. Then, we propose
the CSCM+PI algorithm to improve the numerical efficiency of the CSCM for solving the coupled HJ equations arising in
nonzero-sum stochastic games. Convergence results for the method are discussed in this section.
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4.1. Numerical solution of (8) via the CSCM

Assume that the value functions Vi(t, x) for each player i = 1, 2, . . . , n are continuously differentiable. On a compact
set [t0, tf ] × Σ , the value functions Vi(t, x) can be approximated as:

Vi(t, x) ≃

M∑
m=0

N∑
n=0

vi
mnT

∗

m(t)T
∗

n (x) = TM,N (t, x)Wi, (16)

where Σ = [xmin, xmax] is state domain,

TM,N (t, x) = T ∗

M (t) ⊗ T ∗

N (x),

and also

Wi = [vi
00, v

i
01, . . . , v

i
0N , . . . , vi

M0, v
i
M1, . . . , v

i
MN ]

T , i = 1, 2, . . . , n, (17)

are unknown vectors that should be obtained.

Remark 4.1. In general, the state may reach somewhere outside the domain due to not only the drift term but also the
diffusion term, unless some additional conditions are provided. Here, for the computation purpose, we suppose that the
state domain Σ is bounded.

Let the solution Vi(t, x) of the coupled HJ equations system (8) be approximated by Vi(t, x) ≃ TM,N (t, x)Wi. Then from
(14), we have:

∂

∂t
Vi(t, x) ≃

(
∂

∂t
T ∗

M (t) ⊗ T ∗

N (x)
)
Wi

= (T ∗

M (t) ⊗ T ∗

N (x))(DM+1 ⊗ IN+1)Wi

= TM,N (t, x)̂DWi, (18)

and

∂k

∂xk
Vi(t, x) ≃

(
T ∗

M (t) ⊗
∂k

∂xk
T ∗

N (x)
)
Wi

= (T ∗

M (t) ⊗ T ∗

N (x))(IM+1 ⊗ Dk
N+1)Wi

= TM,N (t, x)̃DkWi, (19)

where D̂ = DM+1 ⊗ IN+1, D̃k
= IM+1 ⊗ Dk

N+1. Now, our aim is to approximate the solutions for the time horizon [t0, tf ]
and the state domain Σ = [xmin, xmax]. For this purpose, we define

tr = t0 + l1

(
1 + cos

(
(M − r)π

M

))
, r = 0, 1, . . . ,M, (20)

τs = xmin + l2

(
1 + cos

(
(N − s)π

N

))
, s = 0, 1, . . . ,N, (21)

which are named as shifted Chebyshev–Gauss–Lobatto nodes, l1 =
tf −t0

2 and l2 =
xmax−xmin

2 . The discretized n coupled HJ
equations (8) at shifted Chebyshev–Gauss–Lobatto nodes {tr}Mr=0 and {τs}

N
s=0 can be written as:

T r,s
M,N D̂Wi +

Ω r,s

2
T r,s
M,N D̃

2Wi + W T
i D̃

T (T r,s
M,N )

T f r,s

−
1
2
W T

i (̃D
2)T (T r,s

M,N )
T

n∑
j=1

g r,s
j R−1

jj (g r,s
j )TT r,s

M,N D̃Wj

+
1
4

n∑
j=1

W T
j D̃

T (T r,s
M,N )

Tg r,s
j R−1

jj RijR−1
jj (g r,s

j )TT r,s
M,N D̃Wj

= −Γ s
i ,

i = 1, 2, . . . , n, r = 0, 1, . . . ,M − 1, s = 0, 1, . . . ,N, (22)

where T r,s
M,N = TM,N (tr , τs), Ω r,s

= σ (tr , τs)σ (tr , τs)T , f r,s = f (tr , τs), g
r,s
i = gi(tr , τs) and Γ s

i = τ T
s Qiτs.
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Also, we suppose that qr,si = qi(tr , τs) and discretize the boundary conditions as follows:

TM,s
M,NWi = qM,s

i , i = 1, 2, . . . , n, s = 0, 1, . . . ,N. (23)

By discretizing the coupled HJ equations at collocation points, a system of algebraic equations is formed with only
unknowns Wi, i = 1, 2, . . . , n as the coefficients vector of value functions Vi(t, x). The difficulty in solving the resulted
system (22) and (23) is related to nonlinear (quadratic) terms:

W T
j D̃

T (T r,s
M,N )

Tg r,s
j R−1

jj RijR−1
jj (g r,s

j )TT r,s
M,N D̃Wj, (24)

and

W T
i (̃D

2)T (T r,s
M,N )

T
n∑

j=1

g r,s
j R−1

jj (g r,s
j )TT r,s

M,N D̃Wj. (25)

The application of the CSCM thus leads to the nonlinear algebraic system of Eqs. (22) and (23). This system can be reduced
to the following form:

Gi(W1,W2, . . . ,Wn) = 0, i = 1, 2, . . . , n. (26)

One of the disadvantages with applying the CSCM is that the practical success of this method is directly linked to successful
algorithms for solving the nonlinear algebraic equations system (26). Generally, we use some iterative methods, such as
Newton’s method. For instance, in Newton’s method, we need an initial guess for the solution. Also, calculating both the
Jacobian matrix and its inverse can be quite time consuming.

4.2. Numerical solution of (8) via the CSCM+PI algorithm

We begin in this section to provide a numerical iterative method based on the CSCM and PI algorithm [18] for
solving the coupled HJ equations system (8). For this purpose, we introduce the PI algorithm for nonzero-sum stochastic
differential game (1) and (4).

First, based on Definition 2.1, we initialize the algorithm with an admissible control set {u0
1, u

0
2, . . . , u

0
n}. For instance,

by considering the boundary conditions in (6) and optimal feedback control in (7), selecting a linear approximation of
control ui(t, x) = −

1
2R

−1
ii gi(t, x)T ∂

∂xqi(t, x)(i = 1, 2, . . . , n) can be an appropriate initial approximation.
For k = 1, with the n-tuple of policies {uk−1

1 , uk−1
2 , . . . , uk−1

n }, we solve the following system of PDEs:

∂

∂t
V k
i (t, x) +

1
2
σ (t, x)σ (t, x)T

∂2

∂x2
V k
i (t, x) +

Li(t, x, uk−1
i , uk−1

−i ) +
∂

∂x
V k
i (t, x)

T F (t, x, uk−1
i , uk−1

−i ) = 0,

V k
i (tf , x) = qi(tf , x), i = 1, 2, . . . , n. (27)

For the kth iteration, the n-tuple of control policies can be updated as follows:

uk
i (t, x) = −

1
2
R−1
ii gi(t, x)T

∂

∂x
V k
i (t, x), i = 1, 2, . . . , n. (28)

Remark 4.2. Although, by applying the PI algorithm, the nonlinear coupled HJ PDEs system (8) is reduced to a sequence of
second order linear uncoupled PDEs system (27), but it remains difficult to find the analytical solution of this PDEs system.
So, in practice the PI algorithm cannot be implemented alone and this system has to be solved numerically. On the other
hand, based on the reasons stated in Section 4.1, we cannot implement the CSCM alone. In the sequel, we provide the
CSCM+PI algorithm to solve the coupled HJ equations (8).

It should be noted that from the Step 5 of Algorithm 1, the application of the CSCM+PI method leads to the linear
algebraic system of equations which can be solved by any standard linear solver.

4.3. Convergence analysis

In Section 4.2, we proposed the CSCM+PI algorithm for solving the coupled HJ PDEs. Here, we investigate the
convergence of the proposed method in two parts. The first part of the convergence relates to property of the CSCM
that is guaranteed according to Theorems 3.1 and 3.2. The second part of the convergence is provided by the property of
the PI algorithm. For this purpose, we follow [18–21] and present the convergence of the PI algorithm for the coupled HJ
equations arising in nonzero-sum stochastic game.
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Algorithm 1 The CSCM+PI algorithm for n-player nonzero-sum stochastic games
Input: t0, tf , xmin, xmax ∈ R,M,N, n ∈ N, small positive number ε , f , gi, Ω, Li, qi, Rij, i, j = 1, 2, . . . n and an initial admissible control set {u01, u

0
2, . . . , u

0
n}.

Step 1: Compute TM,N (t, x) = T∗
M (t) ⊗ T∗

N (x) using (11).
Step 2: Compute tr and τs as shifted Chebyshev–Gauss–Lobatto nodes from (20) and (21), respectively.
Step 3: Compute D̂ = DM+1 ⊗ IN+1 and D̃2

= IM+1 ⊗ D2
N+1 using (12).

Step 4: Set V0
i |M,N (t, x) = 0, i = 1, 2, . . . n, IN = 1 and k = 1.

Step 5: for each k ≥ 1 do
for i from 1 to n do

for r from 1 to M − 1 do
for s from 0 to N do

Eq[i][r][s] =

(
T r,s
M,N D̂ +

Ωr,s

2
T r,s
M,N D̃2

+ T r,s
M,N D̃

(
f r,s +

n∑
j=1

gr,sj uk−1
j

))
W k

i + Lr,si (t, x, uk−1
i , uk−1

−i );

end for
end for

end for
for i from 1 to n do

for s from 0 to N do

Eq[i][M][s] = TM,s
M,NW k

i − qM,s
i ;

end for
end for
Solve the following system of linear algebraic equations for the unknown vectors W k

i :

Eq[i][r][s] = 0, i = 1, 2, . . . , n, r = 1, 2, . . . ,M, s = 1, 2, . . . ,N;

Compute the following value functions:

V k
i |M,N (t, x) = TM,N (t, x)W k

i , i = 1, 2, . . . , n;

Update the n-tuple of strategies as follows:

uki |M,N (t, x) = −
1
2
R−1
ii gi(t, x)

T TM,N (t, x)̃DW k
i , i = 1, 2, . . . , n;

if max
{⏐⏐⏐V k

i |M,N (t0, x0) − V k−1
i |M,N (t0, x0)

⏐⏐⏐, i = 1, . . . , n
}

≤ ε then

{uk1, u
k
2, . . . , u

k
n} is a feedback Nash equilibrium of game

break
else

IN = IN + 1;

k = k + 1;

end if
end for

Output: Feedback Nash equilibrium {uIN1 , uIN2 , . . . , uINn }.

Consider a space V ⊂ {V (t, x) : [t0, tf ] ×
∑

→ R, V (tf , x) = q(tf , x)} and define mappings Gi V × V × · · · × V  
n

→ V as

follows:

Gi =
∂

∂t
Vi(t, x) +

1
2
σ (t, x)σ (t, x)T

∂2

∂x2
Vi(t, x) +

∂

∂x
Vi(t, x)T f (t, x)

+ xTQix −
1
2

∂

∂x
Vi(t, x)T

n∑
j=1

gj(t, x)R−1
jj gj(t, x)T

∂

∂x
Vj(t, x)

+
1
4

n∑
j=1

∂

∂x
Vj(t, x)Tgj(t, x)R−1

jj RijR−1
jj gj(t, x)T

∂

∂x
Vj(t, x), i = 1, 2, . . . , n. (29)

Let G′

iVi
represent the Gâteaux derivative of Gi taken with respect to Vi. To compute the Gâteaux derivative, we introduce

the following lemma.

Lemma 4.1. Suppose that Gi be a mapping defined in (29). Then, ∀Vi ∈ V , the Gâteaux differential of Gi at Vi is

G′

iViY =
∂Y
∂t

+
σσ T

2
∂2Y
∂x2

+ (
∂Y
∂x

)T f −
1
2
(
∂Y
∂x

)T
n∑

j=1

gjR−1
jj gT

j
∂

∂x
Vj. (30)
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Proof. According to the definition of Gi, ∀Vi ∈ V , we have

Gi(Vi + sY ) − Gi(Vi)

=
∂

∂t
(Vi + sY ) +

1
2
σσ T ∂2

∂x2
(Vi + sY )

+ xTQix −
1
4

∂

∂x
(Vi + sY )TgiR−1

ii gT
i

∂

∂x
(Vi + sY )

+
∂

∂x
(Vi + sY )T f −

1
2

∂

∂x
(Vi + sY )T

n∑
j=1,j̸=i

gjR−1
jj gT

j
∂Vj

∂x

+
1
4

n∑
j=1,j̸=i

∂V T
j

∂x
gjR−1

jj RijR−1
jj gT

j
∂Vj

∂x

−

(∂Vi

∂t
+

1
2
σσ T ∂2Vi

∂x2
+ xTQix

−
1
4

∂V T
i

∂x
giR−1

ii gT
i
∂Vi

∂x
+

∂V T
i

∂x
f

−
1
2

∂V T
i

∂x

n∑
j=1,j̸=i

gjR−1
jj gT

j
∂Vj

∂x
+

1
4

n∑
j=1,j̸=i

∂V T
j

∂x
gjR−1

jj RijR−1
jj gT

j
∂Vj

∂x

)
= s

∂Y
∂t

+ s
σσ T

2
∂2Y
∂x2

+ s(
∂Y
∂x

)T f

−
s
2
(
∂Y
∂x

)T
n∑

j=1

gjR−1
jj gT

j
∂Vj

∂x
−

s2

4
(
∂Y
∂x

)TgiR−1
ii gT

i
∂Y
∂x

.

So, the Gâteaux differential at Vi is

G′

iViY = lim
s→0

Gi(Vi + sY ) − Gi(Vi)
s

=
∂Y
∂t

+
σσ T

2
∂2Y
∂x2

+ (
∂Y
∂x

)T f −
1
2
(
∂Y
∂x

)T
n∑

j=1

gjR−1
jj gT

j
∂Vj

∂x
. □

In the following theorem, we will show that the PI algorithm for nonzero-sum stochastic game is also mathematically
equivalent to quasi-Newton’s iteration, which results in the convergence of the value function V k+1

i to V ∗

i , for i =

1, 2, . . . , n, as k −→ ∞.

Theorem 4.3. Let Gi and G′

iVi
be operators defined in (29) and (30), respectively. Then the iteration between (27) and (28) is

equivalent to the following quasi-Newton’s iteration

V k+1
i = V k

i − (G′

iV k
i
)−1Gi, k = 0, 1, . . . . (31)

Proof. According to (28) and Lemma 4.1, we have

G′

iV k
i
V k+1
i =

∂V k+1
i

∂t
+

σσ T

2
∂2V k+1

i

∂x2
+ (

∂V k+1
i

∂x
)T f

−
1
2
(
∂V k+1

i

∂x
)T

N∑
j=1

gj(x)R−1
jj gj(x)T

∂

∂x
V k
j

=
∂V k+1

i

∂t
+

σσ T

2
∂2V k+1

i

∂x2
+ (

∂V k+1
i

∂x
)T (f +

n∑
j=1

gjuk
j ). (32)

and

G′

iV k
i
V k
i =

∂V k
i

∂t
+

σσ T

2
∂2V k

i

∂x2
+ (

∂V k
i

∂x
)T (f +

n∑
j=1

gjuk
j ). (33)
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From (29) and (28), we have

Gi =
∂V k

i

∂t
+

σσ T

2
∂2V k

i

∂x2

+ Li(x, uk
i , u

k
−i) + (

∂V k
i

∂x
)T (f +

n∑
j=1

gjuk
j ). (34)

Thus,

G′

iV k
i
V k
i − Gi = −Li(x, uk

i , u
k
−i). (35)

Considering (27), we have G′

iV k
i
V k+1
i = −Li(x, uk

i , u
k
−i), therefore, G

′

iV k
i
V k+1
i = G′

iV k
i
V k
i − Gi, which results V k+1

i = V k
i −

(G′

iV k
i
)−1Gi. □

Now, we assume that Vi|M,N (t, x) and V k
i |M,N (t, x) for i = 1, 2, . . . , n are the approximate solutions of value functions

obtained by the CSCM and the CSCM+PI, respectively. For fixed k, according to Theorems 3.1 and 3.2, we have:

V k
i |M,N (t, x) → V k

i (t, x), as M,N → ∞, (36)

and also, based on Theorem 4.3, we can get:

V k
i (t, x) → V ∗

i (t, x), as k → ∞. (37)

Thus, the convergence of the proposed method can be obtained as follows:

V k
i |M,N (t, x) → V ∗

i (t, x), as M,N, k → ∞. (38)

4.4. Multi-dimensional case

So far we have applied the CSCM+PI only for one-dimensional case of state variables. However, all the expressions
given in Section 4 can be extended for the multi-dimensional case of state variables as follows.

Let x = (x1, x2, . . . , xk) ∈ Σ ⊂ Rk be the k-dimensional state space. Therefore, the shifted Chebyshev vector
T∗

N1,N2,...,Nk
(x) for multi-dimensional case can be expressed as:

T∗

N1,N2,...,Nk
(x) = T∗

N1
(x1) ⊗ T∗

N2
(x2) ⊗ · · · ⊗ T∗

Nk
(xk),

where T∗

Ni
(xi) for i = 1, 2, . . . , k are the shifted Chebyshev vectors used in Section 3, and defined as:

T∗

Ni
(xi) =

[
T ∗

0 (xi), T
∗

1 (xi), . . . , T
∗

Ni
(xi)
]
, i = 1, 2, . . . , k,

where xi indicates the ith entry of the state vector x. The value functions Vi(t, x), i = 1, 2, . . . , n can be approximated as:

Vi(t, x) ≃ TM,N1,N2,...,Nk (t, x)Wi, i = 1, 2, . . . , n,

in which

TM,N1,N2,...,Nk (t, x) = T∗

M (t) ⊗ T∗

N1,N2,...,Nk
(x),

and

Wi =

[
vi
000...00, v

i
000...01, . . . , v

i
000...0Nk

, . . . , vi
MN1N2...Nk−10

vi
MN1N2...Nk−11, . . . , v

i
MN1N2...Nk−1Nk

]T
. (39)

Also, we have:

∂

∂t
Vi(t, x) ≃

(
∂

∂t
T ∗

M (t) ⊗ T ∗

N1,N2,...,Nk
(x)
)
Wi

= (T ∗

M (t) ⊗ T ∗

N1,N2,...,Nk
(x))

(DM+1 ⊗ IN1+1 ⊗ IN2+1 ⊗ · · · ⊗ INk+1)Wi

= TM,N1,N2,...,Nk (t, x)̂DWi,
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and

∂ s

∂xsj
Vi(t, x) ≃

(
T ∗

M (t) ⊗
∂ s

∂xsj
T ∗

N1,N2,...,Nk
(x)

)
Wi

= (T ∗

M (t) ⊗ T ∗

N1
(x1) ⊗ T ∗

N2
(x2) ⊗ · · · ⊗ T ∗

Nk
(xk))

(IM+1 ⊗ IN1+1 ⊗ · · · ⊗ INj−1+1 ⊗ Ds
Nj+1 ⊗ INj+1+1 ⊗ · · · ⊗ INk+1)Wi

= TM,N1,N2,...,Nk (t, x)D̃j
s
Wi, (40)

where

D̂ = DM+1 ⊗ IN1+1 ⊗ IN2+1 ⊗ · · · ⊗ INk+1,

D̃j
s

= IM+1 ⊗ IN1+1 ⊗ · · · ⊗ INj−1+1 ⊗ Ds
Nj+1 ⊗ INj+1+1 ⊗ · · · ⊗ INk+1.

5. Illustrative examples

For the purpose of illustration, three examples are presented in this section. Example 5.1 is a stochastic control problem,
which is a one-person version of an n-person stochastic differential game, and can be solved analytically. This allows us
to evaluate the error between the control obtained from the CSCM+PI and that from the analytical solution. Also, we can
verify the obtained control is indeed optimal. For an n-person stochastic linear-quadratic differential game in Example 5.2,
we can solve these problems via guessing a solution of form:

Vi(t, x) =
1
2
xTZi(t)x + xT ζi(t) + ξi(t), i = 1, 2, . . . , n, (41)

where Zi(t), ζi(t) and ξi(t) for i = 1, 2, . . . , n satisfy the n coupled matrix Riccati differential equations. In general, solving
this system of equations can be difficult. In Example 5.3, we consider an application of stochastic differential games in
competitive advertising. All the computations associated with the proposed method have been performed by using Maple
17 with 32 digits precision.

Example 5.1 ([31]). Consider the following dynamic optimization problem with a single decision maker:

min
u

{
E
[∫ 1

0

(
1
2
u2(t) +

1
2
x(t)u(t) +

5
8
x2(t)

)
dt
]}

, (42)

subject to

dx(t) =

(
1
2
x(t) + u(t)

)
dt + dw(t), x(0) = 1. (43)

Here, the HJB equation is as follows:

∂

∂t
V (t, x) +

1
2
x2 −

1
2

(
∂

∂x
V (t, x)

)2

+
1
2

∂2

∂x2
V (t, x) = 0, V (1, x) = 0. (44)

The exact solutions of value function V ∗(t, x) and control variable u∗(t, x) are as follows:

V ∗(t, x) =
1 − exp(2t − 2)
2 + 2 exp(2t − 2)

x2 +
1
2
ln
(1 + exp(2t − 2)

2 exp(t − 1)

)
, (45)

u∗(t, x) =
−3 + exp(2t − 2)
2 + 2 exp(2t − 2)

x. (46)

The exact solution for the performance index is J∗ = V (t0, x0) = 0.5976874930. The computational results of J using the
the CSCM+PI are listed in Table 1 for different values of M , N and k. Let us define

eM,N = ∥V |M,N−V ∗
∥

∞
= max

(t,x)∈Λ

⏐⏐⏐V |M,N (t, x) − V ∗(t, x)
⏐⏐⏐,

ekM,N = ∥V k
|M,N−V ∗

∥
∞

= max
(t,x)∈Λ

⏐⏐⏐V k
|M,N (t, x) − V ∗(t, x)

⏐⏐⏐,
where (t, x) ∈ [0, 1] × [−1, 1]. The comparisons between eM,N and ekM,N are given in Table 2. In Table 2, it can be seen
that the CSCM+PI method improves the computation time for solving the HJB equation.

Example 5.2 ([8]). Consider the stochastic two-player linear-quadratic differential game

min
u1

J1 =

{
E
[∫ 1

0

(
x2(t) + u2

1(t)
)
dt
]}

,
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Table 1
The optimal cost functional J obtained using the CSCM+PI
as compared with exact solutions for Example 5.1.
M,N k J | J − J∗ |

2,2 2 0.6237244897 2.6E−1
4,2 2 0.5976104518 7.7E−4
6,2 2 0.5976851596 7.7E−5

8,3 3 0.5976876635 1.7E−7
10,3 3 0.5976874893 3.6E−9
12,3 3 0.5976874932 2.7E−10

Table 2
The comparisons between eM,N and ekM,N for the error of approximate solutions of value
function obtained by the CSCM and the CSCM+PI for Example 5.1.
M,N k ekM,N CPU time(s) eM,N CPU time(s)

2,2 2 2.6E−1 1.266 2.5E−2 1.482
4,2 2 7.7E−4 1.296 1.6E−4 1.669
6,2 2 7.7E−5 1.453 4.0E−6 2.075

8,3 3 1.7E−7 1.295 Fail –
10,3 3 3.6E−9 2.402 Fail –
12,3 3 2.7E−10 3.853 Fail –

and

min
u2

J2 =

{
E
[∫ 1

0

(
2x2(t) + u2

2(t)
)
dt + x2(1)

]}
, (47)

subject to

dx(t) = (x(t) + u1(t) + u2(t))dt + dw(t), x(0) = 1. (48)

By introducing the Hamiltonian functions

H1(t, x, u1, u2,
∂

∂x
V1(t, x)) = x2(t) + u2

1(t) +
∂

∂x
V1(t, x)(x(t) + u1(t) + u2(t)),

H2(t, x, u1, u2,
∂

∂x
V2(t, x)) = 2x2(t) + u2

2(t) +
∂

∂x
V2(t, x)(x(t) + u1(t) + u2(t)),

we have⎧⎪⎪⎨⎪⎪⎩
∂
∂t V1(t, x) +

1
2

∂2

∂x2
V1(t, x) + minu1{H

1(t, x, u1, u2,
∂
∂xV1(t, x))} = 0,

∂
∂t V2(t, x) +

1
2

∂2

∂x2
V2(t, x) + minu2{H

2(t, x, u1, u2,
∂
∂xV2(t, x))} = 0,

V1(1, x) = 0, V2(1, x) = x2.

(49)

Minimization of each H i(t, x, u1, u2,
∂
∂xVi(t, x)), i = 1, 2, leads to the expression for control law ui, i = 1, 2, as follows:

u∗

1(t, x) = −
1
2

∂

∂x
V1(t, x), u∗

2(t, x) = −
1
2

∂

∂x
V2(t, x). (50)

Substituting (50) into (49), one obtains the two coupled HJ equations:

∂

∂t
V1(t, x) +

1
2

∂2

∂x2
V1(t, x) + x2 −

1
4
(

∂

∂x
V1(t, x))2

+ x
∂

∂x
V1(t, x) −

1
2

∂

∂x
V1(t, x)

∂

∂x
V2(t, x) = 0,

∂

∂t
V2(t, x) +

1
2

∂2

∂x2
V2(t, x) + 2x2 −

1
4
(

∂

∂x
V2(t, x))2

+ x
∂

∂x
V2(t, x) −

1
2

∂

∂x
V1(t, x)

∂

∂x
V2(t, x) = 0,

V1(1, x) = 0, V2(1, x) = x2. (51)

The CSCM and the CSCM+PI methods are applied to solve Eqs. (51). The computational results of J1 and J2 using the
present method for different values of M , N , and k are listed in Table 3. It can be seen that by increasing the value of M ,
N and k, we can obtain a satisfactory convergence. Notice that the CSCM+PI for x ∈ [−5, 5] works, while the CSCM for x
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Table 3
The optimal cost functionals J1 and J2 obtained using the CSCM+PI at
different values of M , N and k for Example 5.2.
M,N k J1 J2
10,4 5 0.6587542261 3.9519211051
14,4 5 0.6587256967 3.9511521297
16,4 5 0.6587213865 3.9511447964

14,6 7 0.6587212006 3.9511443521
16,6 7 0.6587212000 3.9511443516
18,6 7 0.6587211608 3.9511442815

Table 4
The comparisons between CPU time(s) obtained by the CSCM and the CSCM+PI methods
on (t, x) ∈ [0, 1] × [0, 1] for Example 5.2.
M,N k CPU time(s) for the CSCM+PI CPU time(s) for CSCM

8,2 5 1.622 9.828
12,2 5 4.539 28.15

14,4 7 30.15 311.4
12,3 7 46.44 –
14,3 7 66.28 –

in this range fails. Therefore, in Table 4, the comparisons between CPU time(s) obtained by the CSCM and the CSCM+PI
are given on (t, x) ∈ [0, 1] × [0, 1].

Example 5.3 ([10,13]). Consider the stochastic dynamic advertising game. We suppose that the expected profit of firm 1
and firm 2 is respectively:

max
u1

{
E
[∫ tf

0

(
q1x(t) −

c1
2
u2
1(t)

)
exp(−rt)dt + exp(−rtf )q1tf x(tf )

]}
,

and

max
u2

{
E
[∫ tf

0

(
q2(1 − x(t)) −

c2
2
u2
2(t)

)
exp(−rt)dt + exp(−rtf )q2tf (1 − x(tf ))

]}
,

for i = 1, 2, qi, ci, qitf and r are real positive constants. x(t) and (1−x(t)) are the market shares of firm 1 and firm 2 at time
t , respectively, and advertising rate ui(t) is the control variable of firm i for i = 1, 2. The dynamic of game is governed
by:

dx(t) = (u1(t)
√
1 − x(t) − u2(t)

√
x(t))dt + σx(t)dw(t), x(0) = 1, (52)

where σ is a real positive constant.
By introducing the Hamiltonian functions

H1(t, x, u1, u2,
∂

∂x
V1(t, x)) =

∂

∂x
V1(t, x)(u1(t)

√
1 − x(t) − u2(t)

√
x(t))

+ (q1x(t) −
c1
2
u2
1(t)) exp(−rt),

H2(t, x, u1, u2,
∂

∂x
V2(t, x)) =

∂

∂x
V2(t, x)(u1(t)

√
1 − x(t) − u2(t)

√
x(t))

+ (q2(1 − x(t)) −
c2
2
u2
2(t)) exp(−rt),

we have⎧⎪⎪⎨⎪⎪⎩
∂
∂t V1(t, x) +

1
2σ

2x2 ∂2

∂x2
V1(t, x) + minu1{H

1(t, x, u1, u2,
∂
∂xV1(t, x))} = 0,

∂
∂t V2(t, x) +

1
2σ

2x2 ∂2

∂x2
V2(t, x) + minu2{H

2(t, x, u1, u2,
∂
∂xV2(t, x))} = 0,

V1(tf , x) = q1tf exp(−rtf )x, V2(tf , x) = q2tf exp(−rtf )(1 − x).

(53)

Minimization of each H i(t, x, u1, u2,
∂
∂xVi(t, x)), i = 1, 2, leads to the expression for control law ui, i = 1, 2, as follows:

u∗

1(t, x) =
∂

∂x
V1(t, x)

√
1 − x

exp(−rt)c1
, u∗

2(t, x) = −
∂

∂x
V2(t, x)

√
x

exp(−rt)c2
. (54)
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Table 5
The optimal cost functionals J1 and J2 obtained using the CSCM+PI at
different values of M , N and k for Example 5.3.
M,N k J1 J2
8,2 5 0.7163094833 0.1418452583
9,3 5 0.7163060613 0.1418469693

10,2 7 0.7163068541 0.1418465729
12,3 7 0.7163067119 0.1418466440
16,4 7 0.7163067036 0.1418466481

Table 6
The comparisons between CPU time(s) obtained by the CSCM and the
CSCM+PI on (t, x) ∈ [0, 1] × [0, 1] for Example 5.3.
M,N k CPU time(s) for CSCM with PI CPU time(s) for CSCM

8,2 5 4.196 21.84
9,3 5 8.798 29.53

10,2 7 9.130 13.72
12,3 7 21.79 67.14
16,4 7 81.97 –

Substituting (54) into (53), one obtains the coupled HJ equations

∂

∂t
V1(t, x) +

1
2
σ 2x2

∂2

∂x2
V1(t, x) + q1 exp(−rt)x −

1
2c1

exp(t)(x − 1)(
∂

∂x
V1(t, x))2

+ c−1
2 x exp(rt)

∂

∂x
V1(t, x)

∂

∂x
V2(t, x) = 0,

∂

∂t
V2(t, x) +

1
2
σ 2x2

∂2

∂x2
V2(t, x) + q2 exp(−rt)(1 − x) +

1
2c2

exp(rt)(x)V2(t, x)2

+ c−1
1 exp(rt)(1 − x)

∂

∂x
V1(t, x)

∂

∂x
V2(t, x) = 0,

V1(tf , x) = q1tf exp(−rtf )x, V2(tf , x) = q2tf exp(−rtf )(1 − x). (55)

The CSCM and the CSCM+PI methods are applied to solve Eqs. (55). In Table 5, the computational results of J1 and J2
using the present method for different values of M , N and k are listed. The comparisons between CPU time(s) obtained
by the CSCM and the CSCM+PI on (t, x) ∈ [0, 1] × [0, 1] are given in Table 6.

6. Conclusions

In this article, we have presented a combined iterative method for solving the second order coupled HJ equations arising
in nonzero-sum stochastic differential games. In our approach, the CSCM+PI algorithm are applied to approximate the
value functions. Convergence results for the method have also been provided. In several examples, the CSCM+PI algorithm
was applied to obtain the feedback Nash equilibrium solutions. The accuracy and CPU time(s) of the obtained solutions by
the CSCM+PI algorithm were compared with the obtained solutions by the CSCM. The results showed that the CSCM+PI
algorithm is more effective than the CSCM in which the system of nonlinear algebraic equations obtained by the CSCM is
not easily solvable. Although, there exist other computational methods for solving the coupled HJ equations, but to the
best of our knowledge, none of those methods have not been applied to the coupled HJ equations arising in differential
games with finite-horizon and nonlinear boundary conditions.
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