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Abstract

Projection methods are applied to obtain the convergence rates for Volterra integral equations
with weakly singular kernels. We consider Galerkin and multi Galerkin methods and their iterated
versions to solve Volterra integral equations with weakly singular kernels, in the space of piecewise
polynomials subspaces based on graded mesh. We will show that the iterated multi-Galerkin method
improves over iterated Galerkin method. In fact, we show that iterated multi-Galerkin solution
converges with the convergence rates O(n=>™) and O(n~3"(logn)?), for algebraic and logarithmic
type kernels, respectively. We prove that iterated Galerkin method, for algebraic kernel, converges
with the convergence rate O(n~2™) and for logarithmic type kernel converges with the convergence
rate O(n~=?"logn), where n denotes the number of partition points and m is the highest order of
the polynomials employed in the approximations. Theoretical results are justified by the Numerical
results.
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1. Introduction

We consider the approximation methods to find the numerical approximate solutions of the

following type of Volterra integral equations of second kind on Banach space X:

u(t):/t%(t,s)u(s)ds+g(t), 0<t<l, (1.1)

with the kernel
m(t, s)|t — s|~, if0<a<l,

MO =N it ) ot — sl), =1, 1-2)
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where m(-,-) and g(-) both are given sufficiently differentiable functions, u is the function to be
found in a Banach space X.

In general, it is not easy to obtain the explicit solution of the integral equation of the type (1.1)-
(1.2). The derivative v’ (v/(t) ~ ¢, if 0 < a < 1 and u/(¢) ~ logt, if @ = 1) of the exact solution
of the integral equation of type (1.1)-(1.2) is unbounded at ¢ = 0 in the domain of integration
[0,1] [see in Brunner (1983, 1985b, 1985¢) and Brunner et al. (2001a, 2001b)]. Various numerical
approximation methods are available in literature like Product integration, Galerkin, collocation
and Nystrom methods etc, for solving Fredholm and Volterra integral equations (see e.g. [1, 2,
3,4,5, 6,7, 89,10, 11, 12]). The ordinary collocation method cannot lead to a higher order
convergence rates due to the fact that the derivative of the solution w is unbounded at ¢ = 0. Several
authors have discussed the numerical approximating methods to find the approximate solutions of
integral equations of type (1.1)-(1.2). Yanzhao Cao et al. in [13], developed the hybrid collocation
method for finding the approximate solution of the Volterra integral equations of type (1.1)-(1.2)
and obtained the order of convergence O(n~"), where m is the order of piecewise polynomials and
n is the number of partition points. In [2, 3], H. Brunner introduced the notion of the collocation
and iterated collocation methods in the space of piecewise polynomial subspaces for the weakly
singular Volterra integral equations of type (1.1)-(1.2) and obtained the convergence rates O(h™)
and O(h™179) respectively, in infinity norm, where h is the norm of the partitions. To our
knowledge, there are very few papers related to the Galerkin method for finding the solution of
the Volterra integral equations. In [14], Galerkin and iterated Galerkin methods were discussed
for Volterra integral equations of the second kind for the smooth kernel by Shuhua Zhang et al.
and using an interpolation post-processing technique, they obtained global superconvergence of the
order O(h*™), in space of piecewise polynomials of degree not exceed m — 1. The main motivation
of this paper is to obtain the superconvergence results for weakly singular Volterra integral equation
of the type (1.1)-(1.2) by using piecewise polynomial basis functions.

In this article, Galerkin and multi-Galerkin methods with their iterated versions are discussed
for solving the Volterra integral equations of type (1.1)-(1.2), in the piecewise polynomials subspaces
based on graded mesh. We show that for the algebraic type kernel (0 < o < 1), the Galerkin and
iterated Galerkin solutions converge with the order O(n=™) and O(n~2™), respectively, where m is
the order of the piecewise polynomials. Similarly for the logarithmic type kernel (a = 1), we show
that the Galerkin and iterated Galerkin solutions converge with the convergence rates O(n~"™) and
O(n=2™logn), respectively. Further, we enhance the above convergence results in iterated multi-
Galerkin method. In fact, we prove that the iterated multi Galerkin method converges with the
order O(n=*™), for the algebraic type kernel and with the order O(n=*"(logn)?), for logarithmic
type kernel.

This article is organized as follows. In section 2, we develop the Galerkin and iterated Galerkin



methods for the integral equations of the type (1.1)-(1.2) and analyse the convergence results. In
section 3, the multi-Galerkin method with its iterated version are discussed to obtain the improved
superconvergence rates. In section 4, we provide numerical examples for verfying our theoretical

results. C denotes the generic constant in the article.

2. Projection methods for Volterra integral equation of the second kind with weakly

singular kernel

Consider the integral equations of type (1.1) - (1.2) over a Banach space X = L*°[0, 1]. To obtain
the superconvergence results, the domain of integration from [0,¢] (0 < ¢ < 1), is transformed to
the interval [0, 1], by the transformation s(.,.) : ([0, 1] x [0,1]) — [0,1] defined by s = tn, (t,n) €
([0,1] x [0, 1]). Using this transformation, the integral equation (1.1)-(1.2) can be written as

u(t) = /0 Ht, s(t,n))u(s(t,n))dn + g(t), te]0,1], (2.1)
where
- m(t,s(t,n))|l —nl", if0<a<l,
H(t,s(t, = 2.2
(oot m(t, s(t,n)log([t(1 —n)]),  ifa=1, 2
with
st ) = m(t, s(t,n))|t|'~*, ?f 0<a<l, 2.3)
m(t, s(t,n))|t|, if a =1.
Define .
Fu(t) = /0 H(t, s(t,n))u(s(t,n))dn, te0,1]. (2.4)

Then the equation (2.1) can be written in the following operator equation form as
u—Fu=yg. (2.5)

Assume that 1 is not an eigen value of F so that (Z — F)~! exists. Hence the integral equation
(2.5) has a unique solution say u € X.
For any v € C™([0, 1]), we write

oI
|V m,00 = max v 0<j<my.
’ Ot lloo

Now we discuss Galerkin and iterated Galerkin methods. Since the kerenl #(t, s(t,n)) has singu-
larity at n = 1 for algebraic type kernel and H(t, s(t,n)) has singularity at 7 = 1 and t = 0 for
logarithmic type kernel and the exact solution w has singularity at ¢ = 0 in [0, 1], we choose the

graded mesh on [0, 1] of the type
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where ¢ = 7™ in the case of algebraic kernel and ¢ = m in the case of logarithmic kernel, m > 1. Let
h be the norm of partiton and defined as h = mlax{hl =t;—ti1:1l=1,...,n} = 0,asn — oco. Let
o= [ti_1,t], | =1,2,...,n be the subintervals of the interval [0, 1]. Assume that the approximating
subspace X,, = S#L’n(l_[n), denotes the space of piecewise continuous polynomials of degree < m — 1
on the interval [0, 1] with the break points at t1,ts, ..., t,_1 and with u(—1 < pu < m—2) continuous
derivatives. Throughout the paper we assume that P, denotes the space of polynomials of degree
<m-—1.

Note that
1/2\4 1\¢
— — = — | — — E— q_l — — —-q
hy =t — 2(n) 0=2 (n) O(n9), (2.7)
and
1/2\¢ 1\¢
= — = — — | — = q_l — = -4
B =t — by =1 1+2(n) 2 (n) O(n~9). (2.8)
Hence
O(nT=), if0<a<l,
O(n™™), if = 1.
Next for [ = 2,3,...,n — 1, by Mean value theorem, we obtain
Lr2lNe 1 /2(0—=1)\e  1r2va q/2\9., _
=t —t1==-—) —=|———=) ==(- — —1q<—<—>q1, 2.1
fu =t =ty Q(n) 2( n ) 2<n> @ (1 )}_2 n § (2.10)
where [ — 1 < & <1l <n—1. Hence
q 2 q 1 q 2 q 1 711 1 q—1 711 1
< d(2\ a1 o L= 1)l < g9l 2 < 0912 ' '
fu < Q(n)l - 2(n> (n=1) = 2 n[l n} = 2 n Ok™) (2.11)

Orthogonal projection operator: Define P, : L*°[0, 1] — X, be the orthogonal projection

operator defined by
<PnU1, 1)2> = <U1,U2>, Y € X, Y vy € Xn, (212)

where

<v1,vg>:/o vy (t)va(t)dt.
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We state the next result from Ivan G. Graham [15], which is helpful in discussing the conver-
gence analysis.
(¢) 3 p > 0, such that

|Polloe < p < 00. (2.13)

(ii) For any v € C™[0,1], 3 C' > 0 such that the following hold:

In the sub-interval [tg, t1], we have

1T = Po)oll oy < CHP ol i)y (2.14)
in the sub-intervals [t;_1,%], i =2,--- ,n — 1, we have
I = Pr)vllzee ity < CR0llmzoe iyt (2.15)

and in the sub-interval [t,_1,t,], we have

(L = Pu)vll Lot tal) < CHZ 0] Lo0 (1 1) (2.16)

where h;, i =1,--- ,n are defined in the estimates (2.9)-(2.11).
Now the Galerkin method for finding the approximate solution of integral equation (2.1) is defined
as find u,, € X,, such that

Uy — PruFu, = Ppg. (2.17)

The iterated approximate solution is defined as
Up = Fup, + g. (2.18)

Using P,t, = u,, the equivalent form of the above equation (2.18) can be written in operator
equation form as

Uy — FPpiy, = g. (2.19)
This is known as the iterated Galerkin method.
We quote a result from (Schumaker [16], P. 92), which is useful in our convergence analysis. For

any v € L'[0, 1], 3 a polynomial ¢, of degree < n such that

1
[v = @nllr < Crwry (’U, %), (2.20)
where
1-5
wi(v,h) = sup ||[Asv|[zip1-6) = sup / [v(t 4 6) —v(t)]dt]|, (2.21)
0<6<h o<é<n ! Jo

denotes the first order modulus of smoothness of the function v € L'[0,1] w.r.t. L'—norm.

Using this result, we prove the following theorem.
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Theorem 2.1. Let the kernel of the integral operator F is defined by (2.2). Then for any t € [0, 1],
3 a polynomial v, € P, such that

O(ht™), if 0<a<l,

: (2.22)
O(hlogh), if =1,

Hﬁ(tas(@n)) — vyl = {

where h be the norm of the partiton.
PROOF. Since H(t,s(t,-)) € L'[0,1], from the estimate (2.20), we have
1H(t, 5(t, 1)) — villr < Creona (H(E, 5(t,m)), h).
Let Iy = [0,1 — 9], by using modulus of smoothness (cf. Schumaker [16], P. 22), we obtain
[H(t, 5(t,n) — villr < Crona(H(t, s(t,.)), h) = Ci sup | AgH(E, s(t,m) |22

0<9<h

1
<Coswp [ At +0) - Al sea)ldn (223
0<9<h JO

Case — I : For the algebraic kernel H(t, s(t,n)) = m(t, s(t,n))|1 — 5|~

Consider for any 0 <t <1,
1
/0

Ht,s(t,n+0)) — H(t, s(t,n)) ’dn

Yim(t, s(t,n+ 1)) _mt, s(tn))
[(L=(m+I)>  [(T=n)
Yim(t, s(t,n + 1)) ﬁz(ts(tn—i—z? / ‘mtstn—l—ﬁ)) m(t, s (tn))d
(1= (n+9)) (1 (1= mn)|*

< sup |m(t,s(t,n+ 0 /
%mg|( e+ = =
dn sup

+ ) Il s, e+ 00 = i st

=L+ 1 (2.24)

<

dn

For evaluating Iy, note that

sup [t s(t.n +9)) — (e, st )] = sup 1@t st 2 (s(tm 4 9) — s(t,m))

0<tn<1 0<tn<1 on
= sup |Th(0’1)(t,s(t,nl))||t|2|19| < CY|, (2.25)
0<t,n<1

where n < <0+ 9, C = supyg, < [ OD(t, 5(t,1))| and also

/ru- “—[<_ﬁjﬂﬁzl'<w- (2.26)




Hence
I, < ! C|v| (2.27)

2 > 1 — . .

Now for evaluating Iy, consider

1
L

- :
!L—n+ﬁﬂ L=l

1-9/2
dn—f—/
1-9
/ 1
1 19/2

dn
|1—n+ﬁﬂ 1=

1 1
(1—w+ﬁﬂl (1 —=n)*

1 1
1= m+)|~ |[1—nl

/‘ [1—-n+0 (1jde”+[;W2hn—f+ma_(yjde”
/ [ — 11+ ﬁ)a]dn

[ ( ) — 14 (1) s o]
§4§7%t35 (2.28)

and using supy<; <, |M(t, s(t,n +1))| < 0o, we obtain

,191704
I, <4 .
=Ty (2.29)
Combining I; and I with (2.23), we obtain
~ 1 ~ ~
HHUJUW»—UMDSCASM’/WHUJWU+ﬂ»—HUﬁ@WDWU
0<v<h Jo
-«
&/C CY 44—t <CLh* = O(h' ™). 2.30
< 1031;1<Dh{ 21—a(1—a)}— | (h'7) (2.30)

Case — II : For the logarithmic type kernel H(t, s(t,n)) = m(t, s(t,n)) log(|t(1 — n)|):
Consider for any ¢ € [0, 1]

/0 FL st 7+ 9)) — F(E (¢ )] di
- / . (6. + D)t oglt — 10y + )| — m(t, s(t.n) |1 loglt — tnl| dy
- / . st + D)t oglt — 10y + )| — mt, s(t.n + )]t loglt — tn)

7



1
< sup [ s(t.n+ D)t [ [1oglt — tly +0)| ~logle — tolan
0

0<t,n<1

1
+ sup | [ tloglt—talan] sup pmlt,s(t.n +9)) = (i ()
0<tn<1'Jo 0<t,;n<1
= I+ 1 (2.31)
For evaluating I, note that

1 1
/ tlog(t — tn)dn = [t logt —t(1 —n)log(l —n) +t(1 — 7])} (2.32)

0 0
=tlogt —t < —1 < 0. (2.33)

Now since m(t, s(t,n)) € C*([0,1] x [0, 1]), we have

sup |m(t,s(t,n+9)) —m(t,s(t.m)| = sup |m OVt s(t,m))(s(t,n +9) — S(taﬁ))‘

0<tn<1 0<tn<1
Os(t
< sup JmO(e, s )| 22 gy, (230
0<tn<1 on
where n < <n+ ¢ and C = supy, <1 [m "V (L, s(t,nl))|\t|’.
Hence
L, < C9|. (2.35)

Now for evaluating I, consider
1
J
1
)
1

J

1-9
=/ ‘log\l—(n+19)l—logll—n!‘dn+/
0 1

log|t — t(n + V)| — log|t — tn|(d77

logt| + log|1 — (n -+ V)| — logl¢| — log|1  n|ds

log|1 — (4 19)| — log|1 — nl)dn

1-0/2

log[1 — (n +9)| — log|1 — n!‘dn
-0

1
+/ )logll—(nﬂm—logll—nl‘dn

1-9/2
1-9/2

1-9
=/ <1og|1—77|—10g|1—(77+19)|)dn+/ (10g|1—77|—logll—(n+19>|)dn
0 1-9

1
+/ <log\1 — (1 + )] —log|l — n!)dn
1-9/2



1-9/2

-/ " (tog(1 = ) —tog(1 — (n+ 9))) i + | (1ot = —togtn—1+9))ay

-9

+ /1119/2 <10g(77 —1+47)—log(1l - 77)>d77'

After evaluating the above integrals, we have

/

and using supg<; ,<1|m(t, s(t,n +9J))|[t| < oo, we obtain

log|l — (n+ V)| — log|1 — n|‘dn = —4(9/2)log(¥/2) + dlog ¥ — (1 — ¥)log(1l — ), (2.36)

I < —4(9/2) log(¥/2) + 91og ¥ — (1 — ) log(1 — 9). (2.37)
Combining I] and I} with (2.23), we obtain

||7:l(t, s(t,n)) — v|lpr < sup /0 |7:[(t, s(t,n +19)) — 7-2(75, s(t,n))|dn < C(h/2)log(h/2) = O(hlogh).

0<9<h
(2.38)
Combining the estimates (2.30) and (2.38), it follows that
L st ) im0 < < (259)
» S\, - v NS . :
7 e O(hlogh), if o =1.

Hence the proof follows.

We state the following theorem from H. Brunner [2], which is helpful in discussing the convergence

results.

Theorem 2.2. Let H(.,.) be the kernel of the integral equation (1.1)-(1.2) for 0 < o < 1. Then for
any g € C™[0,1] and m(-,-) € C™[0, 1] with m(t,t) # 0, the Volterra integral equation (1.1)-(1.2)
has a unique solution u € C[0,1] and it is uniformly convergent series form

o0

ult) = g(t) + > (b)), (2.40)

k=1

where Pg(t) is smooth function of t.

Let My = sup |¢'(s(t,n))| and M, = sup {le(s(t, )] k=1,2,....}.
<t<

0<t<1

Theorem 2.3. For the exact solution u of the integral equation (2.1)-(2.2) with algebraic type kernel
define as in (2.2) for 0 < a < 1, then there holds

Woo(u, h) < Ch'™, (2.41)

where wo (u, h) denotes the modulus of smoothness of .

9



PRrROOF. From Theorem 2.2,

(e.¢]

ult) = g(t) + Y ()",

k=1

where 1 (t) be the smooth function of ¢. By the equation (2.40), the exact solution of transformed
equation is

uls(t,)) = gt ) + 3 vals(t, ) 501, )

Consider for any ¢, h,n € [0, 1] such that n+ h € [0, 1],

< lg(s(t,n+n)) = g(st,m)+ > {I%(S(t, n+ R)(s(t,n + h))FA) — gy (s(t,m))(s(t, n))k(l—a),}

k=1

< {‘g/(S(t, mh))(s(t,n+h) — s(t,n))‘ + 3 It 0+ B)) (s(t g+ h))FO=)
= Un(s(t,n -+ R)(s(t,m) ) 4 (st + 1) (s(tm) ) — (st m)(s(t, U))k(lfa)‘}

< Mith + 3 {e(s(t -+ R)(s(t 7+ B2 = (s(t,m -+ 0)) (s(t,m) 0|

k=1

(st ) (1)) = (8, m) st )0}

< Miht 3 st m+ ) [(s(tm + 1)) = (s(t, )0

k=1

st m 4+ 1) = (st ) (8, ) 1}

< Mih+ i {1es(tm+ W)+ 1)Y= = (2()) 0=
(st 77_+ n2h)) (0 + b — ) (s(t, 7))~ }

< Mih+ kf;lwk(S(t, 1+ W) EFE| (n 4 h)FO=) — (n)F0=))

+

BT (st + k) )h (i) PO, (2.42)
k=1
in the above, we have used mean value theorem.
Now we show that
|(n + h)FO7) — (=) < On'™*, Ve (0,1], V k. (2.43)

10



To prove this, we use the principle of mathematical induction on k. Using the mathematical in-
equality (a 4+ b)? < a? 4+ bP, for a,b > 0 and 0 < p < 1, we have

[(n 4+ h) =) — ()= < Ot
This proves that for £ = 1, the result is true. Assume that for k = n — 1, the result is also true,
|(n + h)(n—l)(l—a) o (n)(n—l)(l—a)| S Chl_a.

Now we prove for k = n. Consider

[+ )" — ()]
=|(n+ h)n(lfa) —(n+ ;L)(lfodn(nfl)(lfa)
+ (n + h)I-Ypyn=b=a) _ prli=a)|
< |+ R) || (1 + h)n VA=) _ pn=D-e))
+ [ DA~ | (4 ) A7) — 1=
< |(n+ ) NCh' =+ [pln DU Cplme
< 207 Cpt 4 D) op e
< COh' Y (2.44)

Hence by mathematical induction (2.43) is proved.
Now combining the above estimate (2.44) with the estimate (2.42), we obtain

|u(s(tn +h)) — u(s(t,n))|

< Myh+ CR'™ " [he(s(t,n -+ )= 4 plmey
k=1

k=1

Ui (s(t, 1 + mah) )RS ()0 =)

< ent M 4+ Y|t + )] D7 (U s(tn + ngh) e ()0

k=1 k=1

}. (2.45)

Gi(s(t,n + 12h))h (tn)F=)

are uniformly convergent

Since Zwk(s(t,n + AP and Z
k=1

k=1
series, hence we obtain

Weo(u, h) = sup |u(s(t,n+h)) —u(s(t,n))| < Ch'™°. (2.46)

0<t,n<1

Hence the theorem is proved.

Lemma 1. For the exact solution u of the integral equation (2.1)-(2.2) with algebraic type kernel
defined by (2.2) with 0 < aw < 1. Then there holds

I(Z = Po)ullre = O(n™). (2.47)

11



PROOF. Since the exact solution u(t) has singularity at ¢ = 0. From estimate (2.9) and Theorem
2.3, it follows

I~ Podullieion = IE = Pt = xo)lseion < im0 o)l
Now using Jackson’s theorem (see. [17], pages. 144, 147, Theorems III and V), we have
I(Z = Pr)ullory < i inf |[(u = xn)l[Loe(on)
< weo (U, hy) < ¢y ™ = (’)((n%)lf‘)‘) =0(n™ ™). (2.48)
Next for i = 2,...,n, using the estimates (2.11), (2.15) and (2.16), we have
1T = Pyl < B ey < 0 [ 1y = O(0™). (2.49)
Combining the estimates (2.48) and (2.49), we obtain
(Z — Pn)ul||pe = O(n™™). (2.50)
Hence the Lemma is proved.

Lemma 2. For the exact solution u of the integral equation (2.1)-(2.2) with logarithmic type kernel
defined by (2.2) with o« = 1. Then there holds

(Z = Poull < Csn™™,
where C3 < 00 s a constant.
PROOF. Proof follows from the similar analysis of G. Vainikko and P. Uba [18].

Theorem 2.4. Let the projection operator P, : X — X,, be defined by (2.12) and H(t, s(t,n)) be
kernel of integral operator F defined by (2.2), there hold

O(n—™), ifo<a<l,

VAL =Bl = {O(n—m log(n)),  ifa=1.

PROOF. Note that the kernel (2.2) has singularity at 7 = 1 and in rest of the sub-intervals [0, ¢,,_1],
it is sufficiently smooth with respect to the variable 7.
Since (v, (P, — Du) = 0, Vv, € P,,,, we have

[F( = Pr)ulloc = sup [F(I — Pn)u(t)]

te(0,1]

= sup {‘ /017:[(75,5(15,77))(]—Pn)u(s(tan))dnl}

te[0,1]
n ti
= s || > / At (1) (P = Dttt )]

12



< sup {|3 [ Atustt) (P~ Dutstemyin] +| [ Fee.s(tm) (P~ Du(s(e,m)an] )
te[0,1] i—1 Jti-1 tn—1

= sup {320 s(0,) (P = Do+ (AL 5(2,) = w1y (Po = D

= s (IS (P~ DA 5(8,0), (P = Db+ L 5(6,0) 2, (P — DI}

< s { S I0P = D(L 50 ) i (P = Dol

I 5t ) = vl | (Po = Dl ioegony b (2.51)

If Ht,s(t,n)) = m(t,s(t,n))|1—n|~* with 0 < a < 1 is of algebraic type kernel, then from Theorem
2.1 and estimate (2.9), (2.11), (2.13), we have

| OH(E, 5(t, 7)) o
|F(I = Pa)u(t)] < ZCh s 1Pr = Dl + b1 (Pr = Dl o)
m 2 am%(t S<t 7])) % -m
< zm | =g P = Dy + 0704 )
n—1
=" A1+ p)Jull e + 07 (1 )
i=1
n—1
<> A A 4 p)full e + 071+ p)lfull
=1
< Cn~"™||ul| g (2.52)

If H(t,s(t,n)) = m(t,s(t,n))log(|t(1 —n)|) with o = 1 is of logarithmic type kernel, then from
Theorem 2.1 and estimate (2.9), (2.11), (2.13), we have

F(I - |<20hm\

i=1

onm HLOO(ai)
n—1
= > ARt p)ufl e+ (=m)n" log (1 + p)ul|
=1
n—1
S A (L4 p) uf g + (—m)n ™ log (L + p)[lull= < Cn " lognfjullpe.  (2.53)
=1

H(t, s(t,n))

77 ||(7Dn - I)UHLQ(ai) + hn 1og hnH(Pn - I)u||L°°(Un)

L2(o;)

1
W N[ (Po = Dyull oo (o) + 0" log ™™ (1 + p)|ul| 2=

| /\

IN
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From the estimates (2.52) and (2.53), it folows that

O(n™™), if0<a<l,

O(n=™log(n)), if a =1. (2:54)

[F(L = Po)llre = {
This completes the proof.

From the above theorem, we see that | FP, — F| — 0 as n — oo. Since 1 is not the eigenvalue
of the operator F, then (I — FP,)~ ! exists and uniformly bounded, for sufficiently large n i.e., 3
constant £ > 0 such that [|(I — FP,) 1= < L < co.

In the next theorem, the convergence results for the iterated Galerkin method are provided.

Theorem 2.5. Let H(t, s(t,n)) be the kernel of the operator F given by (2.2) and i, be the iterated
Galerkin approzimate solution of u. Then the following results hold

N O(n=2m), if 0<a<l,
HU’_U’”HLOO = —2m ; —
O(n=*"logn), if a=1.

Proor. Consider

u—tn,=(Z—-F)'g—(T—-FP.) 'y
=(Z—-FP) ' IT-F-I+FPJIZ-F)'g
= (T - FP,) 'F(Z - P,)u.
= finl oo < LIFZ = Pa)ulloc. (2.55)
Note that the kernel (2.2) has singularity at 7 = 1 and in rest of the sub-intervals [0, t,_1], it is
sufficiently smooth with respect to the variable 7. Also the exact solution u has singularity at t = 0
and in the rest of the sub-intervals [¢1, 1], it is sufficiently smooth.
Now

[F( = P)ulloc = sup [F(I — Pn)u(t)]

te[0,1]
1
= s | [ st = Pouts(e )]
t,s(t,m)€0,1] ' Jo
n ti
= sup |30 [ Al st ) (P - Dulst.n))ai)
tmel01] ' Jtia

= s ] [t s, - Dttt

t,,me0,1

+| Z/ A(t, 5(6,0) (P — Du(s(t, n))d|
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1

+| mt,s(t,n))(m—f)u(s(t,m)dn]}
:tsél[opl]{|<7-[(t,s(t,.))( —Iu Ul|+rZ Po— D)u)s,

(R, 5(2,.)) = v, (P f>u>an|}
= sup {|{(Pu— DA, 5(t,.)), (P = Tue]

t.n€l0,1]

3P = DA 5(8,)), (P = D,

I 5(t,) = v (Po = Dudo, |}
< ||(Pn - [)7:[(75, S(t7 '))||L2(01)||(Pn - [)/U’”L2(U1)

n Z”(P" — DH(t, s(t, )| 2o

+1H(t, 5t ) = vill 2 o) 1P = Dullz=o,)- (2.56)

In the above, we have used (v, (P, — I)u) = 0, for v; € P,,.

Case-I:- If H(t,s(t,n)) = m(t,s(t,n))|1 —n|~* with 0 < o < 1 is of algebraic type kernel.

In the subinterval o; = [0, ¢;], for the first term of the above estimate (2.56), using the estimates
(2.9), (2.14) and Lemma 1, we obtain

(P — DY, s(t, ))HLOO(al)H(Pn—I)U(S(tw))lle(al)

(Pn = Dull20)

< ChmHa H t, S(t 77 H Clhiia < Cnf(mq)fq(lfa) 9 H<t75(t7 77)) H
on™ L (01) on™ L (1)
< o) Ha H(t"g(t’"))H | (2.57)
onm (o)

For o; = [t;_1, ], i =2,...,n — 1, for the middle term of the above estimate (2.56) and using the
estimates (2.11) and (2.15), we obtain

1(Po = DH(E, s(t )20 | (P = Duls(t, )] 220,
(9m7:l(t, s(t,n))

|| " uls(t,n))

< Chi” o L2<cn-> : o e

<Chmh2 amH(atni( HLoo(m) 3 % amufgfl(mtm))uﬂ"’(@)
S e =
SC”(2m+1)“amﬂ(a15;71(t,n))HLOO(W) %Hm@) (2.58)

15



For o, = [t,—1, 1], for the last term of the above estimate (2.56) and using the estimates (2.9),
(2.16) and Theorem 2.1, we obtain

IH(E, 5(t,) = vl | (Pa = Duls(t, )l (o)
< IHE, 5(t, ) = villaoa | (Pa — Duls(t, )=o)

< Chl ™ 9™uls(t, n)) H

- " onm Lo

< Cp~(mo—a(1-a) o™ “én% 77)) HLOO

<Cn () HWHW. (2.59)

_ H a%(s(t )

Letting MM = Hw‘ ( ) ‘ o) 1 = 2,..,n — 1, and combining the
L (o L (o

eatimates (2.57)-(2.59) with the estimate (2.56), we obtain

2

n—1
(FPo = Flult)] < Cn_(l%ﬁm) M+ Z Cn~ G ING My s + Cn_(%“”) My,

1=2
n—1
=Cn~ (1 a+m)]\411+Cn QmZn MlZM21+Cn (1 "‘+m)M2,n
1=2

< Cn™ " max {n_(%_m), 1, n_(%_m)}
< Oy 2, (2.60)

2 m2

where € = C'max {n_(l%l_m), 1, n_(g_m) }, which is independent of n.
This implies

IF (P = Dulle = O(n~*™). (2.61)

Case-IL- If H(t, s(t,n)) = m(t, s(t,n))log(|t(1 — n)|) with o = 1 is of logarithmic type kernel.
In the subinterval oy = [0, ¢], for the first term of the estimate (2.56) and using the estimates
(2.9), (2.14) and Lemma 2, we obtain

1P = DYH(E, s(t ) oo o) | (P = Duls(t, ) oe(0)
O™H(t, s(t,n)) H
onm Le>(o1)
O™H(t, s(t,n)) H
o™ L (01)
O™H(t, s(t,m)) H '
o™ L (01)

< Ch"

Cghl

< Cn_mq—q

< Cn—<m2+m>H (2.62)
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For o; = [ti_q, t], i = 2,. — 1, for the middle term of the estimate (2.56) and using the
estimates (2.11) and (2.1 ) we obtam

1(Po = DYH(E, 5(t, )| 20 [|(Pa = Du(s(t, )l 220
amﬁ(t,s(t,n))‘

m 3””6(8(@?7))’

%

on™ L%n) anm L2(07)
< con} | L HLE () | . hmw Pruls(t,m) |
on™ Lo () 377 L= (0;)
< Ch2m+1 amﬂ(tv S(t7 77)) H 0™ ( ( H
- on™ L2 (o) on™ Lo (o)
< Cn—(2m+1) 8m7:t(t7 5(t7 77)) H o"u ( t 77 H ) (263)
- on™ Lo (0) on™ Lo ()

For 0, = [tn—1, 1], from the last term of the estimate (2.56) and using the estimates (2.9), (2.16)
and Theorem 2.1, we obtain

1H(t, 5(t, ) = vill 1 o) | (Pr = Dt ) 2 (o)
< IH(E, s(t,7) = vell 01] (P = Duls(t, )l Lo (o)
O™ u(s(t,n)) H
onm
< Cn—(m2+m) 1OgnH8 ( <t777)>
on™

m

L (o) i

(2.64)

‘Loo(an)'

H a%(s(t )

Letting M, ; = Hw ‘ ( ) ’ ) 1 =2,3,..,n — 1, and combining the
Lo (o L (o;

estimates (2.62)-(2.64) with the estimate (2. 56) we obtain

n—1
|(f7)n — ./—")U(t)| § C'I’I/_(m2+m>M171 -+ C Z n_(2m+1)M17iM27i + Cn_(m2+m) log nMQJ
=2
n—1

= C’n*(szrm)MLl + Cn—2m Z nilMLiMzﬂt + Op~(m*+m) log nMs
i=2
< C’7f(m2+m)M171 + Cn~ 2™ 4+ O~ ™M) Jog nMs
< Cmax{n "M p=2m  p=(m*m) o0
= Cn 2 max{n~ ™™ 1, n= "™ Jogn}
< Con~*™logn, (2.65)

where Cy = C' max{n_(mz_m), 1, n_(mz_m)}, which is independent of n.
This implies

| F (P, — Tul|s = O(n"?™logn). (2.66)
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Hence combining (2.61) and (2.66) with (2.55), we have
~ O(n=2m), if0<a<l,
= || = . L (2.67)
O(n=""logn), if o =1.
This completes the proof.

Theorem 2.6. Let H(t, s(t,n)) be the kernel of the operator F given by (2.2) and u, be the Galerkin
approximate solution of integral equation (2.1) then there holds

lu = tn|[ = O(n™™).
Proor. Using u,, = P,u,, we obtain
U— Uy, =U— Pply, =u— Pyu+ Pou— Py,
From Lemma 1 and Lemma 2, we have
(I —Pp)ullpe < Cn™™. (2.68)
Hence using Theorem 2.5, estimates (2.13) and (2.68), we have

[ = | e < [T = Pr)ullzoe + [P (v — tin) || o,
<O +p |[u—tylle = O(n™™).

Hence the theorem is proved.

In the next section, we improve the convergence results.

3. Superconvergence results for multi-projection method

We analyse the iterated version of multi-Galerkin method to obtain their improved convergence
results. The multi Galerkin operator (see [4, 6, 19]) is defined as

Fl = PoFPu+ PuF(I = Py) + (I — Po)FPy. (3.1)
The multi-Galerkin method for integral equation (1.1)-(1.2) is defined as, find u’ € X such that
ul — FMyM — ¢, (3.2)
and iterated multi-Galerkin solution is defined as
M = Ful +g. (3.3)
From Theorem 2.4, it follows that
1F = Fllzee = I = Pa) F(I = Pu)ll=e < (14 [Pall=o) IF(T = Pa)llze = 0 as 1 — oo.

Hence (I — FM)~! exists and uniformly bounded for large enough n. This shows that v € X is
the unique solution of the equation (3.2).

Next, we discuss the convergence rates in multi-Galerkin and iterated multi-Galerkin methods.
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Theorem 3.1. Let u? be the multi-Galerkin and @ be the iterated multi-Galerkin approzimations
of the solution u of (2.1), then there hold

O(n—2m if 0 1
o — ) = 4O yo<a<l, (3.4)
O(n=2mlogn), if a=1,

and
- O(n=3m), if 0<a<l,
= o S 5
O(n—""(logn)?), if a=1.
PROOF. From equations (2.5) and (3.2), we obtain
u—u) = =F)g-(I-F)g=1-F)y " (F-FHI-F)yg
= -7 H(F-Fu
Since [|(I — FM) | < L1 < 00 and [Pyl < p < 00, we have
lu = wnlloo < 17 = F) 7 e ll(F = o ullo
< L[| (F = F ullo
< Li|[(Z = Pu) F(I = Pu)ullo
< Ly(3 A+ [[Pallo) IF (U = Pr)ullo
< LT+ p) | FU = Pr)ullco- (3.6)
Hence by using the estimates (2.61) and (2.66) in the estimate (3.6), we obtain
L1(1+ p)Cn=2m, if0<a<l,
lu = up! || oo < \ ) —2m T
Li(14 p)Cn~*™logn, if a=1.
From this the result follows.
O(n=2m), if0<a<l,
fus e =4 O, 0 7)
O(n=*"logn), if a =1.
Again from equations (2.5) and (3.3),
u— M = Flu—u)
=FI-F)N(F-FHI-F"g
=(I—F)'"F(I-P)FI—Pu)(u+u) —u)
= (I = F)'"F(U = Po)F(I = Po)u—F(I = Pp)F(I = Pp)(u—u))]. (3.8)

This implies

e = @y Nl < 1T = F) "M oG IFI = Pu) FI = Pa)ull + IFU = Po) F(I = Pa)(u = up )]
< T = F) MoIFT = Pu)llocllF(I = Pr)ull o + I1FT = Pu) 5[l (w = )l - (3.9)
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Hence using the estimates (2.54), (2.61), (2.66) and (3.7) in the estimate (3.9), we obtain

M O(n=3m), if0<a<l,
HU — Uy HL°° = .
O(n=3m™(logn)?), ifa=1.

This completes the proof.

Remark 3.1. a. From Theorems 2.5 and 2.6, we see that for algebraic type kernel, the Galerkin
method and its iterated version converge with the orders O(n=™) and O(n=2™), respectively.
For logarithmic type kernel, Galerkin method and its iterated version converge with the orders
O(n=™) and O(n=*™logn), respectively. From this, we notice that iterated Galerkin solution
improves over Galerkin solution.

b. From Theorem 3.1, we notice that the iterated multi Galerkin approximate solution converges
with the rate O(n=>™) and O(n=3"(logn)?) for algebraic and logarithmic type kernels, respec-
tively.

From this, we observe that the iterated multi-Galerkin approzimate solution improves over the

iterated Galerkin solution.

4. Numerical Illustration

We consider the approximation subspace X,, as a space of piecewise constant functions with
respect to the partition (2.6) that is (m = 1). We present the errors and convergence rates of the
approximations and iterated approximations of Galerkin and multi-Galerkin methods.

Denote
[t — |l = O(7), [t — iy e = O(n77),

lu = u e = Om™),  flu— @)1= = O ™).

The numerical algorithm was executed on a PC Intel(R) CPU @ 3.20 GHz Processor, Core (TM)
15-3470, 4.00GB RAM and 64-bit operating system on Matlab(R2013b).

B, 7, 9, X are calculated for the following examples.

Example 4.1. In this example, we consider the Volterra integral equation with a weakly singular
kernel as

t
u(t) = g(t) —|—/ H(t,s)u(s)ds, 0<t<1l O<a<l,
0

with H(t,s) = 3(t —s)™*, o = L and the right side function g(t) = 1 — 37t and the exact solution

u(t) = 1+ t2, which is non-smooth at t = 0.
Using transformation s = tn, we get the following integral equation

u(t) = g(t) —l—/o H(t, s(t,n)u(s(t,n))dn, tel0,1], 0<a<l,
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with kernel H(t,s(t,n)) = %t%(l —n)"2. Then form = 1 and q¢ = =, the expected order of
convergence are =1, v =2, 6 =2 and A\ = 3. For Galerkin and iterated Galerkin methods, the
error bounds and convergence rates are presented in Table 1 and for multi-Galerkin and iterated

multi-Galerkin methods are presented in Table 2.

Table 1: Galerkin and iterated Galerkin methods

v — wn| e p [u — | oo gl
3.5937870000 x10~' 1.04 1.3595032391x10~' 2.03
2.1189406688 x 1071 1.02 3.9483026956 x1072 2.12
1.1343488703 x10~* 1.01  9.9136707350x 1073  2.15
4.9835781429 x1072 1.06 3.2185262010 x10~3 2.04
2.9012135736 x1072 1.01 8.3550341158x10~* 2.03
64  1.3547608069x107% 1.03 2.4132242067x10~* 1.99
128 8.7037737316 x1072 0.97 5.9745152247x1075  2.00

L =
5oy 0B o3

Table 2: Multi Galerkin and iterated multi Galerkin methods

n lu — | J [ [ A

2 1.2172765434 x10~" 2.14  4.9603664790 x10~2 3.06
4 3.9003163004 x1072 2.13  9.1988585949 x10~2 3.08
8  1.0260468329 x1072 2.13 1.5097354221 x103 3.02
16 3.2848147599 x1073 2.03 2.4640931548 x10~* 2.96
32 7.5756882417 x107% 2.06 2.3524588289 x107° 3.06

64 1.8794344319 x10™* 2.05 3.2159579930x10°¢ 3.03
128  4.8417180950 <1075 2.04 4.3986038300x10~7 3.01
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Example 4.2. Consider the following Volterra integral equation with weakly singular logarithmic
kernel

¢
u(t) = g(t) —I—/ H(t,s)u(s)ds, te€0,1], a=1,
0
with H(t, s) = log|(t—s)| and the right side function g(t) = t(logt—1)+%(ﬁ2—21+1810gt—610g2 t)
and the solution u(t) = t(logt — 1), which is non-smooth at t = 0.
Using transformation s = tn, we get the following integral equation

U(t)=g(t)+/0’fl(t,S(t,n))U(S(t,nde tel01], a=1,

kernel H(t,s(t,n)) = tlog|(t — tn)|. Then for m =1 and q = m, the expected order of convergence
are =1, v~ 2, § = 2 and A = 3.The error bounds and convergence rates for Galerkin and
iterated Galerkin methods are presented in Table 3 and for M-Galerkin and iterated M-Galerkin
methods are presented in Table 4.

Table 3: Galerkin and iterated Galerkin methods

[ — || o p [ — | o gl
3.7826190701 x 10! 0.99 1.4295496824x10~' 1.98
2.3225864654x 1071 0.96  4.6269592280x107%  2.02
1.1478934454x10~1  1.00 1.8750065292x1072 1.85
16 5.9788467281x107% 1.00 6.0085808766 x1072 1.82

2 3.6197815141x1072 0.95 2.0220445497x107% 1.78
64  1.3891010776x1072 1.02 5.3020659199x10~* 1.81
128  8.6491699050x1073  0.97 1.6540973099x10~* 1.79

o =~ N3

Table 4: Multi Galerkin and iterated multi Galerkin methods

n o — | J lu — ' [l A
2 1.3927052015 x1071 2.00 5.1914897366 x10~2 3.01
4 49403962519 x1072 1.97 9.3664384731 x107% 3.07
g  1.2138790300x1072 2.05 1.3702678246 x10~* 3.07
16 3.6296481261 x1073 2.00 2.1019322314 x10~* 3.01
32 1.2007369928 x1073 1.93 2.3112874718 x107° 3.06
64  3.8346841070x107* 1.88 4.4870949940 x1076 2.95
128  9.2111510735x107°  1.91  6.2344498400x10~" 2.94
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From Tables 1, 2, 3 and 4, we see that the computed values of 3, v, d and \ are well matched
with the expected convergence results. From Tables 1 and 2 of Example 4.1 and from Tables 3 and
4 of Example 4.2, we see that the iterated multi Galerkin method improves over iterated Galerkin
method. Note that the size of the system of the equations that must be solved, remains the same

as in Galekrin method.
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