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Abstract 

The stability is studied of a class of nonlinear dynamical systems which possess many nonlinearities and many 
equilibrium states. As a special case, the analyzed class of systems includes analog neural networks. Sufficient 
conditions for the nonoscillatory behaviour of these systems, in the form of frequency domain criteria, are presented. 
The main result is proved relying on a suitable Liapunov function which is subsequently used for the simultaneous 
computation of regions of attraction for each stable equilibrium. 
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1. Introduction 

Analog neural networks are usually implemented as electrical circuits, composed of a 
number of interconnected nonlinear blocks with identical structures. In general the system 
possesses several equilibrium states. These nets, proposed as parallel computing devices, offer 
an approach for solving classification and optimization problems [2,9]. The equilibrium states 
represent the prototype vectors of the different classes, when the system is used as a classifier, 
or the optima, when it is used as an optimizer. For its proper operation it is essential that a 
neural network does not oscillate. Each trajectory, initiated by a state presented to the network, 
must converge to one of the equilibria. It is important that the regions of attraction of the 
equilibria can be estimated as precisely as possible because they represent the different classes 
of a classification network or the basin of attraction of an optimum of an optimization network. 

The direct method of Liapunov has been used as a tool for the analysis of analog neural 
networks by Cohen and Grossberg [l] and by Kosko [5,9]. More recent contributions are due, 
among others, to Hasler [2] and Keen [4]. Further references can be found in [lo]. In this paper 
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circuits are considered whose equations belong to a class of nonlinear autonomous dynamical 
systems of the form 

i =/IX -Bf(a) -h, u4 C’x, (1) 

where x E R” represents the state and f(a) p [fr(a>, . . . , f,(a)]’ is a nonlinear function of 
a=[(~~ ,..., a,]‘. A E RnXn, BE Rnx” and CE Wx” are constant matrices, h E R” is a 
constant vector. A is assumed to be nonsingular and (A, B) is controllable. A stability criterion 
for system (1) is derived in Section 2. Section 3 presents a systematic method for the 
simultaneous computation of the regions of attraction of all stable equilibria. The analysis of 
neural networks using the results of Sections 2 and 3 is given in Section 4. In the discussion of 
Section 5 the present approach is compared to the classical Cohen and Grossberg [ll and 
Kosko [5] theorems. The paper concludes with an example. 

2. Stability criterion 

The Liapunov function V(x) for system (1) has the form 

V(X) =x’Px +f’(a)Sf(o) +_.&!$(a) + i”f’(u)iE du +p’x +q’f(a), (2) 

where P = P’, S = S’ and Cu = diag(c-u,). 
Differentiation of V(X) along the solutions of system (1) and suitable choices for the 

differential matrices 

p= -2PA-‘h 7 q = -L’A-‘h L = -CZ - 2PA-‘B, 

s = _ +BlA-l’L =B’A-“PA-1B + +BlA-l’c~ 

yields 

I+) =i’[PA-’ +A-“P]i -i’A-“[Cii+ 2PA-‘B]f,(o)C’_i, 

where f&a) 4 diag[f,,(ol)] and fid(ai) = dfi(ai)/doi. 
Since S is symmetric, the matrix EC’A-‘B must be symmetric as well. Assume the 

nonlinearities satisfy slope constraints of the form 

0 <fid(oi) < ki, all oi. (3) 

Then for any 7 = diag(y,) > 0 it follows that 

h %lC[ z-K-‘f,(o)]yf,(~)C’~ > 0, 

where K = diag(ki). Using the transformation 

l,j,$-“PA-’ 
7 (4) 

v(x) can be written as 

I+) = -A - [Q/i +K-‘/2y’/2fd(,)Cr;]‘[ Q’i +K-1/2y’/2f,(~)C’i] - l i’Di, (5) 
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for matrices Q E Rnxm, D = D’ > 0, D E Rnx”, and for a scalar E > 0, if the equations 

A’W+ WA = -QQ’-ED, (6) 
2WB +A-“CG - CT = 2QK-1/2y1/2 

(7) 

have a real solution W = W ‘, Q. 
By the Kalman-Yakubovich-Popov main lemma [8,12], the solvability of (61, (7) is guaran- 

teed if E > 0 is sufficiently small and if, after some manipulations, 

[K-’ + C’(jwZ-A)plB] > 0, all real w. 

BY (3, V(x) 6 0 f or all x and I?,) = 0 if and only if i = 0. Hence, according to [6] all bounded 
trajectories of the system (1) converge to an equilibrium state. A system which has this property 
will be called nonoscillatory. Eq. (8) is the multivariable version of a simpler “scalar” case 
which has been reported before [7]. 

3. Computation of stability regions 

In this section it is assumed that all solutions of system (1) are bounded and that the 
conditions for nonoscillatory behaviour are satisfied. Now, following the method outlined in [7], 
the Liapunov function (2) is used to construct regions of asymptotic stability for the stable 
equilibria: as V(X) G 0 for all x and there are no trajectories along which I?,) = 0 except the 
equilibrium solutions, V(x) reaches a relative minimum at every stable equilibrium. Suppose xA 
is such a stable equilibrium. Let C be a constant slightly larger than V(x,). Then the simply 
connected subset S, of the set S 4 lx, V(x) < C] which contains xA, and no other equilibrium 
state, is a region of attraction of xA. S, grows with increasing C. The largest set S,, within the 
scope of the method, which is still an estimate of the region of attraction of xA is obtained for 
C = V(x,). x, is such that, among all unstable equilibria, I/(x,> assumes the smallest value for 
which V(x,> > V(x,). More generally, any set of the form 

s p {x; V(x) < C}, 

and any simply connected subset of it, is a region of attraction for the union of all equilibria 
contained in it. 

Considering the dependence of V(x) on the matrix P, the Liapunov function can be written 
as the sum of a term dependent on P and a term independent of P: 

V(x) = [xl-f’(c)BX”]P[x -A-‘Bf(a)] - 2h’A-“P[x -A-‘Bf(o)] + Q(x), 

where 

Q(x) P ;f’(a)B’A-“CiSf(o) -x’Ciif(a) + ~vf’(u)ii du +h;l-“CZf(o). 

Since x, is an equilibrium state of system (11, 

i, = 0 =/IX, - Bf(q) -h, a, A C’x,, 

and 

V(xJ = -h’A-“PA-‘h + @(x,). 
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Hence, after some manipulations, the set {x; V(x) < I/(x,>} takes the form 

s= {x; [x -K’Bf(a) -A-‘h]‘P[x -KlBf(o) -A-%] <@(x,) - Q(x)} 

= {x; [/+Bf(a)-h]‘W[Ax-Bf(+h] <@(&-@(X)}. (9) 
W is a solution of (61, (7) or, after elimination of Q, a solution of the algebraic Riccati equation 

A’W+ WA + [ WB + ;A-“ca - ;cy]y-‘K[ wz3 + $K”CE - tCy]’ + ED = 0. (10) 

x, and a(x) are independent of the choice of IV. On the other hand, the set S grows 
monotonically as W decreases. So the best choice of W is the minimal solution W-(E) of (10). 
According to [12] this minimal solution decreases as E and K decrease. So S and the estimate 
S, of the region of attraction of xA are maximized by letting E JO and by choosing K as small 
as possible such that the slope constraints (3) are still satisfied. 

4. Neural networks 

Hopfield’s network is an example of a neural classification network [3]. It is an electrical 
circuit composed of IZ interconnected nonlinear blocks with identical structures. Each block or 
artificial neuron consists of a resistor Ri, a capacitor Ci, and a nonlinear amplifier with a 
bounded S-shaped characteristic. The characteristics satisfy slope constraints of the form (3). 
The artificial neurons are interconnected by a synaptic resistive network consisting of resistors 
R,,, i, j = l)...) n. The network is fed with constant currents Ii. The equations for the amplifier 
input voltages ui are [2]: 

i=l ,.‘., 12. 

These equations have the form of system (1) with corresponding matrices 

A = diag(a,), 

A is the synaptic matrix 

( 1 1 
_ . . . - 
Rn Rill 

AA. : 

i 1 
_ . . . - 

\ Rn, R nn 

(11) 

B= -TA, 
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Using the boundedness of Bf(a) + h and the stability of the matrix A, it is a simple exercise to 
prove the boundedness of all solutions of the network. Indeed let U = U’ > 0 be the solution of 
Liapunov’s equation [ 111 

u/4 +A’U= -I. 

Then it is easily verified that along the solutions of (l), (d/dt)(x’Ux) < 0 for X’UX > R2 and R2 
sufficiently large. To check the network’s nonoscillatory behaviour, choose (Y = ?A, which 
requires that TB is symmetric. The frequency domain condition becomes YK-1 > 0, which is 
satisfied for any 7 > 0. Choosing 7 = I, the remaining condition becomes B = B’. Note that if 
A = A’, then B can be made symmetric by resealing the nonlinearities. This means that 
Hopfield’s network cannot oscillate if the synaptic matrix A is symmetric. From now on 
suppose B = B’. An estimate of the region of attraction of a stable equilibrium point xA is the 
simply connected subset S, of the set (9) which contains the equilibrium point. For C = 7 = I 
and Cr = A, Eq. (10) simplifies to 

A’W+ WA + BWKWB + ED = 0, 

whose minimal solution W(E) JO for E JO. As a consequence, every point in the set s^ = 
{x; Q,(X) < @(X,)1 is also a point in the set S if E is chosen small enough. The best estimate of 
the region of attraction of a stable equilibrium point is the simply connected subset S, of S 
which contains that equilibrium point. 

5. Discussion 

There exists an interesting relationship between the results of this paper and the works of 
Cohen and Grossberg [l] and of Kosko [5]. The Hopfield network’s model (11) is a special case 
both of the system (1) and of Cohen and Grossberg’s neural network model 

b,(q)- t Cikdk(Xk) ) 1 i=l ,...,n. (12) 
k=l 

So the symmetry of the synaptic matrix, as a sufficient condition for the nonoscillatory 
behaviour of (ll), is an immediate consequence of the Cohen and Grossberg theorem [l], and 
of the more general Kosko theorems [5,9]. As a matter of fact, this symmetry condition has also 
been obtained by other authors [2]. However, model (1) is not a special case of (12) unless the 
matrix A is diagonal, the matrix C = I and m = II. The present analysis relates the symmetry 
condition on the synaptic matrix of a neural network to the stability conditions of nonlinear 
feedback systems. In automatic control theory equations of the form (1) have been used to 
model the dynamics of multivariable nonlinear feedback loops whose forward path component 
is linear with transfer matrix H(s) = C’(s1 -A)-‘B (see, e.g., [8]). The structure of Hopfield’s 
network ensures that the frequency stability condition (8) on H(s) holds automatically, while 
the symmetry condition on iK’A_‘B = -EH(O) translates into the symmetry condition on the 
synaptic matrix. 

The Liapunov function (2) approaches the Liapunov function used in [1,5] as E JO and 
Z = A. However, there is an advantage in choosing E # 0. In the case where the functions di( ti> 
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in (12) have thresholds such that (d/d[,)[d,([i>] = 0 for 1 ti I > rl,, Cohen and Grossberg need 
very complex proofs to show the convergence of the trajectories of (12). 

In the present approach the term ~i’D3i. in (5) avoids this complexity, even if E is chosen 
arbitrary small. Furthermore, the nonoscillatory behaviour of system (1) can be proved using 
any Liapunov function from the class of functions (2) where P is found from (4) and W is any 
symmetric solution of (10). In the latter equation there may be some freedom of choice in the 

- - 
parameters CX, y, K and ED. This allows an optimization of V(X) for a maximal estimate of the 
regions of attraction of the stable equilibria. 

Finally there may exist neural networks whose equations cannot be cast in the Cohen-Gross- 
berg-Kosko form (12) with a symmetric )I cik II -matrix, but which could be handled along the 
lines of the present approach using a model of the class (1). For example, purely additive 
models of the type 

ii = -A,xi +Bi Ii + e Dikfk(xk) - Fi Ji + e Gikgk(xk) 
1 [ 1 

, i=l >**-7 n, 
k=l k=l 

which contain both cooperative and competitive interactions (see [l]) can be written in the 
general form (1). This point remains an open question. 
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Fig. I. Example: stability regions of the four stable equilibria of a Hopfield network with two neurons, for the 
following numerical values: aI = 2, uz = 10, b, = 1, b, = 5, b, = 0.5, p1 = 10, ~2 = 40, h, = 1, h2 = 4, (~1 = 5, az = 4. 
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6. Example 

A Hopfield network with two neurons has the following equations: 

Because of the structure of the Hopfield network, the system parameters must be chosen 
positive and satisfy the inequalities a, > b, + b, and a2 > b, + b,. The nonlinearities fi(xi), 
i = 1, 2, have identical structures: 

I Pixi, if 1 Xi I < ‘7 ai > 0, pi > O, 

fi(xi) = 
Pi 

“isgn(xi), if JXil> ‘, Cri> 0, pi’ 0. 
Pi 

For the numerical values of Fig. 1 the system (13) has nine equilibria: 
. four stable nodes: A, B, C, D; 
. four saddle points: M, N, P, Q; 
. one unstable node: 0. 

x2 
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XI 

I 
400 

-600 

Fig. 2. Example: dependence of the stability regions on .s. 
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The Liapunov function at the equilibria satisfies the inequalities 

V(A) < T/(B) < V(M), V(C) < V(D) < V(N), 

V(M) < V(N) <V(P) <V(Q) <V(O). 

According to the previous sections, the disjoint subsets s^, and iz of the set s^ = Ix; Q,(x) < 
a(M)} are regions of attraction of A respectively B. The disjoint subsets ??F and s^,* of 
s^* = {x; Q(X) < Q(N)} are regions of attraction of C respectively D. These regions of 
attraction are shown in Fig. 1. Fig. 2 shows the dependence of the obtained stability regions on 
the choice of E, as E JO. 

7. Conclusion 

A frequency domain criterion for the nonoscillatory behaviour of a class of autonomous 
nonlinear systems has been presented. As a special case the analyzed class of systems contains 
Hopfield’s neural classification network. The criterion has been derived using a suitable 
Liapunov function which can be used for the simultaneous calculation of the regions of 
attraction of all stable equilibria of the system. The obtained results have been compared with 
the well-known Cohen-Grossberg-Kosko theorems on pattern formation of neural nets. 
Further research may deal with the application of the method to other types of neural networks 
and to improve the technique for obtaining better estimates for the exact regions of attraction. 
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