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Abstract 

In this paper we consider the relationship between some (forms of) specific numerical methods for (second-order) 
initial value problems. In particular, the St6rmer-Cowell method in second-sum form is shown to be the Gauss-Jackson 
method (and analogously, for the sake of completeness, we relate Adams-Bashforth-Moulton methods to their first-sum 
forms). Furthermore, we consider the split form of the St6rmer-Cowell method. The reason for this consideration is the 
fact that these summed and split forms exhibit a better behaviour with respect to rounding errors than the original 
method (whether in difference or in ordinate notation). Numerical evidence will support the formal proofs that have been 
given elsewhere. 

Keywords: Ordinary differential equations; Periodic solutions; Initial value problems; Numerical methods; Multistep 
methods; Summed forms; Split forms 

1. Introduction 

Second-order ordinary differential equations have been integrated numerically ever since the 
17th century, in the context of physical problems. In particular, the equations of celestial mechanics 
have been considered and integrated succesfuUy since several centuries. Present techniques in 
numerical astronomy date back to Gauss and have been put in a familiar form by a.o. St6rmer 
(1907), Cowell (1910) and Jackson (1925). Cowell's method has reached an official status among 
well-known numerical techniques, while the Gauss-Jackson method is particularly known among 
astronomers. The latter method has recently (1986-1988) been used by Milani et al. to integrate the 
solar outer planetary system over 100 million years. Yet its features are little known among 
numerical analysts, let alone the relation of this method with the St6rmer-Cowell method as 
a predictor-corrector pair. The purpose of our present investigation is to clarify this relation. 
Moreover, we shall compare the technique of "summation" to that of "splitting", as introduced by 
Spijker 1-11,12-1. 
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2. The Stiirmer and Coweil methods 

The terminology a round  Cowell methods  has been somewhat  loose, in literature. Some authors 
designate all methods  of the form 

Y,+ I - 2y, + Y n -  X = h 2 . (  . . .  ) 

(where ( . . . )  contains some linear combina t ion  of f ,+ l ,  f,, ... or their differences) as 
St6rmer-Cowel l  methods.  On the other hand,  especially among  as t ronomers  not  much  distinction 
is made  between the (original) Cowell me thod  and the Gauss-Jackson  method,  which, by the way, 
can very simply be t ransformed into Cowell's, and vice versa. 

To make  things explicit, we shall stick to strict definitions and adopt  Henrici 's formulat ion of the 
St6rmer and Cowell methods  and Herrick's definition of the Gauss -Jackson  method,  see [5, 6]. 

We consider initial value problems for a set of second-order  ODEs: 

y"(x) = f ( x ,  y(x)); y(xo) = yo, y'(xo) = ylo,  (1) 

in which f is a cont inuous  mapp ing  from I x U c ~ x ~"  to R", and y0, yl0 ~ U. For  this type of 
problems, numerical  methods  of the "St6rmer-Cowel l  family" (see [2, 3]) can be used. For  
simplicity, we take m = 1. 

On  the x-axis we suppose an equidistant  grid is given with step length h. Let x be a typical grid 
point  and integrate (1) twice, then 

t 
x+h  

y(x  + h) - y(x)  = hy'(x) + (x + h - t ) f ( t ,  y(t)) dt. (2) 
d x  

Doing the same with h replaced with - h and adding both  results we arrive at 

I 
x+h  

y(x  + h) - 2y(x) + y(x  - h) = (x + h - t) {/( t )  + f ( Z x  - t)} dt, (3) 
d x  

where '~f(t)" is an abbreviat ion of ' f ( t ,  y(t))". At this stage an interpolat ing polynomial  for 
f ( in te rpo la t ing  at q + 1 points) is introduced,  whereupon it is straightforward (see [5]) to arrive at 
the explicit difference equat ion 

q 

Yp+l - -  2yp + Yv-1 = h 2 ~ a , . V " f p ,  (4) 
m = 0  

with the coefficients of Table 1. 
If we now use the relationship 

vr"fv = V " f p + x -  vm+Xf,+l ,  (5) 

we arrive easily at the corresponding implicit Cowell me thod  

q 

y p + l - 2 y p +  y p - ~ = h  2 Z a*Vmfp+x, (6) 
m = O  

in which tr~ = ao; tr* = a,, - am-1 (m >/ 1). We then get the coefficients as shown in Table 2. 
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Table 1 
Coefficients of the St6rmer method 

m 0 1 2 3 4 5 6 ... 

ffm 1 0 ~ ~ ~ ~ 863 240 240 12096 "'" 
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Table 2 
Coefficients of the Coweil method 

m 0 1 2 3 4 5 6 ... 

a* 1 1 ~ 0 ~L- ~ 221 -- 2 4 0  . . . . .  - -  60 4 8 0  

The concept of order is introduced in [5] in connection with the ordinates notation for multistep 
methods. The ordinate and difference notations can be transformed into one another  by means of 
the formulas 

Vqfp= Z ( - 1 ) "  fp_,, ( q = 0 , 1 ,  . . . )  (7) 
m=0 

and 

fp-q= Z (--1,m(q~17rafp , q = 0 , 1 , . . . , .  '8' 
m=0 k i n /  

It is easily seen that a St6rmer method in difference form, used with maximum difference order q, is 
a (q + 1)-step method when regarded in ordinate form. For  Cowell methods, q and the step number 
k are equal. 

With this in mind, we arrive at the survey of Table 3 (see [5]): 

3. The first- and second-sum ( G a u s s - J a c k s o n )  methods  

The following presentation of the Gauss-Jackson method has been inspired by the book on 
Astrodynamics by Herrick [6]. Extensive use will be made of the difference tables displayed in 
Tables 4 and 5. They will, if necessary, be supplied with "artificial" or "average" differences 

~f/ = ½ ( ~ £ +  1/2 + ~ £ -  1/2), (9) 

~3£ 1 3 3 = 7(6 £+1/2 + 3 ~-l /2) ,etc . ,  

= 1  2 32 ~ 2 £ + 1 / 2  2( ~ £ + 1  -F £ ) ,  

= !  * 34 ~ 4 £ + 1 / 2  2( ~ f + l  + £) ,e tc . ,  
(10) 
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Table 3 
Orders and error constants for St6rmer and Cowell 

Method Order 

St6rmer 

Cowell 

Error constant 

q = 0  2 ~2 

q > 0  k = q + l  aq+ 1 

q 2 4 A_ = - -  240  

q > 2  k + l = q + l  a*+l 

Table 4 
Central difference table, extended with two "sum" columns 

Differences 
"Time" 2nd sum 1st sum r.h.s. 
(x) (~2) ( ~ )  ( f )  (6) (3 2 ) (3 3 ) 

xi 2 Y.2fi- 2 f~- 2 62fi- 2 
Zf ,-3/2 6f~-3/2 

x i -  ~ Y.2J~- i f~- , 62fi- , 

x, x2f, f, 62f, 
El/+ 1/2 6f/+ 1/2 

xi+l y2f~+~ f/+l 62J~+~ 
~-fi + 3/2 6.]'~ + 3/2 

Xi+2 ~2J~ + 2 f / + 2  

~ f  + 5/2 

Xi+ 3 ~"~ 2f /+  3 

(34 ) 

64f_2 
63J'~ - 3/2 

64Ji_ 1 
63f~-,/2 

64f, 
63f~+,/2 

or similar sums, 

E 2 f i + l / 2  = ½ ( X 2 f + l  + E2f/),  

(11) 
E~ = ½(E~+1/2 + E ~ - . 2 ) ,  etc. 

In this paper we use standard notations for differences: the forward difference is denoted by A, the 
central difference by ~ and the backward difference by I7. Moreover, 

V o = A  o=6o=ident i ty  and y = 3 -  
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Table 5 
Backward difference table, extended with two "sum" columns 

Differences 
"Time" 2nd sum 1st sum r.h.s. 
(x) ( V - 2) (V) ( f )  (V) ( V 2 ) ( V 3 ) ( V 4) 

x,_~ V-2f~_3 A-* 
V-I~_2 

xi-~ V-~A-2 ~-~ 
V-~f~_, 

x, V- 2A_ , f~ 

x~+, V-2f~ f~+, 

x,+  2 V -  2f,+ ~ f~+ 2 

V-%+2 
Xi+ 3 ~7- 2f/+ 2 

v2f,_l v'J~ 
Vf/_ 1 V3f/ 

v2f, v%~ 
Vf~ V3f~+l 

V2A+ I V~+2 
Vf,+l V3A+: 

V2A+ 2 
VJi+2 
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by definition. E and ~2 are called f irst  sum and second sum, respectively. The difference tables are 
constructed according to the rule that for every three entries situated as follows: 

® a  

® b  

I ~ ) c  

we should have a + b = c. 
Appropriate starting values should be given in order to proceed with this scheme. Suppose, for 

instance, that we want to work with a difference table like in Table 4. If (starting) values f~_ 1,J],f~ + 1 
and f+2  are given, the triangle from that column up to and including 33f~+ 1/2 can be filled. With 
one value given in each of the first two columns in the larger triangle, both columns (E 2) and (Y) can 
also be filled. In this circumstance we may call the ascending diagonal through the entry E2J]+ 3 the 
"last known diagonal". From these values, sometimes estimates are made of some of the values in 
the next (not shown) upward diagonal through the entry f~+ 3. Therefore, the latter diagonal is 
called the f irst  est imated or f irs t  unknown diagonal. We shall return to the manipulation of the 
difference tables later (see "Comment  on the use of the Gauss-Jackson formula" at the end of this 
section). 

In the following we consider the differential equation in (1) 

y" = f (x, y(x) ), 

although it is possible to include first derivatives on the r.h.s. With x - Xo = hn (where h is the 
(fixed) step length and n e 7/) it follows that 

= y~ + h I "  O(z)dz, (12) 
do 
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yi+, = yi + nhy~ + h2 f~ f i  g(z)dz dt, (13) 

with 9(z) = f (x i  + hz, y(xi + hz)) and y~ = y'(xi) = y'(xo + hi). 
We consider the central difference 62y~; using (12) and (13) we get 

t~2yi = Yi+ 1 - -  2Yi  + Y i -  1 = h2 g(z)dzdt + g(z) dz dt . (14) 

It is because of the use of the central differences that the name of Gauss remains connected with the 
present method. In order  to interpolate the integrand however, we do not quite use the Gauss 
interpolation formula but the average of the forward- and backward-Gauss interpolation formulae, 
known as the Stirling interpolation formula, 

f~+, =f~ + nff~ + 82~2f/-[- 2 8 3 ~ 3 f / +  8 4 ~ 4 f / +  2S565j5 + ..., (15) 

n 2 n(n 2 - -  1)(n 2 --  4) 
$2 = ~I '  2S5 - 5! ' 

n(n 2 -- 1) nE(n z -- 1) (n 2 --4)  
2S3 - , $6 = , (16) 

3! 6! 

n2(n 2 -- 1) n(n z -- 1) (n 2 -- 4) (n 2 -- 9) 
$4 - , 2S7 = , etc. 

4! 7! 

with 

In (15), J~ indicatesf(xl,  y(xi)). In the following, J~+t is the value of f a t  the point Xo + ht, where t is 
any real number  between 0 and n. So if we substitute (16) into the integrals in (14), the coefficients 
Sk are supposed to be dependent  upon the integration variable t and are to be integrated twice, 
between zero and n. This gives 

f 2 f l g d z d t = ½ n 2 f i + l n 3 ~ f i +  1 4 2 1 

@ 61 n6 - -  "2 n4 ~4j~ -Jr- ~ n 7 --  n 5 -F 28n 3 t~sJ] + ---.  (17) 

Inserting n = __+ 1 we get 

f ~ o l f l  ~ 1 1 7 1 37 gd dt= . . . .  

Substitution of (18) into (14) yields the ,,61,, or central second difference integration formula 

6 2 y i  :-" Yi+ 1 - -  2y i  + Y i -  1 

= A + - T4-6 + f ,  
289 

6s j5 + ... j 
3 628 800 / 

(18) 

(19) 
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Since we have used the Stifling interpolation polynomial it is clear that the 62 -formula, if truncated 
after the 6"-term, is exact for polynomials of degree <<, n. 

Here we remark that there is an analogous formula for the first derivative, the "6c"- or central 
first difference integration formula 

6Yti+ 1 / 2  = h f / +  ~ 6f~ + 62f~ - 63f~ - ~ 64f /+  ... , (20) 

which we would need in the case of a r.h.s, of the formf(x, y(x), y'(x)). Also it should be mentioned 
that the "62" and its companion formula "6¢" have their simplest form when written in terms of 
central differences, as in (19) and (20) (see also [2, Appendix B]). 

Now it is quite easy to obtain several well-known formulae from the central difference formulae 
(19) and (20). The easiest way to do this is to use the formal operator calculus (see e.g. [7, Ch. 5] for 
details), in which 

6 - 2 =  V - 2 E - 1  = E  2, 

E being the shift operator: Ej~ =f~+l. If we apply the operator ~]2E to both sides of (19), the 
result is the Gauss-Jackson-, ,,y2,, or "second-sum" integration formula (in central difference 
notation) 

h2 ( 1 1 2 31 4 289 6 ) 
Yi+l-- y 2 J ~ + l + ~ J ~ + ~ - ~ - ~ 6  f ~ + 1 + ~ 6  f~+l 3628800 6 f~+x+ . . . .  (21) 

Analogously we obtain from (20), by applying ~ E  1/2, the "Zc"- or "first-sum" integration formula 

Y~+I = h ~.A+l/2 "~- ~A+1/2 "]- g6f/+l /2 --~'~ 6 f/+l/2 "1- " ' "  • (22) 

Formulae (21) and (22) are the main results of this section. With the help of the operator 
calculus and manipulations in the difference tables however, we shall be able to elucidate the 
relationship of these formulae with the St6rmer and Cowell formulae of the preceding section. To 
this end we derive, in the next section, a few other formulae connected with the first- and 
second-sum formulae. 

Comment on the use of  the Gauss-Jackson formula 

Here we indicate globally how the Gauss-Jackson formula or rather the central difference table 
supplied with a first- and a second-sum column may be "run". This matter is discussed extensively 
in [6]. Suppose (see Table 4) we want to work with at most fourth-order central differences and 
initial values in x = 0 are given. Then starting values in x_ 2, ---, x2 must somehow be supplied (for 
instance, with the aid of a Runge-Kutta method), yielding f_ 2, ... ,f2. From this, we have all values 
in the triangle with vertices f -2 , f2  and 64f0. By applying the first- and second-sum formulae in 
reverse: 

1 31 6 % + . . .  
E2 f° = h- 2y° - f° + ~O 6zf° 60480 (23) 
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and 

•f0 = h-  ly• + fifo - ~ b3fo + "", (24) 

we can generate starting values in the (y z) and (2)-columns, respectively, with which we can 
"complete" the triangle up to and including the values 22f_2 . . . .  , Y)f3 and Y~f-3/2, . . . ,  ~f5/2.  
Now the values y_ a . . . . .  Y2 may be recomputed using Gauss-Jackson (21), where additional values 
a z f  - 2 and 62fz have been estimated from the table itself. From this we might recomputef_ 2 . . . . .  f2 
and go through (23) and (24) again, obtaining a revised starting table. Going twice through 
the "reverse sum-formulae" might do in this case, but generally it depends upon the accuracy 
of the starting values f _ ,  . . . .  ,fk, the number of difference columns used and the desired table 
accuracy. 

Once the table has been initiated we have a "last known" ascending diagonal, in this case e.g. the 
one through the entry j~+ 2. If we, for proper accuracy reasons, agree in using (24) with the three 
terms given, we can proceed with the table (the "step-by-step integration procedure") in the 
following way. 

From the table, deduce 

a3j~+3/2 = a3~+1/2 --I- a4~ -{- ... ,~a3~+1/2 + 154~, 

and hence 

SO, 

~2f/+2 = ~2j~+ 1 -q- ~3A+3/2, 

f/+3 =J~+2 "{- ~J~+5/2 ~-J~+2 --~ t~J~+3/2 71- (~2fi+2, 

and finally 

~2j~+3 = ~2ji+ 2 + ~3f/+3/2 -I- ... ~,~2j~+ 2 -I- ~3A+3/2. 

Now (24) gives 

Yi+3~'h2 ~2ji+3 + 12 2-~ ~ ~ + 3 (25) 

from which a new value off~ + 3 may be computed. With this recomputed value, the whole ascending 
diagonal through this entry can be computed. If a second recomputing would be necessary, it 
would start again with ~2~+2 = ~2j~+l-I-~3A+3/2, using the recomputed value of the entry 
~3A+3/2. 

4. St6rmer-Cowell, first and second sum (Gauss-Jackson), Adams-Bashforth-Moulton: all in the 
family 

Consider the Difference Table 4 and suppose it to be filled, up to and including the upward 
diagonal throughJ~. Then it is not possible to use (21) becauseJ~+ 1, 62f~+ 1, 64f/+ 1, etc., are not yet 
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known. All these entries can however be "summed" to the last known diagonal (that is, the one 
through f~): 

. . . . .  J~ "F 6 f / -  1/2 "F ¢ ~ 2 f / -  1 "]- ~ 3 f i - 3 / 2  "]- ~ 4 " J ~ -  2 "F ~ 5 j ~ - 5 / 2  "F " '"  

and analogously 

3 62~+ 1 = 62f~ + 6 f~+ ~t2 

. . . .  = t~2j~__ 1 + 2 6 3 f - 3 / 2  + 364j~-2 + 465j~-5/2 -+- 566fi_3 --J- . . . ,  

(~4~+  __ 64f/_2 + 365f/_5/2 + 6t~6f/_3 + . . .  I - -  . . .  ~ 

t~6d~+ - -  ~__ t ~ 6 f i _ 3  --J-- . . .  | ~ .o. 

where we have neglected seventh and higher differences. When inserted into (21) this gives the 
backward second-sum formula (in central difference notation!) ,,VZ,,~b (see Note on Notations at the end 
of this section): 

h2(  ~2 1 19 18 Yi+l = z 2 f / + l  -Jr- J ~ - I  t- 6 f / - 1 / 2  q- 2 ~ 6 2 j ~ - 1  "J-"~(~3f i -3 /2  

1726 1650 ) 
+ ~ 64f,_~ + ~ 6~f,_5/2 + ... , {26) 

which because of its relationship to St6rmer's formula, we call the " z . . . .  Y,b-Stormer formula. It is of 
course more appropriate to write this formula in backward differences, because it is a backward 
formula: 

( 1 ~2 19 ~ 1726 1650 ) 
Yi+l =h2 V - 2 f +  f +  Vf+f4" ~ V2f+ V 3 f + 2 - ~  1 7 4 f + 2 - - ~  V S f +  " ' "  • 

(27) 

We note that this an explicit formula, and we shall call it "V~-Stbrmer" for later reference. Instead 
of "summing" unknown entries to the last known diagonal, we could rewrite all or all but the first 
entries in the r.h.s, to the same diagonal through f.+ 1, which yields the "Y~,-Cowell" formula (in 
central difference notation): 

884 + ... ~ (28) 64fi_ 241 920 ,/ 
h2(  ~2 1 1 6 3  y,+l = U f , + l  + f , + l - 2 - £ 6 6 5 5 - ~ - 6  f,-1/2 

which reads in backward difference notation 

1 1 1 884 ) 
= h  2 17-2f/+-i-~f + 1 2--~ 172~+ l 2--~ ~73j~ + 1 241 920 V4f~+ 1 + .-. (29~ Yi+ 1 - -  - -  • 

It is an implicit formula, which we shall call "Vb 2-Coweli" (this formula and (27) have been used in 
[-1, 9, 10]. 
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We note that (29) also follows from (27) because of (5) and analogously, (28) follows from (26) due to 

6mfp = 3mfv+ l -- 6"+ lfv+ 1/1, 3mfv - 1/2 = 3mfp+ 1/2 -- 6 "+ lfp. (30) 

SO far, from the Ece-formula (Gauss-Jackson) we derived 
• (26), Y~-St6rmer; 
• (27), Vb-2-St6rmer; 
• (28), y.~-Cowell; 
• (29), V~-Z-Cowell. 
We can handle the 3Z-formula (19) in completely the same way. Summing to the last known 
diagonal in the r.h.s, we find an explicit formula, 3b z or the backward second difference integration 
formula, which we call "6b-Stormer2 . . . . :  

( 1 1 19 18 1726 6 
62yi  = h 2 f / +  62J~ - 1 -+" "i'~ 63f / -  3/2 "1- ~'~-6 64J~ - 2 -1- -~-4-~ 65J~. - 5/2 -~ 2--~--1-~ 6 ~]] - 3 

\ 

1650 ) 
+ ~ 37f~_7/2 + . . . .  (31) 

Of course, also this backward formula reads more easily in the proper notation, i.e. in backward 
differences: 

( ~2 ~2 2-~0 2-~0 1726 1650 ) 62yi=h2 J ~ +  ~72j~'3!- vaj~ Jr" V4j~-{- V5j~+2--~-~66f/+ 24"i-9--2 V7~+ "'" ' 

(32) 

which is the "ordinary" St6rmer formula (4). 
If, instead of summing (19) to the last known diagonal, we rewrite all entries to the diagonal 

through 62J~ we get an implicit formula like in (28): 

1 1 1 5 884 66j~_ 2 
62yi  = h 2 J ] + l  --  6J]+ 1/2 + "i2 62J~ - ~ 64A-1 - ~ ' 6  6 ~ -  3/2 241 920 

760 
67fi_s/2 . . . .  ),  (33) 

241 920 

the "6~-Cowelr' formula, which in backward difference notation is nothing else but the "ordinary" 
Cowell method (6): 

1 1 4 1 884 
62yi = h 2  f i+l  -- VJ]+I  + i 2  V2"]~+1 - ~ - 6  ~7 ~J~+l - 2 4 0  ~75f/+1 241920 V6f~+l 

760 ) 
241 920 VTJ~+ 1 . . . .  • (34) 

This formula comes also from (32) by applying (5). On the other hand, (33) is easily derived from 
(31), using (30). 
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Summarizing, from (19): "32'' we derived 
• (31), f~-St6rmer; 
• (32), "ordinary" St6rmer; 
• (33), f2-Cowell; 
• (34), "ordinary" Cowell. 
Moreover, (19): "6~" was transformed into (21): "E~" or Gauss-Jackson, by the application of the 
operator  ~2E. Now it is easily checked that the same is true of all the following pairs of formulae: 
• (31) and (26), 
• (32) and (27), 
• (33) and (28), 
• (34) and (29). 
These transformations are completely invertible and since E 2 and E commute, the inverse 
of ~2E may be computed as E-2E-1. With all of this in mind, we arrive at the diagram given in 
Fig. 1. 

In [5, p. 343-1, Henrici hints to this "algebraic equivalency" of the Cowell and E2-methods. 
The present author, however, encountered no elaboration of these ideas anywhere in the 
literature. 

To the author's knowledge, it is not mentioned anywhere either that a similar relational scheme 
may be constructed, involving the first central difference-, first-sum and Adams-Bashforth-Moul- 
ton formulae. Starting with the "6c" or central first difference inteoration formula (20), we may 
proceed as follows (see the Note on Notations at the end of this section). 

Suppose for convenience that we apply (20) to a first-order equation with r.h.s.f(x, y(x)) and that 
we consider only a few terms: 

fY,+l/2 = h(f~ + ½ f f  + 16 f2f _ ~ f3f _ ~ f4  A .jr ... ). (35) 

As we mentioned in Section 3 we should now apply the operator (y2E)l/2 = y E 1/2 (remember the 
commutation property) to (35) in order to get the "Yc"- or first-sum inteorationformula 

Y,+I = h(~J~+ 1/2 + ½f/+ u2 + ~6 f A + l / 2  -- ~ f2A+ 1/2 . . . .  ). (36) 

Summation of (35) and (36), respectively, to the last known diagonal in the difference table gives 
the "fib"" or backward first difference inteoration formula or "fb-Adams-Bashforth" predictor 
formula 

fYi+ 1/2 = h(f~ + ½ fir_ 1/2 "]- f i  f 2A-1  "1- ~ f3 f / -  3/2 + "'" ) (37) 

and the "Y b-Adams-Bashforth" or backward first-sum integration formula 

Y,+I = h ( Eft+ 1/2 + ½f~ + ~2 6f~_ 1/2 + ] f2J~- 1 + ~ f3f~_ 3/2 "{- "'" ) (38) 

(both in central difference notation). Both (37) and (38) are more convenient in backward difference 
notation. So we have, from (37), the "ordinary" Adams-Bashforth 

fY,+ 1/2 = h (J~ + ½ VJ~ + & V2A -1- ~ [73 A "+- "'" ) (39) 

and, from (38), the backward first-sum formula in backward difference notation or "Vb 1- 
Adams-Bash forth" 

Y, +1 = h ( V -  i f  + ½f~ + x-~ Vf~ + ~ V2J~ + 7Z~2o V3j~ + ... ). (40) 
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(r, LE) -1 
~ 6c 2 (19) I]~ (21) - -  

i[ E~.E 1 t 

] ~6~-Stfrmer (31) (E2.E) -1 E~-StSrmer (26)~ 

II ],l l,l 
I [ ~ itarmer (32) ELE V~-2-Starmer (27) 1 1 

~ - ~  ~-co~dl (33) (~.E) -~ ~-Cow~n (28) ~_L 

E2.E Vb2-Cowell (29)~ -j 

Fig. 1. Relationships in the Cowell family. 1: sum to last known diagonal; 2: rewrite to estimated or first unknown 
diagonal; 3: apply (5); 4: apply (30); 5: replace central by backward differences and vice versa. 

Next we can derive the implicit "6b-Adams-Moulton" either from "6c", rewriting the r.h.s, to the 
first unknown or estimated diagonal or from (37): "'6b-Adams-Bashforth" by application of the 
relations (30): 

6yi+ 1/2 h (J~+l ½ 6J~ + 1/2 ~ 62~ ~ 3 . . . .  6 ~ -  1/2 . . . .  ), (41) 

and of course we rewrite this immediately in terms of backward differences, obtaining the 
"ordinary" Adams-Moul ton  corrector formula: 

6yi+l/2=h(fi+l ½17j]+ 1 ~ z - -  - -  V ~ +  1 - ~ 1 7 % + 1  . . - ) .  (42) 

Finally, the "summed" counterpart  of (41), "Y,b-Adams-Moulton" can be derived from "Zc", (36) by 
rewriting the r.h.s, to the first estimated or unknown diagonal or, alternatively, from "Y~b- 
Adams-Bashforth" by application of (30) (or else, of course, by application of the operator YE 1/2 to 
"6b-Adams-Moulton" (41), as a third possibility): 

Yi+l = h ( ~-~A+3/2 -- ½f/+l -- ~ 6J~+ 1/2 -- ~ 62f/ . . . .  ), (43) 

which reads in backward difference notation, as "I7~ 1-Adams-Moulton": 

2 Yi+x = h ( V - % +  1 -½J~+l - i21 Vj~+ 1 -24~t- V ~ +  1 - ""), (44) 

Collecting our results for the family of "Adams-like" formulae we have: 

(35): "tic" 
(37): "6b-Adams-Bashforth" 
(39): "ordinary Adams-Bashforth" 
(41): "6b-Adams-Moulton" 
(42): "ordinary Adams-Moulton" 

(36): "E¢" 
(38): "~ b-Adams-Bashforth" 
(40): "Vb 1-Adams-Bashforth" 
(43): "~b-Adams-M oult on" 
(44): "Vff 1-Adams-Moulton". 
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(Z2.E)-½ 
- -  6c (35) Ec (36) - -  

12 11 (•2"E) 1 11 e 

[----- 6b-Ad.-Bas. (37) (]g2E)-] Eb-Ad.-Bas. (38) 

? Ad.-Bas. (a9) (~2.E)½ VfX-Ad.-B~. (40) 

I / 

{ ~ 6b-Ad.-Moult. (41) (E2.E)-~ Eb-Ad.-Moult. (43) 

Ad.- u{t. (42) (r.2.E)½ Vg'-Ad.-Moult. (44) ~J 

Fig. 2. Relationships in the Adams family. 1: sum to last known diagonal; 2: rewrite to estimated or first unknown 
diagonal; 3: apply (5); 4: apply (30); 5: replace central by backward differences and vice versa. 

These results may be put into a diagram, analogous to that for the relationships between the 
St6rmer-Cowell  and second-sum formulae; see Fig. 2. Coefficients of the formulae mentioned in 
Figs. 1 and 2 are listed in I-2, Appendix B]. 

Note on Notations 

r.h.s, of the formula 

Formula 1.h.s. starts with has character notation used: 

6¢, 6~ 6, 6 2 f central central difference 
6b, 8b 2 8, 8 2 f _backwards central difference 

~, E~ y E, E 2 central central difference 
Xb, Eb 2 Y Y, E 2 _backwards central difference 
V~- 1, V( 2 y V- 1, V- 2 _backwards  backward difference 
"ordinary" 8, 82 f -backwards backward difference 

5. Summed forms, viewed constructively 

In the preceding section we investigated several summed methods of the "Adams family" and of 
the "S t f rmer -Cowel l  family" from a rather formal point of view, using operators  to establish 
correspondences between some multistep methods and their summed forms. Here we shall inspect 
the summed methods from a more constructive point of view, using their "definition" or generating 
principle. For  single summation,  the process has been described in 1-5, Section 6.4-1 (see also [3, 
Section 2]). We follow Henrici's formulation in the following outline. 
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Suppose 

k k 

o~iYn+i = h2 ~ flif .+i (45)  
i=o  i=o  

(with stability polynomial P(0  + ,~-2h2o(() for the test case f - -  - 22y) is a consistent method, i.e. 
(X0 "~- ~1 + "'" JV ~k = 0 (in which case 0~ k can be expressed as - (a0 + "'" + ~k- 1) and similarly for 
~k  + "'" Jr- O~k-i, i = 1, ..., k - -  1). Suppose we s u m  (45) from n = 0 to n = N and let SN be the 
result on both sides. Upon  introducing new coefficients ~,_ 1, . . . ,  ~ (using the consistency) by 
means of 

k - 1  

' Z ~ k - 1  ~ 0~k ~ - -  ~ v ,  
v = 0  

k - 2  

' E 0 ~ k - 2  "~" (Xk 71- ( ~ k - 1  ~ ~ ~ v ,  

v = 0  
(46) 

! 
~ 0  ~ -  0~k ~ " ' "  -~- ~ 1  ~ - -  0~0, 

the left-hand side of the summation can be expressed in terms of "starting" and "final" values, as 
follows: 

SN = ( ~ ' k - x Y s + k  + "'" + ~bYs÷l) -- ( ~ ' k - l Y k - 1  + "'" + ~'oYo). (47) 

The right-hand side in the summation of (45) can be written as 

SN = h 2 {flk(fk + f k -1  + "'" + fk+N) + f l k - l ( f k - 1  + "'" + f k - l + S )  

+ "'" + fl0(fo + "'" +fN)}. (48) 

Now we introduce the "indefinite sum" ~ ,  with "summation constant" H by 

h 
fu = ~ . -  H, (49) 

0~ /a=O 

where a has to be chosen properly. Then (48) can be rewritten as 

S N = gh { ( ~ k  ~ ' N  + k -~- f lk  - 1 ~ ' U  + k - 1 -~- "'" JI- ~ O ~ N )  

- (flkO~k-1 + i lk - ,  f f k - 2  + "'" + fl, i f 0  + floH)}. (50) 

The freedom we have in choosing H will now be exploited to get rid of the starting values in (47) 
and (50): we choose H such that 

a ' k - l Y k - ~  + "'" + a'oYo = a h ( f l k ~ k - ~  + f l k - ~ ' ~ k - 2  + "'" + f l l ~ O  + f l o H )  

= h2{ f l f f k  - ,  + (ilk + f l g - 1 ) f k - z  + "'" + (fig + i l k - 1  + "'" + fl,)f0} 

+ a h ( f l k  + ""  + f l o ) H .  (51) 
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Defining new coefficients fl; similar to ~;, the r ight-hand side of (51) may  be written as 

h 2 {fl~- , f k - ,  + fl~- 2fk- 2 + "'" + fl~ fo } + ah 0.(1)H 

if we denote,  as usual, by 0.(0 the polynomial  corresponding to the r ight-hand side of (45). Since 
0.(1) ~ 0 it follows from (47)-(50) that  we have chosen H as a function of the known starting values, 
leaving, from (47)-(51), 

fk- lYN+k + "'" + a'oYN+l = :th{flk~'~N+k + "'" + flo~-N}, 

h 
~ N + k - - ~ N + k - l = ~ f N + k ,  ~ - 1  = H. 

(52) 

This is a difference equat ion of the type used for first-order differential equations,  with, e.g., the 
Adams methods  as special cases. Once starting values for Yo, . . . ,  Yk are given, the values of 
~o ,  .- . ,  ~ k  may  be recursively compu ted  and (52) may  be solved. 

We remark  that  the form (52) is consistent: one can show that  its first characteristic polynomial  is 
P,ff0 = P'(() and since the original me thod  is supposed to be consistent, we have 

p,:(1) = p'(1) = 0; p~:(1) = p"(1) = 2o"(1) 4: 0, 

which gives exactly the consistency condi t ion for the "first-order" method.  The meaning of this is 
that  we can follow the same procedure  to establish a second summation.  The exact solution of (52) 
satisfies the original Eq. (45) and vice versa. If both  methods  are used to approximate  the solution 
of the initial value problem (1), they would yield the same t runcat ion error. Henrici [5] proved, 
however, that the accumulated rounding error o f  the summed form (52) is a factor of  C(h) better than 
that o f  the original method, provided that p and 0. define a stable and consistent method and ( = 1 is 
the only double zero o f  p on the unit circle. 

We illustrate this procedure  by applying it to a simple case of the "~2"-method (see (19)), which is 
known  as the Numerov method  (in difference notation): 

t~2y i  =- h 2 ( f / +  1-~2 62J]) (53) 

or (in ordinate  notat ion)  

= h e 2 f / + f / -  1)}-  Yi +1 - 2 y ,  + Y i - 1  { + +1 - (54) 

Summing  from i = 0 to i = n we get (choose a = 1) 

Y - 1 - - Y o - - Y . + Y . + I  =h2  f~ + 1-~2 ( f - 1 - f o  - L  + f . + O  
v 0 

= h 2 { h - l ( ~ .  -- H) + ~2(6f.+ I/2 -- 6 f -  1/2)}. 

If we now choose H such that  

YO - -  Y -  I = 6 y -  1/2 = hH + ~2 h2 ~f_ 1/2 
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then there remains the summed 6Z-method 

@,+1/2 = ho~, + ~2 h2 (~L+ 112, (55) 

which we shall call "~6~" and which is more appropriately written (see [2, 6]) in the form 

6Yn+l/2 = h2 {zf,+a/2 + ~2 6f,+ 1/2}. (56) 

J~,,. The symbol Y,f,+ 1/2 is called "the first sum of f a t  n + 2 , it obviously equals h - l ~  -. 

Remark. Eq. (56) could have been established by applying the operator E1/2~ to (53), which 
amounts to the formal "summation" of Section 4, last part, especially Fig. 2. On the other hand, by 
applying V to (56) or "differencing" the latter equation, we get back (53). This shows that the formal 
and the constructive approach to "summation" are basically equivalent. 

We can repeat the whole procedure to obtain the so-called "second-sum formula", in this case 
2 2 Y 6c, by summing again, from n = 0 to n = N. Writing (55) in ordinate form and summing from 

0 to N we obtain 

N 

Ys+x -- Yo = h E °~v + ~2 h2 (fs+x - fo) -  (57) 
v = 0  

We introduce a second summation constant n with the definition 

N 

h E = oe,, - / - ' /  (58) 
v = O  

and determine ~ such that the starting values disappear from (57) (that is, in first instance): 

0 = Yo - 135h2fo • 

What remains is the apparently simple formula for y26~: 

YN+I = ~N + 1-~hZfN+ 1. (59) 

For this formula we have also the more appropriate notation 

h 2 2 1 = ~ fN+l YN+t { + Hfu+  ,}, (60) 

in which the first term on the right-hand side is the so-called "second sum o f f  at N + 1". It can 
easily be shown that, in 9eneral, 

Yz fN+l  = ( N  + l ) Y f - 1 / z  + E2fo + E uv=o(N + l - v ) f ~ ,  (61) 

where in our case H and n have been chosen such that 

F f_ 1/2 = h -2 (Yo - Y-1) - ~ ( f o  - f - 1  ) and Y,2fo = h-Zyo - ~ f o  (62) 

are the two starting values of the summation process. 
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Remark. Again, Eq. (60) can be "differenced" twice to yield (53), showing the equivalence of the 
formal and the constructive approach. The other way around requires proper choice of the 
summation constants H and/-7. 

It follows from the definitions of Zf,  and )'~2 L that, for n/> 0, 

E2L+I = E 2 L  + Yf.+l/2. (63) 

If we now define Z2f_ ~ by the same relation, it follows from (62) that (61) can also be written in the form 
N 

y.2fN+l = (N + 2) Y.f-1/2 + E2f-~ + Z (U + 1 - v)f~. (64) 
v=o 

Formula (63), extended if necessary to n >~ - 1 (or even further back, if desired, always using (63)), 
can be used to generate the "first-sum" and "second-sum" columns on the left in the difference 
table, showing otherwise the values o f f  6f  62f etc. (see Table 4 and, for backward differences, 
[2, Appendix A]). With sufficient starting values for f, and the above-mentioned starting values for 
Y.fand Y~ 2f, a complete "sum and difference table" will be built up, using (63) and the correspond- 
ing relation for Z: 

EL+~/~ = EL-~:2 +L 

and, of course, the well-known relations betweenfand its differences used in difference tables. From 
(61) or (62) it follows that, in using the second-sum formula (60), the starting values have ever 
growing coefficients with increasing N, and that the complete history is "'draoged along" with 
increasing weights for past values o f f  as N increases. 

In more complicated cases like a sixth-order Gauss-Jackson method, the initiation of the sum 
columns proceeds along slightly different lines. Instead of the determination of H and n to obtain 
the starting values (62), one uses the first- and second-sum formulas in reverse, see Section 3: 
"Comment on the use of the Gauss-Jackson formula", and also [6, 2]. 

As pointed out earlier, Henrici proved that summed forms have a computational advantage over 
the corresponding original multistep formulation: the effects of the propagation of round-off errors 
are diminished, thus stabilizing the original method. Thus, using second-sum methods, one might 
expect to have a benefit from the double summation over the corresponding multistep methods, 
which is quite useful in integration over long time intervals. However, although one might have 
expected a further increase of the stability by summing twice, this is not the case. Summing twice 
improves the stability not more than summing once. In fact, analogously to [5, Theorem 6.11], one 
can prove the following. 

Theorem. Suppose the numerical values * * y, ,  ~ .  and ~ * ,  calculated with a second-sum algorithm 
satisfy the relations 

O~'~-2Y*+k q- "'" Jr" ~ 0 Y * + 2  = ~X2 {flk~-~*n+k 7!- "'" "3L ~*n } "~ ~n+k, 

V~*+k = h ~ (X,+R, Y*+k) + q,+k, (65) 

h 
V~*+k=-- f(x.+k, * Yn+k) + qn+k" 

O~ 
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I f  the only double root of p is on the unit circle and the local round-off errors satisfy 

I~.1 ~< ~, Irt.I ~ ~, I~.1 ~< ~, n = 1, 2, . . . ,  

then the accumulated round-off error r, in the numerical solution of y" = f (x, y) by the second-sum 
formula satisfies, for a <<. x ,  <<. xq and h 2 <<. L-111 ~d3k-1 II, 

[r,I ~< K* exp {(xq -- a*)2F*LB}, 

with 

K* = o~B (xq - a*) { F*(xq - a*) 2 + 2F*g + ~(F* + 7*)~} 
h 

7* 
a* = a - 2h F*'  

where most quantities have the same meaning as in [5, Theorem 6.11] and where K* = (9(h-1). Both 
K* and the exponential argument grow quadratically with increasing xq - a. The factor K* contains 
one more complex of terms which is linear in (xq - a) than the corresponding factor in [5, Theorem 
6.11]. 

The proof of this theorem, which runs along lines similar to those of Theorem 6.11 in [5], will be 
given elsewhere. 

The last result mentioned in the above theorem indicates that summing twice might 
even be disadvantageous compared to summing once! Numerical evidence sustains this 
supposition (see Section 7). The second-sum forms have the further general disadvantage that 
one necessarily needs a (summed form of a) consistent difference equation for y' in order to 
initiate the first-sum column (there is no such necessity for the first-sum form, although it works 
quite well). 

For the St6rmer-Cowell family of methods, such a consistent difference equation is at hand (see 
Section 3 and (66), but for other methods (modified Cowell, modified Numerov, symmetric 
methods, etc.) a separate and somewhat lengthy derivation is necessary. Therefore, using second- 
sum forms, we should better restrict ourselves to the second-sum Cowell method, which is nothing 
else but Gauss-Jackson written in backward difference form, i.e. Vb 2-Cowell (29), to be used in 
combination with the Vb 1-formula for y', 

Y , + I = h ( V - ' J ~ + ,  ½J~+l ~ Vf~+l ~ 2 7zo + 1 -  ' - - - V J~ + ~ - ~ V3j~ ... ). (66) 

In practical calculations, this second-sum method (used in the backward difference form in 
[1, 9, 10]), with 

V-2J}+I- V-Ij~+l = ~7-2ji 

appears indeed to be more stable than the corresponding CoweU method (see Milani et al. [I0], 
who conducted the LONGSTOP project, and [3]). But as the above theorem shows, there is no 
gain at all in summing twice instead of once. Moreover, the first-sum form appears to be somewhat 
more stable and faster than the second-sum form. It seems that historical reasons have determined 
the continuing use of the Gauss-Jackson form. 
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Apart  from summing  only once, there is another  way out  of the restriction to Gauss-Jackson,  as 
we shall see in the next section. 

6. The split form according to Spijker 

6.1. Definition of  the split form 

Spijker [11, 12-1 in t roduced a very useful alternative for the summed forms: the split form, 
which has the same benefits as the summed form with respect to the reduct ion of the error 
accumulat ion,  but  which is easier to implement  and more  generally applicable. Instead of 
Henrici 's root  condi t ion (see Section 2) the split form requires only that  "the roots of p have 
a modulus  at most  1 and the multiplicity of the roots with modulus  equal to 1 is at most  2". Under  
this condi t ion any consistent me thod  of the form (45) will admit  of a splitting which produces,  as do 
the summed  forms, an error accumulat ion of the order  C(h -x) as opposed to the C(h -2) of the 
original form (45) of the method.  

The me thod  (45) for the second-order  IVP (1) will be written in the form 

p(E)y, = h 2 a(E) f, ,  (67) 

where E is the shift opera tor  and p and a are, as usual, the polynomials  corresponding to the left- 
and r ight-hand sides of (45). It is supposed that  the method  (67) is convergent.  Now suppose that  we 
have a splittin9 of the polynomials  p and tr as follows: 

P(0  = P2(~)Pl((), a ( 0  = al(~)tr2(~) (68) 

and that  p, q ~ ~ are such that  p + q = 2. Suppose fur thermore that  y. and z, satisfy the split form of 
Eq. (67), i.e. 

Pl (E)y, = hPal(E)z,, 
(69) 

p2(E)z, = hqcr2(E) f (x., y.). 

Then 

p(E)y, = p2(E)pl(E) y. = pz(E)hPcrx(E)z. 

= hPa~(E)az(E)z. = hP+~aa(E)aE(E)f(x,, y,), 

and therefore y. satisfies (67) (if there are no round-off  errors). So, with regard to convergence and 
t runcat ion error, (67) and (69) are equivalent. 

In the sequel, it is supposed that  the un imodula r  roots of Pl(~) = 0 are simple; there are no 
restrictions with regard to the roots  of P2(0 = 0. Suppose a is a fixed but  otherwise arbitrary 
positive number  and we consider the interval 0 ~< x ~< a. 

Let y* and z, again be calculated values. If 4. and q, are local round-off  errors (satisfying 
14, [ ~< 4, [q, I ~< r / for  some positive real ~ and q) occurring in 

P l ( E )  Y* = hPal(E) z* + 4, 
(n = 0, 1,2, . . .) ,  

pz(E)z* = hqa2(E)f(x, ,  y*) + ~l, 
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then, as Spijker proved, starting with exact solutions of (69) on the nth subinterval, there exist 
constants 7 and hi such that 

l Y * - Y , [  ~ Y h - t ( ~  +hP- lq )  ( n = 1 , 2 ,  . . . ; n h ~ a )  (70) 

for all h e (0, hi]  (here 7 and hi depend upon a and the Lipschitz constant L offw.r . t ,  y). This is an 
improvement  of a factor h compared with the corresponding round-off error bound for the original 
method (67) (see [5], formula (6-103) and also (6-155) for a result analogous to (70)). The proof is 
quite involved and is given in [11]. 

In the following, we give a brief survey of the split form of the St6rmer-Cowell  pre- 
dictor-corrector  method. For  implicit methods like Cowell's, their always remains an implicit 
system of difference equations to be solved, which can be done iteratively in a quite natural way. 
With reference to (70) we remark that the freedom in the choice of the power p has been exploited to 
take p -- q = 1, which seems to be optimal. (For more applications of Spijker's split form, see 
Frankena [3].) 

6.2. The split St6rmer-Cowell method 

Referring to the ordinate version 

h 2 
Y,,+5 - 2y,,+4 + Yn+3 = - ~  (18f~+5 + 209 f .+4 + 4fn+3 q- 14f.+2 - 6f .+1 + f . )  (71) 

of Cowell's method it is clear that here 

p ( ~ )  = ~3(~ __ 1)2, 

a(~) = ~0(18~5  + 209~ 4 + 4~ 3 + 14~ z - 6~ + 1). 

Since P2 should have a simple zero ( = 1, we select the following split form of(71), with p = q = 1: 

p,(()  = ((( - 1), ~r,(() = 1, 

P2(() = (2(( _ 1), az(() = ~wo(18( 5 + 209( 4 + 4(  3 + 14( 2 -- 6(  + 1). 
(72) 

This amounts  to solving the following set of difference equations: 

Y. = y . -1  + h.z . -  2, 

h 
Zn- 2 = Zn- 3 + ~-~ (18f.  + 2 0 9 f , -  1 + 4 f . - z  + 14 f , -3  -- 6 f . - 4  + f , - 5 ) ,  

(73) 

while for the (sixth-order) St6rmer predictor we get in the same way, 

Y. = Y . -  x + h.z . -  2, 

h 
z,,-2 = z,,-3 + ~-~ (317 f ._  1 - 266f ._2 + 374f._3 - 276f ._4 + 109f._s - 18f._6), (74) 
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(n = 1, 2 . . . .  ), with appropriate initial values y( - 5), . . . ,  y(0), and z,_ 3 calculated from the first 
equation (74). 

7. Numerica l  verification 

The theoretical results of the preceding sections have been verified with two test problems: 

Test 1. The unperturbed harmonic  oscillator: 

x " + c o 2 x = 0 ,  x ( 0 ) = l ,  x ' ( 0 ) = 0 ;  

y" + cosy = 0, y(0) = 0, y'(0) = co; 

with exact solution: x(t) = cos cot, y(t) = sin cot. 

Test 2. 

r r  

Using the 

0 
tan 

the exact 

The unperturbed Kepler equations in the plane (with e = eccentricity, 0 < e < 1): 

-- x /r  3, x(O) = 1 -- e, x'(O) = 0 ; 

/ ( 1  + e ' ]  
-- y / r  3, y(O) = O, y'(O) = ~ / \ ~ - - e ) / l "  

eccentric anomaly E, defined by the set of equations 

x = r cos 0, y = r sin 0 (0 being the true anomaly), 

1 - e  - - t a n ~ - ,  

solution can be written in the form: 

= cosE  - e, y(E) = ~/(1 - e2)sinE. 

The following numerical procedure has been followed. Tests 1 and 2 have been run in Turbo 
Pascal with sixth-order predictor--corrector formulae, step-sizes h = re/500 and h = rr/1000 over 
107 steps, for each of the following forms. 

(A) Difference form used: 
• S t f rmer-Cowel l  (method "0"); 
• First-sum form of St6rmer-Cowell  (method "1") 

in the form of Y.b; 
• Second-sum form of St f rmer-Cowel l  (method "2"), 

in the form of E~. 
(B) Ordinate form used: 
• Stf rmer-Cowel l  (method "or"); 
• Split form of St6rmer-Cowell  (method "sp"). 
The results have been compared to the exact solutions at N = 10", n = 3, . . . ,  7. This resulted in 

an accumulated rounding error. (The only Turbo Pascal mode which admits of nonextended 
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Fig. 3. Accumula ted  round ing  errors,  Test 1, N = 107, difference nota t ion .  

internal representation, however, is the real mode with a relative machine precision of about 10-12. We 
use sixth-order methods with an accumulated truncation error of the order of magnitude (9(10-16).) 

There are three main conclusions from the theorem: 
• h-dependency: For  constant  step number  N, the theoretical error bounds are inversely propor- 
tional to the step length h; 
• N-dependency: For  constant step length h, the theoretical error bounds grow (faster than or at 
least) quadratically with increasing step number  N; 
• surnmino once instead of  twice: The first-sum form may be expected to perform somewhat better 
than the second-sum form, because the factor K* of the the latter's error bound is more complicated. 

The experimental verification of these items is difficult because the error bounds are highly 
pessimistic. Assuming that the local errors g,, q. and ~. are of the order of the iteration tolerance 
(10-12), a rough evaluation of the formula presented in the theorem indicates an error bound of the 
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Fig. 4. Accumulated rounding errors, Test 2, N = 107 difference and ordinate notation, respectively. 

order 10 -5 in the case h = rr/500, x q -  a*~600,  for the first-sum Cowell form. The choice 
h = n/500 is good enough to suppress the truncation errors, in the time interval considered, relative 
to the accumulated rounding errors, but it leaves a considerable gap between the theoretical error 
bounds and the actual rounding errors. Nevertheless, from the experiments the following con- 
clusions may be drawn, see Figs. 3 and 4. 
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Fig. 4. Continued. 

Unfortunately, the harmonic oscillator (Test 1) generates too few rounding errors to yield 
conclusive results, see Fig. 3. 

1. h-dependency: In most cases, for large enough N, the error increased somewhat (in the order of 
a factor 2) upon halving the stepsize; 

2. N-dependency: The actual rounding errors grow (except in the case of the unperturbed 
harmonic oscillator) predominantly quadratically; 
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Table 6 
Test 2, N = 10 v, computation times in h:m:s 

Step size h 

Method/form s-~ lo~o0 

A) Difference notation 
St6rmer-Cowell 2:16:58 2:16:38 
First sum 2:18:08 2:17:04 
Second sum 2:30:07 2:17:50 

(B) Ordinate notation 
StSrmer-Cowell 2:42:54 2:42:59 
Split form 2:53:28 2:53:30 

3. summin9 once vs. summin9 twice: For small to moderate values of the step number, the 
first sum is somewhat faster and more accurate than the second sum. The differences diminish if 
N --} oo. 

In addition, we note that there is no difference between the difference and ordinate versions of the 
StSrmer-Cowell method, as far as the rounding errors are concerned. The ordinate notation, 
however, is considerably slower, as is clear from Table 6. This table also shows that the split form is 
slower than the summed forms, of which the first sum is fastest. 

Clearly, summed and split forms are superior over the original forms (this holds in general, 
see also [3, 11, 12]). Among the original forms, the difference form is faster than the ordinate 
version. 

8. Conclusions 

Multistep methods and their summed forms can easily be derived from one another by means of 
schemes of the type of Figs. 1 and 2, which represent the "Cowelr' and "Adams" families, 
respectively. The Gauss-Jackson method, which is really the y2-form of the "CoweU-family", is 
well known among astronomers. In this paper it is shown, however, that there is no reason to prefer 
this second-sum form over the first-sum form. This has been demonstrated with the aid of 
theoretical and numerical evidence. In general, summed and split forms are to be preferred over the 
original forms. 
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