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Abstract

In this paper, polynomials which are orthogonal with respect to the inner product

〈p; r〉S =
∞∑
k=0

p(qk)r(qk)
(aq)k(aq; q)∞

(q; q)k
+ �

∞∑
k=0

(Dqp)(q
k)(Dqr)(q

k)
(aq)k(aq; q)∞

(q; q)k
;

where Dq is the q-di�erence operator, �¿0; 0¡q¡ 1 and 0¡aq¡1 are studied. For these polynomials, algebraic
properties and q-di�erence equations are obtained as well as their relation with the monic little q-Laguerre polynomials.
Some properties about the zeros of these polynomials are also deduced. Finally, the relative asymptotics {Qn(x)=pn(x; a|q)}n
on compact subsets of C \ [0; 1] is given, where Qn(x) is the nth degree monic orthogonal polynomial with respect to the
above inner product and pn(x; a|q) denotes the monic little q-Laguerre polynomial of degree n. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The original motivation for considering Sobolev orthogonal polynomials comes from the least-
squares approximation problems [15]. More precisely, for a given function the problem was to �nd
its best polynomial approximant of degree n with respect to the norm

||g(x)||2 =
∫
R
[g(x)]2 d�0(x) + �

∫
R
[g′(x)]2 d�1(x)

over all g ∈ C(1), being �i(x); i = 0; 1, positive Borel measures on the real line R having bounded
or unbounded support [4,6,19].
Also, in order to �nd the best polynomial approximation p(x) of a function f(x) where besides

function values f(xi) also di�erence derivatives at the knots are given, the following minimization
problem appears in a natural way:

min
r∑
k=0

(
bk−k−1∑
xs=ak

(�kp(xs)− �kf(xs))2!k(xs)
)
;

�h(x) = h(x + 1)− h(x);
�kh(x) = �k−1(�h(x));

where !k(x) are discrete weight functions on [ak ; bk), i.e., each !k(x) is the piecewise constant
function with jumps !k(xi) at the points x = xi for which xi+1 = xi + 1 and ak6xi6bk − 1. In this
situation, it seems to be interesting the analysis of the polynomials which are orthogonal with respect
to the inner product

(p; q)S =
r∑
k=0

(
bk−k−1∑
xs=ak

�kp(xs)�kq(xs)!k(xs)

)
:

In recent works [1,2], we have studied algebraic and analytic properties of the polynomials
orthogonal with respect to a particular case (r = 1; !0 ≡ !1) of the above inner product

〈p; q〉=
∞∑
s=0

p(s)q(s)!(s) + �
∞∑
s=0

�p(s)�q(s)!(s);

where �¿0 and !(s) is the Pascal distribution from probability theory, !(s)=�s�(
+s)=�(s+1)�(
),

¿ 0, 0¡�¡ 1. For �=0 the corresponding polynomials are the Meixner polynomials, introduced
in [23].
Moreover, if the knots are xi+1 = qxi (nonequidistant mesh widths), where q is a real number

q 6= 1, and if we want to involve in the approximation the value of the function at the knots as well
as the q-di�erences of the function, we arrive to the following minimization problem:

min
r∑
k=0


bk−qk−1∑

xs=ak

((Dkqp)(xs)− (Dkqf)(xs))2�k(xs)

 with (Dkqh)(x) = (D

k−1
q (Dqh))(x);

where �k are q-weight functions and the q-di�erence operator Dq is de�ned by

(Dqh)(x) =
h(qx)− h(x)
(q− 1)x ; x 6= 0; q 6= 1; (Dqh)(0) = h′(0):
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Thus, the Fourier projector in terms of polynomials which are orthogonal with respect to the inner
product

〈p; r〉W =
r∑
k=0


bk−qk−1∑

xs=ak

(Dkqp)(xs)(D
k
qr)(xs)�k(xs)




allows to give the explicit expression for such a best polynomial approximation. Since we are
dealing with a nonuniform lattice [27], this q-approximation constitutes a natural tool for obtaining
a more accurate estimation when the �rst derivative of the function to be approximated increases
very quickly in a neighborhood of an end point.
The aim of this paper is the study of polynomials which are orthogonal with respect to a particular

case (r = 1; �0 ≡ �1) of the above inner product

〈p; r〉S = 〈p; r〉+ �〈Dqp;Dqr〉=
∞∑
k=0

p(qk)r(qk)�(qk) + �
∞∑
s=0

(Dqp)(qk)(Dqr)(qk)�(qk); (1.1)

where �¿ 0 and� is the little q-Laguerre step function [3,5,13] whose jumps are �(qk)=(aq)k(aq; q)∞=
(q; q)k , k=0; 1; 2; : : : ; 0¡aq¡ 1; 0¡q¡ 1. We call (1.1) the little q-Laguerre–Sobolev inner prod-
uct, by analogy with the continuous case [20].
Koekoek [11,12] studied the q-analogues of Sobolev-type orthogonal polynomials in the Laguerre

case. He de�ned the inner product on P, the linear space of polynomials with real coe�cients,

(f; g)S =
�q(−�)

�(−�)�(�+ 1)
∫ ∞

0

x�

(−(1− q)x; q)∞f(x)g(x) dx +
N∑
�=0

M�(D�qf)(0)(D
�
qg)(0);

where �¿ − 1, N is a nonnegative integer, M�¿0 for all �∈{0; 1; 2; : : : ; N}. Note that the mass
points are zeros of the polynomial �(x) appearing in the Pearson-type q-di�erence equation for the
orthogonality weight function �(x), i.e., (Dq(��))(x) = �(x)�(x). This location of the mass points
allowed to the author to obtain a representation of the polynomials orthogonal with respect to the
above inner product as a basic hypergeometric series N+2’N+2. In the present work, we consider
a di�erent problem since we deal with an inner product involving q-di�erences of order 1 and
nonatomic measures. Furthermore, if we consider an appropriate limit of the polynomials which are
orthogonal with respect to (1.1) we recover the so-called Laguerre–Sobolev orthogonal polynomials
(see e.g. [20,28]).
The structure of the paper is as follows: Section 2 contains some basic de�nitions and notations as

well as the relations for monic little q-Laguerre polynomials {pn(x; a|q)}n which will be useful within
the paper. In Section 3, we introduce the monic little q-Laguerre–Sobolev orthogonal polynomials
{Qn(x)}n. In Section 4, a linear q-di�erence operator S on P is de�ned. We prove that S is
a symmetric operator with respect to the little q-Laguerre–Sobolev inner product and we �nd a
nonstandard four-term recurrence relation for the polynomials {Qn(x)}n. In Section 5, we study
the zero distribution of little q-Laguerre–Sobolev orthogonal polynomials. Finally, in Section 6, the
relative asymptotics {Qn(x)=pn(x; a|q)}n and the asymptotic behavior of the ratio of two consecutive
little q-Laguerre–Sobolev orthogonal polynomials are obtained.
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2. Basic de�nitions and notations

2.1. Linear functionals

Let P be the linear space of real polynomials and let P′ be its algebraic dual space. We denote
by (u; f) the duality bracket for u∈P′ and f∈P, and by (u)n = (u; xn), with n¿0, the canonical
moments of u.

De�nition 1. Given a real number c, the Dirac functional �c is de�ned by (�c; p(x)):=p(c), for
every p∈P.

De�nition 2. Given a linear functional u, we de�ne, for each polynomial p, the linear functional pu
as follows (pu; r(x)):=(u; p(x)r(x)), for every r ∈P. For each real number c the linear functional
(x − c)−1u is given by

((x − c)−1u; r(x)):=(u; (r(x)− r(c))=(x − c)) for every r ∈P: (2.1)

Note that

(x − c)−1((x − c)u) = u − (u)0�c for every u∈P′; (2.2)

while

(x − c)((x − c)−1u) = u: (2.3)

2.2. Monic little q-Laguerre orthogonal polynomials

In what follows, we shall always assume that 0¡q¡ 1. The q-derivative operator Dq is de�ned
by [7, Eq. (2.3)]

(Dqp)(x) =
p(qx)− p(x)
(q− 1)x ; x 6= 0 (2.4)

and (Dqp)(0) = p′(0) by continuity, for p∈P. Note that limq↑1 (Dqp)(x) = p′(x), for every p∈P.
This q-di�erence operator satis�es the following properties which will be useful in the next sections:

(Dq(pr))(x) = r(x)(Dqp)(x) + p(qx)(Dqr)(x) for every r; p∈P: (2.5)

(Dqp)(x) = (Dq−1p)(qx) for every p∈P: (2.6)

Monic little q-Laguerre polynomials pn(x; a|q) are the polynomials orthogonal with respect to the
inner product (see [13])

〈p; r〉=
∞∑
k=0

(aq)k(aq; q)∞
(q; q)k

p(qk)r(qk); 0¡aq¡ 1; for every p; r ∈P; (2.7)
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where the q-shifted factorials are de�ned [5, pp. 3,6]

(b; q)0 = 1; (b; q)k =
k∏
j=1

(1− bqj−1); k¿1 and (b; q)∞ = lim
n→∞(b; q)n =

∞∏
j=1

(1− bqj−1):
(2.8)

Using the q-integral introduced by Thomae [30,31] and Jackson [10]∫ b

0
f(x)dq(x):=(1− q)b

∞∑
n=0

f(bqn)qn; b¿ 0

and since (q; q)k = (q; q)∞=(qk+1; q)∞, the inner product (2.7) can be written for a= q� as

〈p; r〉= (q�+1; q)∞
(1− q)(q; q)∞

∫ 1

0
p(x)r(x)x�(qx; q)∞dq(x); �¿ − 1:

Little q-Laguerre polynomials are a particular family of little q-Jacobi polynomials and they con-
stitute q-analogues of Laguerre polynomials (see [14, p. 117] and [8, p. 272]). They are related with
monic orthogonal Wall polynomials {Wn(x; b; q)}n (see [3,5, p. 198, p. 196]) as follows:

pn(x; a|q) = Wn(qx; aq; q)
qn

; n¿0:

They are also related with monic q-Laguerre polynomials {L(�)n (x; q)}n (see [5,9,25, p. 194]) by

pn(x; q�|q) =
(
1− q
q

)n
L(�)n

(
qx
1− q ; q

)
; n¿0; �¿ − 1:

For monic little q-Laguerre polynomials the following properties are known.

2.2.1. Three-term recurrence relation
We have [13]

xpn(x; a|q) = pn+1(x; a|q) + Bnpn(x; a|q) + Cnpn−1(x; a|q); n¿1;

Bn = qn(1 + a− aqn(q+ 1)); Cn = aq2n−1(qn − 1)(aqn − 1) (2.9)

with the initial conditions p0(x; a|q) = 1 and p1(x; a|q) = x − (1− aq).

2.2.2. q-di�erence representations
In [22] we can �nd

pn(x; a|q) = Dqpn+1(x; a|q)[n+ 1]q
+ aqn(1− q)Dqpn(x; a|q); n¿0; (2.10)

where

[0]q = 0; [n]q =
qn − 1
q− 1 ; n¿1: (2.11)

Moreover, since

pn(x; aq|q) = Dqpn+1(x; a|q)[n+ 1]q
; n¿0;
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we get

pn

(
x;
a
q

∣∣∣∣ q
)
= pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q); n¿1: (2.12)

2.2.3. Representation as a basic hypergeometric function
We have [5,14,22]

pn(x; a|q) = (−1)nqn(n−1)=2(aq; q)n 2’1
(
q−n; 0

aq

∣∣∣∣∣ q; qx
)

= (−1)nqn(n−1)=2(aq; q)n
n∑
k=0

(q−n; q)k
(q; q)k(aq; q)k

(qx)k : (2.13)

From the above hypergeometric representation we get

pn(0; a|q) = (−1)nqn(n−1)=2(aq; q)n: (2.14)

2.2.4. Squared norm and moments
Let us denote for n¿0,

kn = 〈pn(x; a|q); pn(x; a|q)〉=
∞∑
k=1

(aq)k(aq; q)∞
(q; q)k

(pn(qk ; a|q))2 = (aqn)n(q; q)n(aq; q)n (2.15)

(see [13]). From the de�nition of kn we can deduce the following relations:

k0 = 1; kn = aq2 n−1(qn − 1)(aqn − 1)kn−1; n¿1: (2.16)

If we denote the little q-Laguerre linear functional u(a) as

(u(a); p(x)) =
∞∑
k=0

(aq)k(aq; q)∞
(q; q)k

p(qk) for every p∈P (2.17)

then the canonical moments associated with u(a) can be derived from [3, p. 198] and they are

(u(a); xn) = (aq; q)n; n¿0: (2.18)

3. Little q-Laguerre–Sobolev orthogonal polynomials

Let us consider the Sobolev inner product de�ned on P by

〈p; r〉S =
∞∑
k=0

p(qk)r(qk)
(aq)k(aq; q)∞

(q; q)k
+ �

∞∑
k=0

(Dqp)(qk)(Dqr)(qk)
(aq)k(aq; q)∞

(q; q)k
; (3.1)

where Dq is the q-di�erence operator de�ned in (2.4), 0¡aq¡ 1 and �¿0.
We shall denote by {Qn(x; a; �|q)}n ≡ {Qn(x)}n the MOPS associated with the (Sobolev) inner

product 〈:; :〉S . Such a sequence is said to be the little q-Laguerre–Sobolev MOPS.
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Proposition 1. Let {pn(x; a|q)}n be the little q-Laguerre MOPS and let {Qn(x)}n be the little
q-Laguerre–Sobolev MOPS. The following relation holds:

pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q) = Qn(x) + dn−1(�; a|q)Qn−1(x); n¿2; (3.2)

where

dn−1(�; a|q) ≡ dn−1(�) = aqn−1(1− qn) kn−1
k̃n−1

; (3.3)

k̃n = 〈Qn; Qn〉S : (3.4)

Proof. If we expand

pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q) = Qn(x) +
n−1∑
i=0

fi;nQi(x);

then

fi;n =
〈pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q); Qi(x)〉S

〈Qi; Qi〉S :

Thus, for 06i6n− 1 we have, by using (2.10),

fi;n=
1

k̃ i
{〈pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q); Qi(x)〉S}

=
1

k̃ i
{〈pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q); Qi(x)〉+ �[n]q〈pn−1(x; a|q); DqQi(x)〉}

=
〈pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q); Qi(x)〉

k̃ i
:

Then,

fi;n =



0 if 06i6n− 2;
aqn−1(1− qn) kn−1

k̃n−1
if i = n− 1:

Corollary 1. The little q-Laguerre–Sobolev orthogonal polynomials satisfy

Qn(x) =
n∑
j=1

ej;npj(x; a|q); n¿1; (3.5)

where

en;n = 1; (3.6)

ej;n = (−1)n−j(dj(�) + aqj(qj+1 − 1))
n−1∏
s=j+1

ds(�); 16j6n− 1; n¿2; (3.7)

with the convention
∏m−1
s=m ds(�) = 1.
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Proof. From (3.2) and taking into account that Q1(x) = p1(x; a|q), (3.5) is derived.

We can compute recursively the coe�cients dn(�) and the norms k̃n de�ned in (3.3) and (3.4),
respectively, by means of

Proposition 2. For n¿2; we have

dn(�) =
−a2q3n+1(qn − 1)(aqn − 1)(qn+1 − 1)

aq2n+1(qn − 1)(aqn − 1) + ([n]q)2(�q2 + a2(q− 1)2q2n) + aqn+1(qn − 1)dn−1(�)
; (3.8)

with the initial condition

d1(�) =−a
2(q− 1)q2(aq− 1)(q2 − 1)
�+ a(q− 1)q(aq− 1) : (3.9)

Moreover; we have

k̃n = kn + (�+ (a(1− q)qn−1)2)([n]q)2kn−1 − (a(1− qn)qn−1)2
(kn−1)2

k̃n−1
; n¿1 (3.10)

with k̃0 = k0 = 1.

Proof. If we denote pn(x; a|q) ≡ pn(x), from the de�nition of k̃n in (3.4), using (2.10) and (3.2),
we get

k̃n= 〈Qn(x); Qn(x)〉S = 〈Qn(x); pn(x)〉S = kn + �〈(DqQn)(x); (Dqpn)(x)〉
= kn + �〈(DqQn)(x); [n]qpn−1(x)− a(1− q)[n]qqn−1(Dqpn−1)(x)〉
= kn + �([n]q)

2kn−1 − �aqn−1(1− qn)〈(DqQn)(x); (Dqpn−1)(x)〉
= kn + �([n]q)

2kn−1 − aqn−1(1− qn){〈Qn(x); pn−1(x)〉S − 〈Qn(x); pn−1(x)〉}
= kn + �([n]q)

2kn−1 + aqn−1(1− qn)〈Qn(x); pn−1(x)〉
= kn + �([n]q)

2kn−1 + aqn−1(1− qn)
×〈pn(x) + aqn−1(1− qn)pn−1(x)− dn−1(�)Qn−1(x); pn−1(x)〉

= kn + �([n]q)
2kn−1 + (aqn−1(1− qn))2kn−1 − aqn−1(1− qn)dn−1(�)kn−1:

Thus, from (2.16) and (3.3) we get (3.8) as well as the initial condition (3.9). Eq. (3.10) is a
consequence of the above equality and (3.3).

Remark. Although the coe�cients dn(�) appear in the previous results for n¿1, we can start the
recurrence relation (3.8) with the initial condition d0(�) = a(1− q), obtaining the same coe�cients
for n¿1.

Monic little q-Laguerre orthogonal polynomials {pn(x; a|q)}n are related with monic Laguerre
orthogonal polynomials {L(�)n (x)}n by means of the following limit relation (see [13, p. 105])

lim
q↑1

pn((1− q)x; q�|q)
(1− q)n = L(�)n (x); n¿0; �¿−1: (3.11)
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Monic Laguerre–Sobolev polynomials {Q(�)n (x)}n (see e.g. [20,28]) are the polynomials orthogonal
with respect to the Sobolev inner product

(p; r)S =
∫ ∞

0
p(x)r(x)x�e−x + �

∫ ∞

0
p(x)r(x)x�e−x; �¿−1: (3.12)

Monic Laguerre–Sobolev polynomials and monic Laguerre polynomials are related by means of

Q(�)n (x) + dn−1(�; �)Q
(�)
n−1(x) = L

(�)
n (x) + nL

(�)
n−1(x); (3.13)

where the coe�cients dn(�; �) satisfy the following �rst-order recurrence relation

dn(�; �) =
(1 + n)(�+ n)

�+ (2 + �)n− dn−1(�; �) ; d1(�; �) =
2(1 + �)
1 + �+ �

: (3.14)

A limit relation between monic little q-Laguerre–Sobolev orthogonal polynomials and monic
Laguerre–Sobolev orthogonal polynomials appears in a natural way.

Proposition 3. The following limit relation holds:

lim
q↑1

Qn((1− q)x; q�; �(1− q)2|q)
(1− q)n = Q(�)n (x); n¿1; (3.15)

where {Q(�)n (x)}n are the monic Laguerre–Sobolev polynomials.

Proof. From (3.2) we have for n¿2,
Qn((1− q)x; q�; �(1− q)2|q)

(1− q)n =
pn((1− q)x; q�|q)

(1− q)n + q�[n]qq
n−1pn−1((1− q)x; q�|q)

(1− q)n−1

− dn−1(�(1− q)
2; q�|q)

(1− q)
Qn−1((1− q)x; q�; �(1− q)2|q)

(1− q)n−1 : (3.16)

Since limq↑1 [n]q = n and dn(�(1 − q)2; q�|q)=(1 − q) converges to the coe�cients dn(�; �) given in
(3.14) when q ↑ 1, the result follows by using the limit relation (3.11) as well as the equality

Q1((1− q)x; q�; �(1− q)2|q) = p1((1− q)x; q�|q):

4. The linear operator S

Even the inner product in (3.1) no longer satis�es the basic property 〈xp(x); r(x)〉S=〈p(x); xr(x)〉S ;
i.e. {Qn}n does not satisfy a three-term recurrence relation, there exists an operator S which is
symmetric with respect to the inner product (3.1).

Proposition 4. Let h(x) be the polynomial

h(x) = a(q− 1)x (4.1)

with 0¡aq¡ 1; and let S be the q-di�erence operator

S ≡ h(x)I − �aDq + �(1− x)Dq−1 ; (4.2)

where I is the identity operator. Then

〈h(x)p(x); r(x)〉S = 〈p(x); (Sr)(x)〉 for every p; r ∈P: (4.3)
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Proof. The weight function

�(qk) =
(aq)k(aq; q)∞

(q; q)k
satis�es

(1− qk)�(qk) = aq�(qk−1); k¿1: (4.4)

Using (2.5) we get

〈h(x)p(x); r(x)〉S = 〈h(x)p(x); r(x)〉+ �〈(Dq(hp))(x); (Dqr)(x)〉
= 〈h(x)p(x); r(x)〉 − �a〈p(x); (Dqr)(x)〉+ �aq〈p(qx); (Dqr)(x)〉
= 〈p(x); h(x)r(x)− �a(Dqr)(x)〉+ �〈(1− x)p(x); (Dq−1r)(x)〉;

where the last equality is a consequence of (4.4). Then, the result holds.

Theorem 1. The linear operator S de�ned in (4:2) is symmetric with respect to the Sobolev inner
product (3:1); i.e.;

〈(Sp)(x); r(x)〉S = 〈p(x); (Sr)(x)〉S for every p; r ∈P: (4.5)

Proof. Since S is a linear operator, it is su�cient to prove that

〈(S#n)(x); #m(x)〉S − 〈#n(x); (S#m)(x)〉S = 0 for every n; m¿0; (4.6)

with #k(x) = xk .
If n+ m62, it is easy to obtain the result for each particular case.
On the other hand, if n+m¿ 2, from (2.17) and (4.2) the left-hand side of (4.6) is (u(a); tn+m(x)),

where

tn+m(x) = �q{(q−m[m]q − q−n[n]q)xn+m + ((a− q−m)[m]q − (a− q−n)[n]q)xn+m−1}
+ �2q1−m−n[n]q[m]q{(qn[m]q − qm[n]q)xn+m−2

+ (qm(1− aqn−1)[n− 1]q − qn(1− aqm−1)[m− 1]q)xn+m−3}: (4.7)

From (2.18) and after some straightforward computations we deduce that (u(a); tn+m(x)) = 0:

Proposition 5. Let {pn(x; a|q)}n be the little q-Laguerre MOPS and {Qn(x)}n be the little
q-Laguerre–Sobolev MOPS. We have

h(x)pn(x; a|q) = a(q− 1)Qn+1(x) + an;nQn(x) + an−1; nQn−1(x); n¿2; (4.8)

where

an;n = a(q− 1)(dn(�) + qn(1− aqn)); (4.9)

an−1; n = aqn(q− 1)(1− aqn)dn−1(�) (4.10)

with h(x) and dn(�) de�ned in (4:1) and (3:3); respectively.
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Proof. By using the three-term recurrence relation for the little q-Laguerre polynomials (2.9) we
have

h(x)pn(x; a|q) = a(q− 1)xpn(x; a|q) = a(q− 1)(pn+1(x; a|q) + Bnpn(x; a|q) + Cnpn−1(x; a|q))
= a(q− 1)(pn+1(x; a|q) + aqn(1− qn+1)pn(x; a|q)
+ qn(1− aqn)pn(x; a|q) + Cnpn−1(x; a|q))

= a(q− 1)(pn+1(x; a|q) + aqn(1− qn+1)pn(x; a|q)
+ qn(1− aqn)(pn(x; a|q) + aqn−1(1− qn)pn−1(x; a|q))):

From (3.2) the result holds.

Taking into account Propositions 1 and 5, we deduce:

Corollary 2. The little q-Laguerre–Sobolev orthogonal polynomials {Qn(x)}n satisfy the following
recurrence relation:

Qn+1(x) = (qn(aqn − 1) + x − dn(�) + aqn−1(qn − 1))Qn(x)
− (aq2(n−1)(qn − 1)(aqn−1 − 1) + dn−1(�)(qn(aqn − 1) + x + aqn−1(qn − 1)))Qn−1(x)
− aq2n−3(qn − 1)(aqn − q)dn−2(�)Qn−2(x); n¿1; (4.11)

where dn(�) are de�ned in (3:3); with the convention d−1(�) = 0 and d0(�) = a(1 − q); and the
initial conditions Q−1(x) = 0; Q0(x) = 1 and Q1(x) = p1(x; a|q).

Proof. From (3.2) and using (4.8) we obtain the above four-term recurrence relation.

Proposition 6. Let {pn(x; a|q)}n be the little q-Laguerre MOPS; {Qn(x)}n be the little q-Laguerre–
Sobolev MOPS and S be the linear q-di�erence operator introduced in (4:2). We have

(SQn)(x) = a(q− 1)pn+1(x; a|q) + bn;npn(x; a|q) + bn−1; npn−1(x; a|q); n¿2; (4.12)

where

bn;n =
a2qn(1− q)(qn+1 − 1)(qn − aq2n + dn(�))

dn(�)
; (4.13)

bn−1; n =
a3q3n−1(q− 1)(qn − 1)(1− aqn)(qn+1 − 1)

dn(�)
(4.14)

and the coe�cients dn(�) are given in (3:3).

Proof. If we expand (SQn)(x) in terms of the sequence {pn(x; a|q)}n,

(SQn)(x) = a(q− 1)pn+1(x; a|q) +
n∑
i=0

bi;npi(x; a|q);

then from (4.3) we get

bi;n =
〈(SQn)(x); pi(x; a|q)〉

ki
=

〈Qn(x); h(x)pi(x; a|q)〉S
ki

:
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Hence bi;n = 0 for i = 0; 1; : : : ; n− 2. On the other hand,

bn−1; n =
〈Qn(x); h(x)pn−1(x; a|q)〉S

kn−1
= a(q− 1) k̃n

kn−1
and

bn;n=
〈Qn(x); h(x)pn(x; a|q)〉S

kn

=
〈Qn(x); a(q− 1)Qn+1(x) + an;nQn(x) + an−1; nQn−1(x)〉S

kn
= an;n

k̃n
kn

using (4.8).

Proposition 7. Let {pn(x; a|q)}n be the little q-Laguerre MOPS; {Qn(x)}n be the little q-Laguerre–
Sobolev MOPS and S be the linear q-di�erence operator de�ned in (4:2). The following relation
holds:

(SQn)(x) = a(q− 1)Qn+1(x) + cn;nQn(x) + cn−1; nQn−1(x); n¿2; (4.15)

where

cn;n =
a(q− 1)(aq2n(aqn − 1)(qn+1 − 1) + dn(�)2)

dn(�)
; (4.16)

cn−1; n =
a2q2n(q− 1)(aqn − 1)(qn+1 − 1)dn−1(�)

dn(�)
(4.17)

and the coe�cients dn(�) are given in (3:3).

Proof. If we expand the polynomial (SQn)(x) in terms of the polynomials {Qn(x)}n,

(SQn)(x) = a(q− 1)Qn+1(x) +
n∑
i=0

ci;nQi(x)

and using the symmetric character of the linear operator S, we get

ci;n =
〈(SQn)(x); Qi(x)〉S
〈Qi(x); Qi(x)〉S =

〈Qn(x); (SQi)(x)〉S
k̃ i

:

Thus, ci;n = 0 for i = 0; 1; : : : ; n− 2. Moreover,

cn−1; n =
〈Qn(x); (SQn−1)(x)〉S

k̃n−1
= a(q− 1) k̃n

k̃n−1
:

Finally, from Proposition 6 we get

cn;n=
〈Qn(x); (SQn)(x)〉S

k̃n

=
〈a(q− 1)pn+1(x; a|q) + bn;npn(x; a|q) + bn−1; npn−1(x; a|q); Qn(x)〉S

k̃n

= a(q− 1)〈pn+1(x; a|q); Qn(x)〉S
k̃n

+ bn;n;
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where bn;n is given in (4.13). So we must compute 〈pn+1(x; a|q); Qn(x)〉S . Since

bn;n =
〈Qn(x); h(x)pn(x; a|q)〉S

kn
= a(q− 1)〈Qn(x); xpn(x; a|q)〉S

kn

=
a(q− 1)
kn

(〈Qn(x); pn+1(x; a|q)〉S + Bnk̃n);
where h(x) = a(q− 1)x and Bn is given in (2.9), we can express 〈pn+1(x; a|q); Qn(x)〉S in terms of
bn;n and after some straightforward computations the result holds.

5. Zeros

The zeros of the polynomial pn(x; a|q) are all real and distinct, they live on the interval of
orthogonality (0; 1), and they separate the zeros of pn−1(x; a|q). In this section we study the location
of the zeros of little q-Laguerre–Sobolev orthogonal polynomials {Qn(x)}n. An interlacing property
which relates the zeros of Qn(x) with the zeros of pn(x; a|q) is proved.

Lemma 1. For n¿0 and a61 we have (−1)nQn(0)¿ 0.

Proof. We shall prove that Qn(0)=pn(0; a|q)¿ 0, for every n¿0. Thus, by using the value of
pn(0; a|q) given in (2.14) the result follows.
From (3.2) we obtain the following recurrence relation for Qn(0):

Qn(0) = pn(0; a|q) + aqn−1(1− qn)pn−1(0; a|q)− dn−1(�)Qn−1(0);
Q1(0) = p1(0; a|q):

By using (2.14),

pn(0; a|q) + aqn−1(1− qn)pn−1(0; a|q) = pn−1(0; a|q)qn−1(a− 1):
Thus,

Qn(0) = pn−1(0; a|q)qn−1(a− 1)− dn−1(�)Qn−1(0); Q1(0) = p1(0; a|q) = aq− 1:
From (2.14) we can also obtain

pn(0; a|q) = qn−1(aqn − 1)pn−1(0; a|q):
Taking into account the last expression,

Qn(0)
pn(0; a|q) =

a− 1
aqn − 1 − dn−1(�)

qn−1(aqn − 1)
Qn−1(0)

pn−1(0; a|q) :

If we denote An = Qn(0)=pn(0; a|q), the last equality reads
An =

a− 1
aqn − 1 − dn−1(�)

qn−1(aqn − 1)An−1:

From (3.3) we obtain

A1 =
Q1(0)

p1(0; a|q) = 1; An =
1

1− aqn
(
1− a+ a(1− qn) kn−1

k̃n−1
An−1

)
:
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Since k1=k̃1¿ 0, the coe�cient A2 is positive for a61 and then An¿0, for every n¿1. Thus,
sgn(Qn(0)) = sgn(pn(0; a|q)), for every n¿1, so we get Q2k(0)¿ 0 and Q2k+1(0)¡ 0. The case
n= 0 follows from Q0(0) = p0(0; a|q) = 1.

Lemma 2. Let pk(x) be a polynomial of degree k. If �=0 or a=1; there exists a unique polynomial
gk(x) of degree k such that

(Sgk)(x) = h(x)pk(x); (5.1)

where the linear operator S and the polynomial h(x) are de�ned in Proposition 4.

Proof. If � = 0 the linear operator S becomes h(x)I; where I stands for the identity operator.
Then, it is su�cient to take gk(x) = pk(x).
If a= 1 the linear operator S can be written

S ≡ (q− 1)xI − �Dq + �(1− x)Dq−1 :

Let us expand

gk(x) =
k∑
i=0

bixi; h(x)pk(x) = (q− 1)xpk(x) =
k+1∑
i=1

aixi:

The action of the linear operator S on gk(x) yields

(Sgk)(x) =
k∑
i=0

bi

(
(q− 1)xi+1 − � [i]q

qi−1
xi + �[i]q

(
1
qi−1

− 1
)
xi−1

)
:

From the equality (Sgk)(x) = h(x)pk(x) we obtain a system of k + 1 linear equations with
k + 1 unknowns. It has a unique solution which can be found by using the forward substitution
method.

Lemma 3. Let pk(x) be a polynomial of degree k and assume a=1. Let gk(x) be the polynomial
of degree k given in Lemma 2 such that (Sgk)(x) = h(x)pk(x). Then

〈r(x); gk(x)〉S = 〈r(x); pk(x)〉 − �
1− q r(0)(Dq−1gk)(0) for every r ∈P: (5.2)

Proof. For each polynomial r(x) we have

r(x) = r(qx)− h(x)(Dqr)(x): (5.3)

Since (Sgk)(0) = 0, from (2.1), (2.3), (2.6), (3.1), (4.2), (5.1) and (5.3) we get

〈r(x); pk(x)〉=
〈
r(x);

(Sgk)(x)
h(x)

〉
=
(
u(1);

r(x)(Sgk)(x)
h(x)

)

=
(
u(1);

r(x)(Sgk)(x)− r(0)(Sgk)(0)
h(x)

)
= ((h(x))−1u(1); r(x)(Sgk)(x))

= 〈r(x); gk(x)〉S − �((h(x))−1u(1); r(qx)(Dq−1gk)(qx)− r(x)(Dq−1gk)(x))

− �
q− 1(u

(1); r(x)(Dq−1gk)(x))
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= 〈r(x); gk(x)〉S − �((h(x))−1u(1); h(x)Dq[r(x)(Dq−1gk)(x)])

− �
q− 1(u

(1); r(x)(Dq−1gk)(x))

= 〈r(x); gk(x)〉S − �(u(1); Dq[r(x)(Dq−1gk)(x)])− �
q− 1(u

(1); r(x)(Dq−1gk)(x)):

Consequently, if we denote t(x) = r(x) (Dq−1gk)(x) we have

〈r(x); pk(x)〉= 〈r(x); gk(x)〉S − �
(
u(1); (Dqt)(x) +

t(x)
q− 1

)
: (5.4)

Since t(x) is a polynomial, writing

t(x) =
m∑
k=0

tkxk ; (5.5)

we obtain(
u(1); (Dqt)(x) +

t(x)
q− 1

)
=
(u(1))0t0
q− 1 +

m∑
k=1

(
[k]q(u

(1))k−1 +
(u(1))k
q− 1

)
tk (5.6)

and from (2.11) and (2.18) we get(
u(1); (Dqt)(x) +

t(x)
q− 1

)
=

1
q− 1 r(0)(Dq−1gk)(0): (5.7)

Substitution of this relation into (5.4) yields (5.2).

Lemma 4. Let pk(x) be a polynomial of degree k ¿ 1. If �¿ 0 and a 6= 1; there exist a unique
polynomial gk(x) of degree k and a unique constant cp (depending on the polynomial pk) such that

(Sgk)(x) = h(x)(pk(x) + xcp): (5.8)

Proof. Let us expand

gk(x) =
k∑
i=0

bixi; h(x)pk(x) = a(q− 1)xpk(x) =
k+1∑
i=1

aixi:

The action of the linear operator S on gk(x) can be written as

(Sgk)(x) =
k∑
i=0

bi

(
a(q− 1)xi+1 − � [i]q

qi−1
xi + �[i]q

(
1
qi−1

− a
)
xi−1

)
:

From the equality (Sgk)(x) = h(x)(pk(x) + xcp) we get the following system of (k + 1) linear
equations with (k + 1) unknowns

a(q− 1)bk = ak+1;

a(q− 1)bk−1 − �
[k]q
qk−1

bk = ak ;
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a(q− 1)bi−2 − �
[i − 1]q
qi−2

bi−1 + �[i]q

(
1
qi−1

− a
)
bi = ai−1; (i = 4; : : : ; k)

a(q− 1)b1 − �
[2]q
q
b2 + �[3]q

(
1
q2

− a
)
b3 = a2 + a(q− 1)cp;

a(q− 1)b0 − �b1 + �[2]q
(
1
q
− a

)
b2 = a1;

(1− a)�b1 = 0:
This linear system has a unique solution (b0; b1; : : : ; bk ; cp) which can be found by using the forward
substitution method. Moreover, since �¿ 0 and a 6= 1 then b1 = 0.

Lemma 5. Let pk(x) be a polynomial of degree k ¿ 1. Let gk(x) be the polynomial of degree k
and cp be the constant given in the previous lemma such that (5:8) is veri�ed. Then;

〈r(x); gk(x)〉S = 〈r(x); pk(x) + cpx〉 for every r ∈P: (5.9)

Proof. By using the same technique as in Lemma 3 we get

〈r(x); gk(x)〉S = 〈r(x); pk(x) + cpx〉+ �
a(q− 1)(Dq−1gk)(0)r(0):

Since, as stated in the previous lemma, the coe�cient b1 = g′k(0) = 0, then (Dq−1gk)(0) = g′k(0) = 0
and the result holds.

Lemma 6. Let k ¿ 1; let 0¡x1¡x2¡ · · · ¡xk be nonnegative real numbers and let be

p(x) =
k∏
i=1

(x − xi): (5.10)

Then; (−1)kcp ¿ 0 where cp is the constant obtained for p(x) in Lemma 4 when �¿ 0 and
0¡aq¡ 1.

Proof. Using the notation of Lemma 4 and since ak+1 = a(q− 1); from the Cardano-Vieta relations
between coe�cients of a polynomial and their zeros, we get

bk =1;

bk−1 =
ak

a(q− 1) + �
[k]q
qk−1

bk
a(q− 1)¡ 0;

bk−2 =
ak−1

a(q− 1) + �
[k − 1]q
qk−2

bk−1
a(q− 1) − �[k]q

(
1
qk−1

− a
)

bk
a(q− 1)¿ 0;

since 0¡q¡ 1 and 0¡aq¡ 1. Thus, it is straightforward to prove that (−1)k−jbj ¿ 0; j=2; 3; : : : ; k.
Furthermore, since b1 = 0 we obtain

(−1)kcp =−� [2]q
q
(−1)kb2
a(q− 1) + �[3]q

(
1
q2

− a
)
(−1)kb3
a(q− 1) −

(−1)ka2
a(q− 1)¿ 0:
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Theorem 2. Let {pn(x; a|q)}n be the little q-Laguerre MOPS with 0¡aq¡ 1 and {Qn(x)}n be
the little q-Laguerre–Sobolev MOPS. For each �¿ 0 the polynomial Qn(x); n¿2; has exactly n
real and distinct zeros; where at least n − 1 of them are positive. Moreover; if a61 then all the
zeros of Qn(x) are positive. If we denote by xn;1¡xn;2¡ · · · ¡xn;n the zeros of pn(x; a|q) and if
we denote by yn;1¡yn;2¡ · · · ¡yn;n the n di�erent zeros of Qn(x) then

yn;1¡xn;1¡yn;2¡xn;2¡ · · · ¡yn;n ¡ xn;n: (5.11)

Proof. Assume n¿ 2. Let xn;1¡xn;2¡ · · · ¡xn;n be the zeros of pn(x; a|q) and let us de�ne for
16i6n the polynomial w(i)n−1 of degree n− 1 as

w(i)n−1 =
n∏

j=1; j 6=i
(x − xn; j): (5.12)

• If a 6= 1 by using Lemma 4 we obtain a unique polynomial g(i)n−1(x) of degree n− 1 as well as
a unique constant ci such that (Sg

(i)
n−1)(x) = h(x)(w

(i)
n−1(x) + cix). From Lemma 5 we get

0 = 〈Qn(x); g(i)n−1(x)〉S = 〈w(i)n−1(x); Qn(x)〉+ ci〈x; Qn(x)〉

=
∞∑
k=0

w(i)n−1(q
k)Qn(qk)�(qk) + ci

∞∑
k=0

qkQn(qk)�(qk):

The Gaussian-type quadrature formula based in the zeros of pn(x; a|q) yields

0 = 〈Qn(x); g(i)n−1(x)〉S = �iw(i)n−1(xn; i)Qn(xn; i) + ci
∞∑
k=0

qkQn(qk)�(qk): (5.13)

Let us compute the second term of the above sum by using (3.5)

ci
∞∑
k=0

qkQn(qk)�(qk) = ci〈x; Qn(x)〉= ci
n∑
j=1

ej;n〈x; pj(x; a|q)〉= cie1; nk1:

Since k1¿ 0, sgn(e1; n) = (−1)n−2 and sgn(ci) = (−1)n−1, we obtain that the right-hand side of the
above expression is always negative.
From (5.13) we deduce

�iw
(i)
n−1(xn; i)Qn(xn; i) =−ci

∞∑
k=0

qkQn(qk)�(qk)¿ 0

and then Qn(xn; i) 6= 0. Moreover sgn(Qn(xn; i)) = sgn(w(i)n−1(xn; i)) = (−1)n−i, so Qn(x) changes sign
between two consecutive zeros of pn(x; a|q).
Finally, since sgn(Qn(xn;1)) = (−1)n−1 then Qn(x) has n di�erent real zeros, which separate those

of pn(x; a|q) as stated.
• If a=1, we use the orthogonality of Qn(x), Lemma 3 and the Gaussian-type quadrature formula

for evaluating sums in order to obtain

0= 〈Qn(x); g(i)n−1(x)〉S = 〈Qn(x); w(i)n−1(x)〉 −
�

1− qQn(0)(Dq−1g(i)n−1)(0)

= �iw
(i)
n−1(xn; i)Qn(xn; i)−

�
1− qQn(0)(Dq−1pi)(0) ;
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where w(i)n−1(x) are the polynomials de�ned in (5.12). Thus,

�iw
(i)
n−1(xn; i)Qn(xn; i) =

�
1− qQn(0)(Dq−1g(i)n−1)(0):

From Lemma 1 and repeating the arguments of Lemma 6 we get (−1)n−2(Dq−1g(i)n−1)(0)¿ 0. Hence
we deduce �iw

(i)
n−1(xn; i)Qn(xn; i)¿ 0, and then Qn(xn; i) 6= 0 as well as sgn(Qn(xn; i)) = (−1)n−i. The

proof follows in the same way as in the case already discussed.
Finally, by Lemma 1, if a61 we have (−1)nQn(0)¿ 0, and all zeros are positive.
The result for n= 2 is a consequence of

p2(x; a|q)− Q2(x) = a�q(−1 + q
2)(−1 + aq+ x)

�+ a(−1 + q)q(−1 + aq) :

6. Asymptotic properties

In this section asymptotic properties of the sequence {Qn(x)}n on compact subsets of C \ [0; 1]
are studied (results on asymptotic properties for polynomials orthogonal with respect to di�erent
Sobolev inner products have been given in, e.g., [2,16,18,21,26]). More precisely, we shall derive the
relative asymptotics {Qn(x)=pn(x; a|q)} and the asymptotic behavior of the ratio of two consecutive
little q-Laguerre–Sobolev orthogonal polynomials {Qn+1(x)=Qn(x)} on compact subsets of C \ [0; 1].
As a consequence, we recover the relative asymptotics between monic Laguerre–Sobolev orthogonal
polynomials {Q(�)n (x)}n and monic Laguerre orthogonal polynomials {L(�)n (x)}n given in [17].
First, using [32, Theorem 1, p. 263] we can give the ratio asymptotics for little q-Laguerre

polynomials.

Proposition 8. Let {pn(x; a|q)}n be the little q-Laguerre MOPS. The following ratio asymptotics
holds:

lim
n→∞

pn(x; a|q)
pn+1(x; a|q) =

1
x
; 0¡aq¡ 1 (6.1)

uniformly on compact subsets of C \ [0; 1].

Now, we give bounds for the squared norm k̃n de�ned in (3.4).

Proposition 9. Let kn and k̃n given in (2:15) and (3:4); respectively. For n¿1; we have

kn + �([n]q)
2kn−16k̃n6kn + (�([n]q)

2 + (a(1− qn)qn−1)2)kn−1; (6.2)

where [n]q is given in (2:11):

Proof. The inequality on the right-hand side of (6.2) is straightforward from (3.10). Using the
extremal property of kn we have, for n¿1,

k̃n = 〈Qn(x); Qn(x)〉S = 〈Qn(x); Qn(x)〉+ �〈(DqQn)(x); (DqQn)(x)〉¿kn + �([n]q)2kn−1:
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Remark. If we divide (6.2) by kn and we take limit when �→ ∞ we obtain

lim
�→∞

kn
k̃n
= 0; n¿1

and then, by using (3.3) we get

lim
�→∞

dn(�) = 0; n¿1:

Next, we give the asymptotic behaviour for the sequence {q2n−1k̃n=kn}n.

Proposition 10. Let kn and k̃n given in (2:15) and (3:4); respectively. Then

lim
n→∞ q

2n−1 k̃n
kn
=

�
a(1− q)2 ¿ 0 ; 0¡aq¡ 1 :

Proof. If we divide (3.10) by kn and using (2.15) we get

k̃n
kn
= 1 +

(�+ (a(1− q)qn−1)2)([n]q)2
aq2n−1(qn − 1)(aqn − 1) − a(qn − 1)

q(aqn − 1)
kn−1
k̃n−1

: (6.3)

Let us de�ne

sn+1 = q2n−1
k̃n
kn
sn; n¿0

with the initial condition s0 = 1. Therefore, from (6.3) we get

sn+1 − q2n−1
(
1 +

(�+ (a(1− q)qn−1)2)([n]q)2
aq2n−1(qn − 1)(aqn − 1)

)
sn +

a(qn − 1)
(aqn − 1)q

4n−5sn−1 = 0; (6.4)

where s0 = 1 and s1 = k̃1=k1. It is straightforward to deduce

lim
n→∞ q

2n−1
(
1 +

(�+ (a(1− q)qn−1)2)([n]q)2
aq2n−1(qn − 1)(aqn − 1)

)
=

�
a(1− q)2 ;

lim
n→∞

a(qn − 1)
(aqn − 1)q

4n−5 = 0:

Since the roots of the limit characteristic equation of (6.4) are

z1 = 0; z2 =
�

a(1− q)2
from the Poincar�e’s Theorem [29] (see also [24]), the sequence {sn+1=sn}n converges to z1 or z2. By
using the inequality on the left-hand side of (6.2), we get

lim
n→∞ q2n−1

k̃n
kn
= z2:

The above results allow us to deduce the relative asymptotics {Qn(x)=pn(x; a|q)}.
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Theorem 3. Let {Qn(x)}n be the little q-Laguerre–Sobolev MOPS and let {pn(x; a|q)}n be the
little q-Laguerre MOPS. The following limit relation holds:

lim
n→∞

Qn(x)
pn(x; a|q) = 1; 0¡aq¡ 1 (6.5)

uniformly on compact subsets of C \ [0; 1].

Proof. From (3.2) and (3.3) we can write for n¿1,

1 + a(1− qn)qn−1pn−1(x; a|q)
pn(x; a|q) =

Qn(x)
pn(x; a|q) + a(1− q

n)qn−1
kn−1
k̃n−1

pn−1(x; a|q)
pn(x; a|q)

Qn−1(x)
pn−1(x; a|q) :

(6.6)

From (6.1) and Proposition 10,

lim
n→∞ a(1− q

n)qn−1
kn−1
k̃n−1

pn−1(x; a|q)
pn(x; a|q) = 0 (6.7)

uniformly on compact subsets of C \ [0; 1]. For a �xed compact set K in C \ [0; 1], there exist
n0 ∈N; j0; j1 ∈R+ such that∣∣∣∣ Qn(x)

pn(x; a|q)
∣∣∣∣61 + j0 + j1

∣∣∣∣ Qn−1(x)
pn−1(x; a|q)

∣∣∣∣ :
Thus, {Qn(x)=pn(x; a|q)}n is uniformly bounded on K . Taking limits in (6.6) when n → ∞, from
(6.1) and (6.7) we get the result.

From Theorems 2 and 3 we obtain

Corollary 3. The set of zeros of Qn(x) accumulates on [0; 1]. If a¿ 1; then

lim
n→∞ yn;1 = 0;

where yn;1¡yn;2¡ · · · ¡yn;n are the zeros of the nth degree monic little q-Laguerre–Sobolev
polynomial Qn(x).

Next, we give the asymptotic behavior of the ratio of two consecutive little q-Laguerre–Sobolev
orthogonal polynomials, which is a consequence of Proposition 8 and Theorem 3.

Corollary 4. Let {Qn(x)}n be the little q-Laguerre–Sobolev MOPS. Then

lim
n→∞

Qn+1(x)
Qn(x)

= x (6.8)

uniformly on compact subsets of C\ [0; 1].

Remark. It should be �nally mentioned that we can recover the relative asymptotics between monic
Laguerre–Sobolev orthogonal polynomials {Q(�)n (x)}n and monic Laguerre orthogonal polynomials
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{L(�)n (x)}n given in [17]. From (2.12) and (3.2) when a= q� we get

pn((1− q)x; q�−1|q)
=Qn((1− q)x; q�; �(1− q)2|q) + dn−1(�(1− q)2; q�|q)Qn−1((1− q)x; q�; �(1− q)2|q):

If we take the limit in the above expression when q ↑ 1 (see Proposition 3 and (3.11)) we obtain
L(�−1)n (x) = Q(�)n (x) + dn−1(�; �)Q

(�)
n−1(x); (6.9)

where {L(�)n (x)}n are the monic Laguerre polynomials, {Q(�)n (x)}n are the monic Laguerre–Sobolev
polynomials and the coe�cients dn(�; �) are de�ned by means of the recurrence relation given in
(3.14). From (6.9), using the same technique as in Theorem 3, it can be deduced that

lim
n→∞

Q(�)n (x)

L(�−1)n (x)
=

2√
�2 + 4�− � (6.10)

holds uniformly on compact subsets of C\[0;∞), which is the monic form of the asymptotic behavior
obtained in [17].
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[19] F. Marcell�an, T.E. P�erez, M.A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case,

Ann. Numer. Math. 2 (1995) 93–122.
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