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Abstract

In this paper, polynomials which are orthogonal with respect to the inner product
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where D, is the g-difference operator, 21>0, 0 < ¢ <1 and 0 <ag <1 are studied. For these polynomials, algebraic
properties and g-difference equations are obtained as well as their relation with the monic little g-Laguerre polynomials.
Some properties about the zeros of these polynomials are also deduced. Finally, the relative asymptotics {Q,(x)/pa(x; alq)}x
on compact subsets of C\ [0,1] is given, where O,(x) is the nth degree monic orthogonal polynomial with respect to the
above inner product and p,(x;alq) denotes the monic little g-Laguerre polynomial of degree n. (©) 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The original motivation for considering Sobolev orthogonal polynomials comes from the least-
squares approximation problems [15]. More precisely, for a given function the problem was to find
its best polynomial approximant of degree n with respect to the norm

9@l = /R [T dvo(x) + /R [T dvi(x)

over all g € ¥V, being vi(x), i =0, 1, positive Borel measures on the real line R having bounded
or unbounded support [4,6,19].

Also, in order to find the best polynomial approximation p(x) of a function f(x) where besides
function values f(x;) also difference derivatives at the knots are given, the following minimization
problem appears in a natural way:

r b —k—1 _ _
min 3 ( > (Akp(xs)—Akf<xs>)2wk(xs)>, e e

Xg=aj

where w;(x) are discrete weight functions on [ay,b;), i.e., each w;(x) is the piecewise constant
function with jumps w;(x;) at the points x = x; for which x;,; =x; + 1 and a; <x;<b, — 1. In this
situation, it seems to be interesting the analysis of the polynomials which are orthogonal with respect
to the inner product

r br—k—1
(P q)s =) ( > A"p(xs)Akq(xs)wk(xs))

k=0 Xs=ak

In recent works [1,2], we have studied algebraic and analytic properties of the polynomials
orthogonal with respect to a particular case (r =1, wy = w,) of the above inner product

(poq) =Y p()g()a(s) + 4y Ap(s)Ag(s)a(s),
s=0 5s=0

where 420 and w(s) is the Pascal distribution from probability theory, w(s)=p*I'(y+s)/T'(s+1)I'(y),
7>0,0<u<1. For A=0 the corresponding polynomials are the Meixner polynomials, introduced
in [23].

Moreover, if the knots are x;,; = gx; (nonequidistant mesh widths), where ¢ is a real number
g # 1, and if we want to involve in the approximation the value of the function at the knots as well
as the g-differences of the function, we arrive to the following minimization problem:

Xs=0aj

r br—g*"!
min » ( > (DEp)x) — (D f)(xs))zpk(xs)> with (Dih)(x) = (D~ (Dyh))(x),
k=0

where p, are g-weight functions and the g-difference operator D, is defined by

h(gx) — h(x)

(th)(x) = (q _ 1)x )

x#0, g # 1 (Dh)0)=H(0).
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Thus, the Fourier projector in terms of polynomials which are orthogonal with respect to the inner
product

r b—q"!
(i =3 ( 3 (D’;p)(xs)(Dzr)(xs)pk(xs))

k=0 Xs=a
allows to give the explicit expression for such a best polynomial approximation. Since we are
dealing with a nonuniform lattice [27], this g-approximation constitutes a natural tool for obtaining
a more accurate estimation when the first derivative of the function to be approximated increases
very quickly in a neighborhood of an end point.

The aim of this paper is the study of polynomials which are orthogonal with respect to a particular
case (r=1, py = p;) of the above inner product

(psr)s = {p.r) + A(Dyp.Der) = > p(q ) (g )p(q") + 2> (Dyp)(qd )Der ) p(q"),  (1.1)
k=0

s=0

where 4 > 0 and p is the little g-Laguerre step function [3,5,13] whose jumps are p(¢*)=(aq)"(aq; q)s/
(g9, k=0,1,2,...,0 <aq < 1,0 < g < 1. We call (1.1) the little g-Laguerre—Sobolev inner prod-
uct, by analogy with the continuous case [20].

Koekoek [11,12] studied the g-analogues of Sobolev-type orthogonal polynomials in the Laguerre
case. He defined the inner product on P, the linear space of polynomials with real coefficients,

I'y(—o) > x*
r(=o)l(e+1)Jo (=1 =¢)x:q)s

(f+9)s = Fx)gx)dx + > M(D; £)(0)(D}g)(0),
v=0

where o > — 1, N is a nonnegative integer, M, >0 for all v€{0,1,2,...,N}. Note that the mass
points are zeros of the polynomial o(x) appearing in the Pearson-type g-difference equation for the
orthogonality weight function p(x), i.e., (D,(op))(x) = t(x)p(x). This location of the mass points
allowed to the author to obtain a representation of the polynomials orthogonal with respect to the
above inner product as a basic hypergeometric series y.,¢@y.,. In the present work, we consider
a different problem since we deal with an inner product involving g-differences of order 1 and
nonatomic measures. Furthermore, if we consider an appropriate limit of the polynomials which are
orthogonal with respect to (1.1) we recover the so-called Laguerre—Sobolev orthogonal polynomials
(see e.g. [20,28]).

The structure of the paper is as follows: Section 2 contains some basic definitions and notations as
well as the relations for monic little g-Laguerre polynomials { p,(x; a|q)}, which will be useful within
the paper. In Section 3, we introduce the monic little g-Laguerre—Sobolev orthogonal polynomials
{O.(x)},. In Section 4, a linear g-difference operator % on P is defined. We prove that % is
a symmetric operator with respect to the little g-Laguerre—Sobolev inner product and we find a
nonstandard four-term recurrence relation for the polynomials {Q,(x)},. In Section 5, we study
the zero distribution of little g-Laguerre—Sobolev orthogonal polynomials. Finally, in Section 6, the
relative asymptotics {Q,(x)/p.(x;alq)}, and the asymptotic behavior of the ratio of two consecutive
little g-Laguerre—Sobolev orthogonal polynomials are obtained.
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2. Basic definitions and notations

2.1. Linear functionals

Let PP be the linear space of real polynomials and let PP’ be its algebraic dual space. We denote
by (u, /) the duality bracket for u € P’ and f € P, and by (u), = (u,x"), with n>0, the canonical
moments of u.

Definition 1. Given a real number ¢, the Dirac functional 8. is defined by (d., p(x)):=p(c), for
every peP.

Definition 2. Given a linear functional u, we define, for each polynomial p, the linear functional pu
as follows (pu,r(x)):=(u, p(x)r(x)), for every » € P. For each real number ¢ the linear functional
(x — )7 'u is given by

((x — o) 'u, r(x)):=(u, (r(x) — r(c))/(x — c¢)) for every r € P. (2.1)
Note that
(x—c) "((x —c)u)y=u— ()8, for every ucP’, (2.2)
while
x—c)(x—c) 'u)=u. (2.3)

2.2. Monic little g-Laguerre orthogonal polynomials
In what follows, we shall always assume that 0 < g < 1. The g-derivative operator D, is defined

by [7, Eq. (2.3)]

p(gx) — p(X), ¥ £0
(g — D

and (D, p)(0) = p'(0) by continuity, for p € P. Note that lim,, (D, p)(x) = p'(x), for every peP.
This g-difference operator satisfies the following properties which will be useful in the next sections:

(Dy(pr))(x) =r(x)(Dyp)(x) + plgx)(D,r)(x) for every r,pc P. (2.5)

(Dyp)(x) = (2.4)

(Dyp)(x) = (D41 p)gx) for every pcP. (2.6)
Monic little g-Laguerre polynomials p,(x;alq) are the polynomials orthogonal with respect to the

inner product (see [13])

Z (aq)(q( ;1)61)00 p(d)r(d"), 0<ag<1, forevery preP, 27
k=0 ’
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where the g-shifted factorials are defined [5, pp. 3,6]

k 0o
b;q)o=1, (b;q) = H(l — bqj—] ), k=1 and (b;9)00 = lim (b;9), = H(l _ bqj—l).
Jj=1 j=1
(2.8)
Using the g-integral introduced by Thomae [30,31] and Jackson [10]

b e’}
[ == b rbanats b>0
n=0

and since (¢; ) = (¢;9)oo/(¢"*"; @)oo, the inner product (2.7) can be written for a = ¢* as

o1,

@ 5 g _
(pr) = s [ e axg)ed ), 7> 1.

Little g-Laguerre polynomials are a particular family of little g-Jacobi polynomials and they con-
stitute g-analogues of Laguerre polynomials (see [14, p. 117] and [8, p. 272]). They are related with
monic orthogonal Wall polynomials {W,(x;b,q)}, (see [3,5, p. 198, p. 196]) as follows:

"
They are also related with monic g-Laguerre polynomials {L*)(x;¢)}, (see [5,9,25, p. 194]) by
1 _ n
pu(x;q"1q) = (—q> Ly (i;q>, n=0, o> — L
q l—¢q
For monic little g-Laguerre polynomials the following properties are known.

pu(x;alq) = n=0.

2.2.1. Three-term recurrence relation
We have [13]

xpu(x;alq) = pusi(x;alq) + B, pa(x;alg) + Copui(x;alg), n>1,
B,=q"(1 +a—aq"(q+1)), C,=aqg” '(¢"—1)aq" — 1) (2.9)

with the initial conditions py(x;alq) =1 and pi(x;alqg) =x — (1 — aq).

2.2.2. g-difference representations
In [22] we can find

Dy ppii(x;alq) .
pu(x;alq) = ”[I:Ll]’ +aq"(1 — q)D,p.(x;alq), n=0, (2.10)
q
where
q"—1
[0],=0, [n],= E nx=l. (2.11)
q J—
Moreover, since
Dyppii(x;
Pa(x;aqlq) = M, n=0,

[n+ 1],
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we get

a
Dn <x; 5‘ q) = pu(x;alg) + ag" (1 — ¢")po_i(x;alq), n=1. (2.12)

2.2.3. Representation as a basic hypergeometric function
We have [5,14,22]
Q§qx)

_ ~ (g7
— (=1Y'q"" 2 (ag: q), Dk o) 2.13
(—=1)'q (agq;q) ;:0 (q;q)k(aq;q)k(qﬂ (2.13)

S

n nn— q
palx;alg) = (—1)'q"""V?(aq; q)n 01 (

From the above hypergeometric representation we get

pa(0;alq) = (—1)'q"" " (ag; q),. (2.14)

2.2.4. Squared norm and moments
Let us denote for n>0,

L (ag)*(aq; q)
kn = n ) 9 n , = - <
(pa(x; alq), pa(x; alq)) Z T

(see [13]). From the definition of &, we can deduce the following relations:

k=1, ky=aq*" '(¢" —1)aq" — Dk,_;, n>=1. (2.16)

(pu(d";alq))’ = (aq"Y'(q;9)u(agq; ), (2.15)

If we denote the little g-Laguerre linear functional #® as

(@', p(x)) = f: m])(qk) for every pe P (2.17)
= @k

then the canonical moments associated with #® can be derived from [3, p. 198] and they are

(U,x") = (ag; ) 120, (2.18)

3. Little g-Laguerre—Sobolev orthogonal polynomials

Let us consider the Sobolev inner product defined on P by

- (a9)"(aq; q)oo S (aq)*(aq; 4)oo
(pr)s = pa" (g ) S 1 53D, pY (g D)) D (3.1)
k=0 (q’ q)k k=0 (q3 Q)k
where D, is the g-difference operator defined in (2.4), 0 <ag <1 and 2>0.
We shall denote by {Q,(x;a;|g)}, = {0.(x)}, the MOPS associated with the (Sobolev) inner
product (.,.)s. Such a sequence is said to be the little g-Laguerre—Sobolev MOPS.
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Proposition 1. Let {p,(x;alq)}, be the little q-Laguerre MOPS and let {Q,(x)}, be the little
q-Laguerre—Sobolev MOPS. The following relation holds:

pu(x;salg) + ag" " (1 = ") pa-i(x;alq) = Qu(x) + dy1(4,a|q) 001 (x), n=2, (3.2)
where
dy(Jalq)=d,_1(A)=aq" (1 — q”)llgn1 , (3.3)
n—1
]gn - <Qn’ Qn>S- (34)

Proof. If we expand

n—1
pu(x;alg) +aq" ' (1 — ") puoi(x;alq) = Qu(x) + D f1aQ:i(x),

i=0
then

fo = (Pu(xsalg) +ag"' (1 — q") pu-i1(x;alq), Qi(x))s
o <Qi: Qi>5
Thus, for 0<i<n — 1 we have, by using (2.10),

1
Sun =z Upalssalg) + aq""'(1 = ¢") pa_i(x;alq), 0(x))s}
1
= ;{<pn(X; alg) +aq"~'(1 — ¢") pu_1(x;alq), 0:(x)) + Alnl,{ pa—i(x; alq), D,0i(x)) }
_ (puxsalg) +ag"" (1 — ¢") pa-i(x;alg), Qi(x))
k; '
Then,
0 if 0<i<<n—2,
Jin= { ag" (1 — q”)@ ifi=n—1. O
kn—l

Corollary 1. The little q-Laguerre—Sobolev orthogonal polynomials satisfy

Q,,()C):Z ej,npj(X;aIQ)a n=l, (35)
=1
where
enn=1, (3.6)
n—1
e = (=17 (dj(A) +agd (¢ — 1)) [] di(2), 1<j<n—1, n>2, (3.7)
s=j+1

with the convention """ dy(2) = 1.

S=m
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Proof. From (3.2) and taking into account that Q;(x) = pi(x;alq), (3.5) is derived. [J

We can compute recursively the coefficients d,(1) and the norms &, defined in (3.3) and (3.4),
respectively, by means of

Proposition 2. For n=2, we have

B _a2q3n+1(qn _ 1)(61(]” _ 1)(qn+1 _ 1) (3 8)
ag** 1 (g" — )(ag" — 1) + ([n])*(A¢?> + a*(q — 12¢*") + aq"+(q" — D)d,_1(A)”
with the initial condition
2(qg — 1)q? —1)(g* -1
_ag—Dyg'(ag = 1)(g" — 1) (3.9)
A+ alg — 1)q(aqg — 1)

Moreover, we have

dy(2)

di(4) =

2
=y + G+ (@ = g P, Pyt — a1 =g P (3.10)
n—1

with ]€0 :ko =1.

Proof. If we denote p,(x;alq) = p.(x), from the definition of k, in (3.4), using (2.10) and (3.2),
we get

few = (0u(x), 0u(0))s = (Qu(x), pu(x))s = ki + A((Dy0)(x). (Dy p)(x))
= ky + 2((Dg0)(x), [1], pu—1(x) — a(1 — ¢)[n],q¢"~"(Dy pu—1)(x))
=ky + A[n],)kur — 2aq" ' (1 = ¢"){(DgOu)(x), (Dyg pu—1)(x))
= ky + A1),V knr — aq" ' (1 = ¢")}{{Qu(x), pa1(x))s — (Ou(x), pa1(x))}
=k + (1], ) kue1 4+ ag" " (1 = "} Ou(x), pu—i(x))
=k + A([1],) ks +ag" (1 — ¢")
X(pu(x) +aq" ' (1 = q") pui1(x) — d_1(A)Qp-1(x), pui(x))
=ky + A[n], ko1 + (ag" "' (1 — ¢")V koot — ag" ™" (1 = ¢")d -1 (A

Thus, from (2.16) and (3.3) we get (3.8) as well as the initial condition (3.9). Eq. (3.10) is a
consequence of the above equality and (3.3). O

Remark. Although the coefficients d,(4) appear in the previous results for n>1, we can start the
recurrence relation (3.8) with the initial condition do(4) = a(l — ¢), obtaining the same coefficients
for n>1.

Monic little g-Laguerre orthogonal polynomials {p,(x;alq)}, are related with monic Laguerre
orthogonal polynomials {L(*)(x)}, by means of the following limit relation (see [13, p. 105])

o 2= 9)x;4%q)

=5 >0, —1. 11
I (1—qy w(x), n=0, 0> (3.11)
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Monic Laguerre-Sobolev polynomials {Q®(x)}, (see e.g. [20,28]) are the polynomials orthogonal
with respect to the Sobolev inner product

(p,r)s = / pr(x)x*e™ + }b/ pr(x)x*e™, a>-—1. (3.12)
0 0
Monic Laguerre—Sobolev polynomials and monic Laguerre polynomials are related by means of
O () + 1 (A ) (6) = LP(6) + Ly, (x), (3.13)

where the coefficients d,(4, «) satisfy the following first-order recurrence relation
(1 +n)o+n) 2(1 4 a)
a4+ QR+ Mn—d,_(Aa) l+a+ A
A limit relation between monic little g-Laguerre—Sobolev orthogonal polynomials and monic
Laguerre—Sobolev orthogonal polynomials appears in a natural way.

d,(l,a)=

d(Jy o) = (3.14)

Proposition 3. The following limit relation holds:
_ . _ 2
i 2 =9 a0 — 9)la)
g =gy
where {Q")(x)}, are the monic Laguerre-Sobolev polynomials.

=0"(x), n=l, (3.15)

Proof. From (3.2) we have for n>2,

Ou((1 = g)x;¢% A1 — q)’lg) _ pu((1 = 9)x:¢%lg) w1 Pt (1= @)%; ¢"|q)

(- gy T (e
d, (A1 = q),q*|q) Oui((1 —@)x; 9% A1 — q)?|q)
_ . (3.16
(1—q) (1— gy (3.16)

Since limgyy [n], = n and d,(A(1 — ), q"|q)/(1 — q) converges to the coefficients d,(4, ) given in
(3.14) when ¢ T 1, the result follows by using the limit relation (3.11) as well as the equality

(1 = @)x;¢" A1 = q)’lg) = pi((1 — @3 ¢%|q). O
4. The linear operator &
Even the inner product in (3.1) no longer satisfies the basic property (x p(x),r(x))s={(p(x),xr(x))s,

i.e. {OQ,}, does not satisfy a three-term recurrence relation, there exists an operator . which is
symmetric with respect to the inner product (3.1).

Proposition 4. Let h(x) be the polynomial

h(x) =a(gq — 1)x (4.1)
with 0 < aq < 1, and let & be the g-difference operator
S = h(x)I — AaDy, + (1 — x)Dy-1, (4.2)

where 9 is the identity operator. Then
(h(x) p(x), r(x))s = (p(x),(Lr)(x)) for every p,reP. (4.3)
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Proof. The weight function
(aq)'(ag; 9)o

kN
P = (4: 9 )
satisfies
(1 —g"od") = agp(d"™"), k=1. (4.4)

Using (2.5) we get
(h(x) p(x), r(x))s = (h(x) p(x), r(x)) + 2{(Dg(h p))(x), (Dyr)(x))
= (h(x) p(x), r(x)) — Za(p(x),(Dyr)(x)) + Aag( p(gx), (Dgr)(x))

= (p(x), h(x)r(x) — 2a(Dyr)(x)) + (1 — x) p(x), (Dg-17)(x)),
where the last equality is a consequence of (4.4). Then, the result holds. [

Theorem 1. The linear operator & defined in (4.2) is symmetric with respect to the Sobolev inner
product (3.1), ie.,

(S p)x),r(x))s = (p(x),(Lr)(x))s  for every p,r e P. (4.5)

Proof. Since % is a linear operator, it is sufficient to prove that
<(S19n)(x)a 19,,1()(7))5 - <§n(x)a (Sﬁm)(x»s =0 for cevery n,mZO, (46)

with 9 (x) = x*.

If n+m<2, it is easy to obtain the result for each particular case.

On the other hand, if n+m > 2, from (2.17) and (4.2) the left-hand side of (4.6) is (u'“, t,,,.(x)),
where

tien(x) = 2q{(q""[m), — ¢ "[n] """ 4+ ((a — ¢~™)[m], — (a — g~ ")[n], """}
+22q' " [n], Im] {(q"[m], — " [n], X"

+(q111(1 o aqnfl)[n o l]q _ qn(l o aqul)[m _ l]q)xn+m73}. (47)

From (2.18) and after some straightforward computations we deduce that (#'®,t,,,(x))=0. [

Proposition 5. Let {p,(x;alq)}, be the little q-Laguerre MOPS and {Q.(x)}, be the little
q-Laguerre—Sobolev MOPS. We have

h(x)pn(X; CZIQ) = Cl(q - 1)Qn+1(x) + an,nQn(x) + anfl,nanl(x)a n 22, (48)
where

@y = a(q — 1)(d,(4) + q"(1 — aq")), (4.9)

a1 =0aq"(q — 1)(1 —aq")d,—1(4) (4.10)

with h(x) and d,(1) defined in (4.1) and (3.3), respectively.
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Proof. By using the three-term recurrence relation for the little g-Laguerre polynomials (2.9) we
have

h(x) pa(x; alq) = a(qg — Dx p,u(x; alg) = alg — D) pas1(x; alg) + By pu(x; alq) + C, pu—i(x;alq))

n+1

=a(q — 1)(pu1(x;alq) +aq"(1 — q"") pu(x; alq)
+q"(1 — aq") pu(x; alq) + C, pu—1(x; alq))

n+1

=a(q — 1)(puri(x;alq) +aq"(1 — q"") pu(x; alq)

+q"(1 = ag")(pa(x; alq) + ag"~'(1 = g") pa_i(x; a|q))).
From (3.2) the result holds. O

Taking into account Propositions 1 and 5, we deduce:

Corollary 2. The little q-Laguerre—Sobolev orthogonal polynomials {Q,(x)}, satisfy the following
recurrence relation:

Oui1(x)=(q"(aq" — 1) +x —d, (1) + aqg"~ ' (q" — 1))0u(x)
—(ag®" (q" — 1)aq"™" — 1)+ d,.1(2)(q"(ag" — 1) +x +aq" ' (¢" — 1)))0u_1(x)
—aq”(q" — 1)aq" — ¢)d,_2(A)0,_2(x), n>=1, (4.11)

where d,(A) are defined in (3.3), with the convention d_;(1) =0 and do(A) = a(l — q), and the
initial conditions Q_1(x) =0, Qy(x) =1 and Q,(x) = pi(x;alq).

Proof. From (3.2) and using (4.8) we obtain the above four-term recurrence relation. [J

Proposition 6. Let { p,(x;a|q)}, be the little g-Laguerre MOPS, {Q,(x)}, be the little q-Laguerre—
Sobolev MOPS and & be the linear g-difference operator introduced in (4.2). We have

(L0 x)=a(qg — 1) pu1(x;alq) + bynpu(xsalq) + bu_1npa_i(x;alg), n=2, (4.12)
where
_a’q"(1—g)q"" — 1)(q" — ag® + d, (1))
By = 70 , (4.13)
_a¢" (g —1)(g"— DA —aq")(g"" — 1)
bu—1n = 0 (4.14)

and the coefficients d, (1) are given in (3.3).

Proof. If we expand (£ Q,)(x) in terms of the sequence { p,(x;a|q)}.,

(L0)x) =a(g — 1) puii(x;alq) + > biupix;alg),

i=0
then from (4.3) we get

b, — <(an)(x): Pz(x=a|Q)> _ <Qn(x)’h(x)pi(X;a|q)>S
inwn — kl' - k,' .
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Hence b;, =0 for i=0,1,...,n — 2. On the other hand,

bnfl,n — <Qn(x)’ h(xl)cpnl(x;a|Q)>S _ Cl(q . l)kk—”
n—1 n—1
and
b _ <Qn(x)1h(x)pn(X;a|q)>S
nn — kn
<Qn(x)’ a(q - 1)Qn+l(x) + an,nQn(x) + anfl,nanl(x»S _

a é
kn e kn

using (4.8). O

Proposition 7. Let { p,(x;a|q)}, be the little g-Laguerre MOPS, {Q,(x)}, be the little q-Laguerre—
Sobolev MOPS and & be the linear g-difference operator defined in (4.2). The following relation
holds:

(an)(x) = a(q - 1)Qn+1(x) + cn,nQn(x) + Cn—l,nQn—](x)a n >2a (415)
where

0 = 0= e "~ 1&()q"+‘ — 1) +d,(2F) “16)

- a’q'(q — 1)(aq" . (1/1)§61”+l — d,1(2) @.17)

and the coefficients d,(1) are given in (3.3).
Proof. If we expand the polynomial (% Q,)(x) in terms of the polynomials {Q,(x)},,
(S0)x) = a(g = Oui1(x) + Y ciaOilx)
i=0

and using the symmetric character of the linear operator &, we get

(L0)@), 0ix))s _ (Dulx).(FO)))s.

Ci,n = =
(0i(x), 0i(x))s k;
Thus, ¢;, =0 for i =0,1,...,n — 2. Moreover,
n b y n— k~n
o = OO _ )
kn_1 kn—l
Finally, from Proposition 6 we get
_{0,),(FQ)))s
n,n ];n
_ <a(q - l)anrl(X; CIIQ) + bn,npn(x; QIQ) + bn—l,npn—l(x; a’q)a Qn(x)>S
e

<pn+1(X; a’:]): Qn(x)>S
kn

:(l(q - 1) + bn,na
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where b, , is given in (4.13). So we must compute (p,.(x;alq),0,(x))s. Since

by = (Qn(X),h(xl)cpn(X;a\q»s g — 1)<Qn(96),xzzn(X; alg))s
-1 ~
= =D (0,0, pratesala)s + B,

where A(x) =a(q — 1)x and B, is given in (2.9), we can express (p,.1(x;alq), 0,(x))s in terms of
b,., and after some straightforward computations the result holds. [

5. Zeros

The zeros of the polynomial p,(x;alq) are all real and distinct, they live on the interval of
orthogonality (0, 1), and they separate the zeros of p,_(x;alq). In this section we study the location
of the zeros of little g-Laguerre—Sobolev orthogonal polynomials {Q,(x)},. An interlacing property
which relates the zeros of Q,(x) with the zeros of p,(x;a|g) is proved.

Lemma 1. For n=0 and a<1 we have (—1)"Q,(0) > 0.

Proof. We shall prove that Q,(0)/p.(0;alg) > 0, for every n>0. Thus, by using the value of
pa(0;alq) given in (2.14) the result follows.
From (3.2) we obtain the following recurrence relation for Q,(0):

0,(0) = pu(0;alg) +aq""'(1 — ¢") p,1(0;alq) — d\1(2)0,-1(0),

01(0) = pi(0;alg).
By using (2.14),

Pu(0;alg) +agq" (1 — ¢") p.-1(0;alg) = p,1(0;alg)g"~'(a — 1).
Thus,

0.,(0) = p,1(0;alg)g" ' (a — 1) = d,—1(2)0,1(0),  01(0) = pi(0;alg) = ag — 1.
From (2.14) we can also obtain

pu(0salg) =" '(ag" — 1) p,-1(0;alq).
Taking into account the last expression,

Qn(O) — a—1 _ dn—l(i) Qn—l(o)

pu(0salg) ag"—1  g""'(ag" — 1) p,—1(0;alq)
If we denote .7, = 0,(0)/p.(0; a|q), the last equality reads
a—1 dn—l()”)

o, = — Ay 1.
ag" =1 q"ag"—1)" "
From (3.3) we obtain
0:1(0) 1

J?fl:

-
l, o, = (1—a+a(1—q")~ 1&{”1>.

pi(0;alg) 1 —aq” Jeur
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Since kl/lgl > 0, the coefficient .o/, is positive for a<<1 and then .«/,>0, for every n>1. Thus,
sgn(Q,(0)) = sgn(p.(0;alq)), for every n>1, so we get 0x%(0) >0 and Qy,1(0) < 0. The case
n =0 follows from Qy(0) = po(0;alg)=1. O

Lemma 2. Let pi(x) be a polynomial of degree k. If 2=0 or a=1, there exists a unique polynomial
gi(x) of degree k such that

(Lgi)(x) = h(x) pi(x), (5.1)
where the linear operator & and the polynomial h(x) are defined in Proposition 4.

Proof. If A =0 the linear operator ¥ becomes /(x).#, where .# stands for the identity operator.
Then, it is sufficient to take g;(x) = pi(x).
If a =1 the linear operator . can be written

S =(@q—1xI =Dy + (1 —x)Dy-1.

Let us expand

k+1

k
gex) = ba',  h(x)p(x) = (g — Dxpe(x) = aix'.
i=0

i=1
The action of the linear operator . on g;(x) yields

‘ P [ A "
(ygk)(x)ngi ((q—l)x I—AFx + Ali], <ﬁ—1>x 1).

From the equality (¥g;)(x) = h(x)pi(x) we obtain a system of k + 1 linear equations with
k 4+ 1 unknowns. It has a unique solution which can be found by using the forward substitution
method. [

Lemma 3. Let pi(x) be a polynomial of degree k and assume a=1. Let g;(x) be the polynomial
of degree k given in Lemma 2 such that (¥g;)(x) = h(x) pi(x). Then

(r(x), ge(x))s = (r(x), pr(x)) — I

(9

-9

r(0)(Dy-1gx)(0) for every r € P. (5.2)

Proof. For each polynomial »(x) we have
r(x) =r(qx) — h(x)(Dyr)(x). (5.3)
Since (Lg;)(0) =0, from (2.1), (2.3), (2.6), (3.1), (4.2), (5.1) and (5.3) we get

S S
(r(x), p(x)) = <r(x), (7)) hg(/;))(x)> = (u“), —r(x)(h(xg)k)(x)>
— (u(l), r(X)(ygk)(X)h(_x;(())(ygk)(())) = ((h(x))""'uV, r(x)(Lge)(x))
= (r(x), ge(x))s — A(h(x))~'uV, r(gx)(Dy-19x)(gx) — r(x)(Dy-1gi)(x))

_ q%l(u(”, r(xX)(Dg-19x)(x))
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= (r(x), gu(x))s — A((h(x))™'uD, h(x)Dy[r(x)(Dy=1 g1 )(x)])

_ %l(u(l),r(x)(Dq—'gk)(x))

;L/
= (r(x), gx(x))s — AU, Dy[r(x)(Dyg-1g4) (X)) — F("(l),r(x)(Dq“gk)(x))-

Consequently, if we denote #(x) = r(x) (D,-1gx)(x) we have
() i) = 0 gn()s = 2 (D) + 1)
Since #(x) is a polynomial, writing

m
t(x)= Z text,
k=0

we obtain

<ll(1),(Dqt)(x) + q(_)1> (”(1))0t0 + i ([k] (u(l)) i1+ (q”(]))k> 4

k=1 1

and from (2.11) and (2.18) we get
(520,000 + 220 ) = 10D, 000)
q

Substitution of this relation into (5.4) yields (5.2). O

15

(5.4)

(5.5)

(5.6)

(5.7)

Lemma 4. Let p.(x) be a polynomial of degree k > 1. If 2 >0 and a # 1, there exist a unique
polynomial gy(x) of degree k and a unique constant c, (depending on the polynomial py) such that

(Zg)(x) = h(x)(pi(x) + xcp).

Proof. Let us expand

k+1

k
gi(x) =3 b, () pe(x) = alg — Dxpu(x) =Y @'
i=0

i=1

The action of the linear operator .’ on g;(x) can be written as

(ygk)(x)zizl_(;bi <a(q— '™ — []q x4 I, <L_ )xm)‘

(5.8)

From the equality (<g;)(x) = h(x)(pi(x) + xc,) we get the following system of (k + 1) linear

equations with (kK + 1) unknowns
a(q — Dby = ag1,

[k,
a(q — )by 1*/17bk_ak,
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[i —1], . 1 ,
(l(q— 1)bi—2_}"»72bi—] +}\,[l]q 4—1—a b,-:a,-_l, (124,...,k)
q- q-

2 1
a(g — )by — /l[q]q by + 4[3], <q2 — a) by=a, +a(qg — 1)c,,

1
a(q — l)bo — Ab] + 1[2]‘] (5 - a) b2 =da,

(1 — a)ib, =0.

This linear system has a unique solution (b, by, ...,b;,c,) which can be found by using the forward

substitution method. Moreover, since 4 > 0 and a # 1 then b, =0. [

Lemma 5. Let pi(x) be a polynomial of degree k > 1. Let g;(x) be the polynomial of degree k
and c, be the constant given in the previous lemma such that (5.8) is verified. Then,

(r(x), ge(x))s = (r(x), pr(x) + c,x) for every re P. (5.9)
Proof. By using the same technique as in Lemma 3 we get

(r(x), gi(x))s = (r(x), pe(x) + ¢px) + ﬁ(l}q—‘gk)(o)r(o)-

Since, as stated in the previous lemma, the coefficient b, = ¢;(0) =0, then (D,-19;)(0) =g, (0) =0
and the result holds. [J

Lemma 6. Let k> 1, let 0 <x; <x, < --- < x; be nonnegative real numbers and let be

k
p(x)=[]x —x). (5.10)
i=1

Then, (—1)c, >0 where c, is the constant obtained for p(x) in Lemma 4 when A >0 and
0<ag <1

Proof. Using the notation of Lemma 4 and since a;,; =a(g — 1), from the Cardano-Vieta relations
between coefficients of a polynomial and their zeros, we get

be=1,
ay [k] bk
b,_, = ) ——4 0
N L D S
2773 [k—l] bk—l ( 1 ) bk
b,_,= ) q — Ak _ = 0
D T ag-n M\ T g 7

since 0 < ¢ < 1 and 0 < aq < 1. Thus, it is straightforward to prove that (—1)"_-7bj >0, j=2,3,... k.
Furthermore, since b; = 0 we obtain

i (21 (<1
(e=-47 a(q—1)+/1[3]"(

>0. O

1 _a> (=Db;  (=D'a
q* a(g—1) a(qg—1)
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Theorem 2. Let {p,(x;al|q)}, be the little q-Laguerre MOPS with 0 < aq <1 and {Q,(x)}, be
the little g-Laguerre—Sobolev MOPS. For each 1 > 0 the polynomial Q,(x), n=2, has exactly n
real and distinct zeros, where at least n — 1 of them are positive. Moreover, if a<1 then all the
zeros of Q,(x) are positive. If we denote by x,| <x,, < -+- <Xx,, the zeros of p,(x;alq) and if
we denote by y,1 < yu2 < -+ < Y. the n different zeros of Q,(x) then

Y1 <xn,1 < Yn,2 <xn,2 < - < Yu,n <xn,n- (511)

Proof. Assume n > 2. Let x,,l < X2 < -+ <X, be the zeros of p,(x;a|g) and let us define for
1 <i<n the polynomial wn , of degree n — 1 as

n

wili =TI & —=xup) (5.12)
J=Lj#i
e If a # 1 by using Lemma 4 we obtain a unlque polynomlal g(’) (x) of degree n — 1 as well as
a unique constant ¢; such that (yg(” )x) = h(x)(wn_l(x) + ¢;x). From Lemma 5 we get

= (0,(0). 91 ()5 = ()1 (), 0u()) + (3, 0u(x))
= Z w1 (d9)0.(dp(d") + ¢ > 6° 0u(d")p(g").
=0
The Gaussian-type quadrature formula based in the zeros of p,(x;alq) yields

0 = (0u(x), g2 (X))s = Wy () Oami) + Zq 0,(q")p(q").- (5.13)

k=0
Let us compute the second term of the above sum by using (3.5)

¢ ) 4" 0u(g")p(q") = cilx, 0u()) = &; Y esnlx, pi(xialq)) = cieruk.
k=0 =1
Since k; > 0, sgn(e;,) = (—1)""2 and sgn(c;) = (—1)""!, we obtain that the right-hand side of the
above expression is always negative.
From (5.13) we deduce

e (%0 )On(X0) = —Ci Zq"Qn(q")p(q") >0

and then Q,(x,;) # 0. Moreover sgn(Q,(x,;)) = sgn(w(') (xn:))=(=1)"", so Q,(x) changes sign
between two consecutive zeros of p,(x;alq).

Finally, since sgn(Q,(x,.1))=(—1)""" then Q,(x) has n different real zeros, which separate those
of p,(x;alq) as stated.

e If a=1, we use the orthogonality of O,(x), Lemma 3 and the Gaussian-type quadrature formula
for evaluating sums in order to obtain

= (0u(x), g 1 (X))s = (0u(x), W (x)) — —Qn(oxD g2 )(0)

= Ww, (xnz)Qn(xnl) 7Qn(0)(D 'pz)(o)
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where wiill(x) are the polynomials defined in (5.12). Thus,
i }“ i
o 100)Qn(x) = T 0(0XDy=1,71)(0).

From Lemma 1 and repeating the arguments of Lemma 6 we get (—1)”‘2(Dq7|gffl 1)(0) > 0. Hence
we deduce pw” | (x,1)0u(x,;) > 0, and then Q,(x,,) # 0 as well as sgn(Q,(x,;)) = (—1)""'. The
proof follows in the same way as in the case already discussed.

Finally, by Lemma 1, if a<1 we have (—1)"Q,(0) > 0, and all zeros are positive.

The result for n =2 is a consequence of

alq(—1 4+ g*)(—1 + aq + x)
J+a(=14+q)g(=1+aq)

pa(x;alg) — Oa(x) =

6. Asymptotic properties

In this section asymptotic properties of the sequence {Q,(x)}, on compact subsets of C \ [0, 1]
are studied (results on asymptotic properties for polynomials orthogonal with respect to different
Sobolev inner products have been given in, e.g., [2,16,18,21,26]). More precisely, we shall derive the
relative asymptotics {Q,(x)/p.(x;alg)} and the asymptotic behavior of the ratio of two consecutive
little g-Laguerre—Sobolev orthogonal polynomials {Q,1(x)/Q.(x)} on compact subsets of C\ [0, 1].
As a consequence, we recover the relative asymptotics between monic Laguerre—Sobolev orthogonal
polynomials {Q*(x)}, and monic Laguerre orthogonal polynomials {L{*)(x)}, given in [17].

First, using [32, Theorem 1, p. 263] we can give the ratio asymptotics for little g-Laguerre
polynomials.

Proposition 8. Let {p,(x;a|lq)}, be the little q-Laguerre MOPS. The following ratio asymptotics
holds:

(X 1
im 2D 1 (6.1)

=00 pu(xsalg)  x

uniformly on compact subsets of C\ [0, 1].

Now, we give bounds for the squared norm k, defined in (3.4).

Proposition 9. Let k, and k, given in (2.15) and (3.4), respectively. For n>1, we have
e+ A([n], )V huor <k <k + (A[2),)* + (a1 = ¢")g" ™" Y Yeucn, (6.2)

where [n], is given in (2.11).

Proof. The inequality on the right-hand side of (6.2) is straightforward from (3.10). Using the
extremal property of k, we have, for n>1,

fn = (0a(x), 0(x))5 = (Qu(x), 0ul(¥)) + A(Dy0)(x), (Dy0)(x)) Zhin + (], Y herr. T
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Remark. If we divide (6.2) by k&, and we take limit when A — oo we obtain

lim @ =0, n=1
A—00 kn

and then, by using (3.3) we get

}1im d,(A)=0, n=>1.
Next, we give the asymptotic behaviour for the sequence {qzn_l/:f,,/k,,},,.

Proposition 10. Let k, and k, given in (2.15) and (3.4), respectively. Then

A
a(l—qy

lim ¢ "2t =

n—oo

= 0, O<ag<l.

ky

Proof. If we divide (3.10) by &, and using (2.15) we get

@ - (2 + (a(1 = ¢)g"=" ) )([n],)? Calg" 1) ke
kn ag*~'(q" — 1)(ag" — 1) q(aq" — Dk,
Let us define
k.
Sui1 = q”’"k—nsn, n=0

with the initial condition sy = 1. Therefore, from (6.3) we get

Sour — g7 (1 CRACU —q)q”‘)z)([n],,Y) oL A=) s

n Sp— :O:
ag”~1(q" — 1)(aq" — 1) (agn =D !
where so =1 and s, = lgl/kl. It is straightforward to deduce
g (A +(a(l = )g" 'YX, 4
ag*~'(q" — 1)(aq" — 1)

~a(l—q)
lim a(q" — 1) 4,5 _
i (ag" — 1)

lim ¢*"~

n—oo

0.

Since the roots of the limit characteristic equation of (6.4) are
B A
a(l—gq)

z = 0, V4

19

(6.3)

(6.4)

from the Poincaré’s Theorem [29] (see also [24]), the sequence {s,/s,}, converges to z; or z,. By

using the inequality on the left-hand side of (6.2), we get

. ];n
lim qz"_lk— =z,. O

n—oo

The above results allow us to deduce the relative asymptotics {Q,(x)/p.(x;alq)}.
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Theorem 3. Let {Q,(x)}, be the little q-Laguerre—Sobolev MOPS and let {p.(x;alq)}, be the
little g-Laguerre MOPS. The following limit relation holds:

mM:I, 0<ag <1 (6.5)
=0 p,(x;alq)

uniformly on compact subsets of C\ [0,1].

Proof. From (3.2) and (3.3) we can write for n>1,

n—1 p"—l(x; a’q) o Qn(x) kn—l pn—l(x; a“]) Qn—l(x)

1+a(l—q")q = +a(l —g")g" "= :
pa(x;alqg)  pa(x;alq) koo Pu(x;alq) pa-i(x;alq)
(6.6)
From (6.1) and Proposition 10,
k _ _ .
lim a(1 — g")g'~ Rt P (2 ald) (6.7)
n—o0 k,_, pn(x;alq)

uniformly on compact subsets of C \ [0,1]. For a fixed compact set K in C \ [0, 1], there exist
no €N, €y, €, €R" such that

‘ Qn(x) anl(x)
pa(x;alq) Pu—i(x3alg)|”

Thus, {Q.(x)/p.(x;alq)}, is uniformly bounded on K. Taking limits in (6.6) when n — oo, from
(6.1) and (6.7) we get the result. [J

<1+€0+€1

From Theorems 2 and 3 we obtain

Corollary 3. The set of zeros of Q,(x) accumulates on [0,1]. If a > 1, then

lim y,; =0,
n—0o0
where y,1 < Vp2 < -+ < yn, are the zeros of the nth degree monic little q-Laguerre—Sobolev

polynomial Q,(x).
Next, we give the asymptotic behavior of the ratio of two consecutive little g-Laguerre—Sobolev
orthogonal polynomials, which is a consequence of Proposition 8 and Theorem 3.

Corollary 4. Let {Q,(x)}, be the little q-Laguerre—Sobolev MOPS. Then

. Qn+l(x)_
Jim o.x) "

uniformly on compact subsets of C\[0,1].

(6.8)

Remark. It should be finally mentioned that we can recover the relative asymptotics between monic
Laguerre—Sobolev orthogonal polynomials {Q(”(x)}, and monic Laguerre orthogonal polynomials
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{L¥(x)}, given in [17]. From (2.12) and (3.2) when a = ¢* we get
(1= q)x;q4"'q)
=0.((1 = @347, 2(1 = q)|q) + du 1 (1 = @), ¢*|9) Q-1 (1 — @)x;.¢7, (1 — q)’|q)-

If we take the limit in the above expression when ¢ T 1 (see Proposition 3 and (3.11)) we obtain
Ly V() = 0 (x) + dymi (2 )0, (1), (6.9)

where {L*)(x)}, are the monic Laguerre polynomials, {Q*)(x)}, are the monic Laguerre-Sobolev
polynomials and the coefficients d,(4,«) are defined by means of the recurrence relation given in
(3.14). From (6.9), using the same technique as in Theorem 3, it can be deduced that

. OP(x) 2
lim o ) _ 6.10
S S Wy (6.10)

holds uniformly on compact subsets of C\[0, o), which is the monic form of the asymptotic behavior
obtained in [17].
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