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Abstract

Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation is
di#erent from the traditional heat di#usion equation since a second-order derivative of temperature with respect to time
and a third-order mixed derivative of temperature with respect to space and time are introduced. In this study, we develop
a high-order compact !nite-di#erence scheme for the heat transport equation at the microscale. It is shown by the discrete
Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate.
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1. Introduction

Heat transport through thin !lms is of vital importance in microtechnology applications [4,5]. For
instance, thin !lms of metals, of dielectrics such as SiO2, or Si semiconductors are important com-
ponents of microelectronic devices. The reduction of the device size to microscale has the advantage
of enhancing the switching speed of the device. On the other hand, size reduction increases the
rate of heat generation which leads to a high thermal load on the microdevice. Heat transfer at the
microscale is also important for the processing of materials with a pulsed laser [8,9]. Examples in
metal processing are laser micro-machining, laser patterning, laser processing of diamond !lms from
carbon ion-implanted copper substrates, and laser surface hardening. Hence, studying the thermal
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behavior of thin !lms or of microobjects is essential for predicting the performance of a microelec-
tronic device or for obtaining the desired microstructure [4]. The heat transport equations used to
describe the thermal behavior of microstructures are expressed as [7,11]

−� · q + Q = �Cp
@T
@t

; (1)

q(x; y; z; t + �q) = −k�T (x; y; z; t + �T ); (2)

where q = (q1; q2; q3) is the heat Gux, T is the temperature, k is the conductivity, � is the density,
Cp is the speci!c heat, Q is a heat source, �q and �T are the positive constants, which are the time
lags of the heat Gux and temperature gradient, respectively. In the classical theory of di#usion, the
heat Gux vector (q) and the temperature gradient (�T ) across a material volume are assumed to
occur at the same instant of time. They satisfy the Fourier’s law of heat conduction

q(x; y; z; t) = −k�T (x; y; z; t): (3)

However, if the scale in one direction is at the microscale, i.e., the order of 0:1 �m, then the heat
Gux and temperature gradient in this direction will occur at di#erent times, as shown in Eq. (2)
[11]. Using Taylor series expansion, the !rst-order approximation of Eq. (2) gives [11]

q + �q
@q
@t

= −k
[
�T + �T

@
@t

[�T ]
]
: (4)

The divergence of Eq. (4) gives

� · q + �q
@� · q
@t

= −k
[
�2T + �T

@
@t

[�2T ]
]
: (5)

Substituting the expression of � · q in Eq. (1) into Eq. (5) and introducing the thermal di#usion
� = k=�Cp gives [11]

1
�
@T
@t

+
�q
�
@2T
@t2

=�2T + �T
@
@t

[�2T ] +
1
k

[
Q + �q

@Q
@t

]
: (6)

In the one-dimensional case, the above equation can be written as follows:

1
�
@T
@t

+
�q
�
@2T
@t2

=
@2T
@x2

+ �T
@3T
@x2@t

+ g; (7)

where g = (1=k)[Q + �q@Q=@t].
An analytic solution of this equation with its initial and boundary conditions may be diJcult to

obtain. Tzou et al. [7,11] studied the lagging behavior by solving the above heat transport Eq. (7) in
a semi-in!nite interval, [0;+∞). The solution was obtained by using the Laplace transform method
and the Riemann-sum approximation for the inversion [2]. In this paper, we consider the interval to
be !nite, 06x;6L , where L is of order 0:1 �m. The initial and boundary conditions are

T (x; 0) = T1;
@T
@t

(x; 0) = T2; 06x6L; (8)

and

T (0; t) = T3; T (L; t) = T4; t ¿ 0: (9)

For simpli!cation, we assume that T3 = T4 = 0: Also, we assume that the solution is smooth.
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It is of interest to obtain a numerical solution for the above initial and boundary value problem.
Recently, we have developed a !nite-di#erence scheme of the Crank–Nicholson type by introducing
an intermediate function for the heat transport equation at the microscale [3]. It is shown by the
discrete energy method that the scheme is unconditionally stable. The truncation error of the scheme
is 0(Mt2 + Mx2). In this paper, we will develop a compact !nite-di#erence scheme using a compact
!nite di#erence [6] so that the truncation error could be 0(Mt2 + Mx4). The scheme is two-level in
time. We will use the discrete Fourier analysis [1,10] to show that the scheme is unconditionally
stable. The method is illustrated by two numerical examples.

2. Compact �nite-di�erence scheme

To develop a compact !nite-di#erence scheme, we !rst introduce

� = T + �q
@T
@t

(10)

and

f =
@2T
@x2

: (11)

Then, Eq. (7) can be written as follows:

1
�
@�
@t

= f + �T
@f
@t

+ g: (12)

The initial and boundary conditions in Eqs. (8) and (9) become

T (x; 0) = T1; �(x; 0) = T1 + �qT2; 06x6L; (13)

and

T (0; t) = T (L; t) = 0; �(0; t) = �(L; t) = 0; t ¿ 0: (14)

We let �n
j denote �( jMx; nMt); where Mx and Mt are the spatial and temporal mesh sizes,

respectively. The !nite interval, [0; L], is then divided into the mesh intervals by the points xj =
jMx (j = 0; 1; : : : ; N ), where N Mx = L. We now discretize Eqs. (10) and (12) using the trapezoidal
method. On the other hand, Eq. (11) is discretized using a fourth-order compact !nite-di#erence [6].
Here, we only employ a fourth-order compact !nite di#erence for simpli!cation. Other higher-order
compact !nite di#erences can be seen in Ref. [6]. As such, the compact !nite-di#erence scheme for
Eqs. (10)–(12) can be written as follows:

1
�Mt

(�n+1
j − �n

j ) = 1
2(fn+1

j + fn
j ) +

�T
Mt

(fn+1
j − fn

j ) + gn+(1=2)
j ; (15)

1
2 (�n+1

j + �n
j ) = 1

2(T n+1
j + T n

j ) +
�q
Mt

(T n+1
j − T n

j ); (16)

and

1
10f

n
j−1 + fn

j + 1
10f

n
j+1 =

6
5Mx2

(T n
j−1 − 2T n

j + T n
j+1); (17)
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where 16j6N−1. It can be seen that the truncation error at point (jMx; (n+ 1
2)Mt) is 0(Mt2+Mx4).

Since there are three variables (�; T; f) and the scheme is implicit, the computation is complicated.
We now simplify the computation. From Eq. (17), we have

1
10f

n+1
j−1 + fn+1

j + 1
10f

n+1
j+1 =

6
5Mx2

(T n+1
j−1 − 2T n+1

j + T n+1
j+1 ): (18)

Adding the above equation to Eq. (17), we obtain
1
10 (fn+1

j−1 + fn
j−1) + (fn+1

j + fn
j ) + 1

10 (fn+1
j+1 + fn

j+1) = 6
5�

2
x(T

n+1
j + T n

j ); (19)

where �2
xT

n
j = (1=Mx2)(T n

j−1 − 2T n
j + T n

j+1). On the other hand, we subtract Eq. (17) from (18) to
obtain

1
10 (fn+1

j−1 − fn
j−1) + (fn+1

j − fn
j ) + 1

10 (fn+1
j+1 − fn

j+1) = 6
5�

2
x(T

n+1
j − T n

j ): (20)

Multiplying Eq. (19) by 1
2 and Eq. (20) by �T =Mt, respectively, and adding them together, we obtain

1
10

{
1
2 (fn+1

j−1 + fn
j−1) +

�T
Mt

(fn+1
j−1 − fn

j−1)
}

+
{

1
2 (fn+1

j + fn
j ) +

�T
Mt

(fn+1
j − fn

j )
}

+ 1
10

{
1
2 (fn+1

j+1 + fn
j+1) +

�T
Mt

(fn+1
j+1 − fn

j+1)
}

= 3
5�

2
x(T

n+1
j + T n

j ) + 6
5

�T
Mt

�2
x(T

n+1
j − T n

j ): (21)

By Eq. (15), we obtain from Eq. (21)

1
10�Mt

(�n+1
j−1 − �n

j−1) +
1

�Mt
(�n+1

j − �n
j ) +

1
10�Mt

(�n+1
j+1 − �n

j+1)

= 3
5�

2
x(T

n+1
j + T n

j ) + 6
5

�T
Mt

�2
x(T

n+1
j − T n

j )

+ 1
10g

n+(1=2)
j−1 + gn+(1=2)

j + 1
10g

n+(1=2)
j+1 : (22)

Solving for �n+1
j from Eq. (16) and then substituting the solution into Eq. (22), we obtain[

1
10�

(
1 +

2�q
Mt

)
− Mt

Mx2

(
3
5 +

6�T
5Mt

)]
T n+1
j−1

+
[

1
�

(
1 +

2�q
Mt

)
+

2Mt
Mx2

(
3
5 +

6�T
5Mt

)]
T n+1
j

+
[

1
10�

(
1 +

2�q
Mt

)
− Mt

Mx2

(
3
5 +

6�T
5Mt

)]
T n+1
j+1

=
[

1
10�

(
−1 +

2�q
Mt

)
+

Mt
Mx2

(
3
5 −

6�T
5Mt

)]
T n
j−1

+
[

1
�

(
−1 +

2�q
Mt

)
− 2Mt

Mx2

(
3
5 −

6�T
5Mt

)]
T n
j

+
[

1
10�

(
−1 +

2�q
Mt

)
+

Mt
Mx2

(
3
5 −

6�T
5Mt

)]
T n
j+1
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+
1
5�

�n
j−1 +

2
�
�n
j +

1
5�

�n
j+1

+
1

Mt

(
1
10g

n+(1=2)
j−1 + gn+(1=2)

j + 1
10g

n+(1=2)
j+1

)
: (23)

The discretized initial and boundary conditions are

T 0
j = (T1)j; � 0

j = (T1)j + �q(T2)j (24)

and

T n
0 = T n

N = 0; �n
0 = �n

N = 0: (25)

One may use Eq. (23) to obtain T n+1
j and then use Eq. (16) to obtain �n+1

j :

3. Stability

A common method for studying the stability of compact !nite-di#erence schemes is the eigenvalue
analysis [6]. In the eigenvalue analysis, the compact !nite-di#erence scheme is !rst written in a
matrix form. The system is then reduced to an eigenvalue problem. For numerical stability, it is
required that all the eigenvalues lie in the left half of the complex plane. Here, we apply another
method called the discrete Fourier analysis [1,10] to study the stability.

Since xj = jL=N; j = 0; 1; : : : ; N; then the discrete Fourier coeJcients of a function u(x) in [0; L]
can be written as follows:

û k =
1
N

N−1∑
j=0

u(xj)e−ikxj2�=L; −N
2
6k6

N
2
− 1; i =

√−1:

It can be seen that

u(xj) =
1
N

(N=2)−1∑
k=−N=2

û keikxj2�=L:

We further de!ne the inner product and norm as follows:

(u; v) =
1
N

N−1∑
j=0

u(xj)v(xj); ‖u‖2 = (u; u):

Lemma 1. (1=N )
∑N−1

j=0 e−ipxj2�=L=1; p=Nm; m=0;±1; : : : ; and (1=N )
∑N−1

j=0 e−ipxj2�=L=0; otherwise.

Proof. It can be seen in [1].

Lemma 2 (Parseval’s equations).

‖u‖2 =
(N=2)−1∑
k=−N=2

(û k)2
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and

‖�xu‖2
1 =

1
N

N∑
j=1

(
u(xj) − u(xj−1)

Mx

)(
u(xj) − u(xj−1)

Mx

)

=
1

Mx2

(N=2)−1∑
k=−N=2

(û k)24 sin2 !k

2
:

where !k = 2�k=N .

Proof. The !rst equation can be seen in [1,10]. Since

u(xj) − u(xj−1) =
(N=2)−1∑
k=−N=2

û k[ei!kj − ei!k ( j−1)]

=
(N=2)−1∑
k=−N=2

û k2i sin
!k

2
ei!kje−i!k=2;

we obtain by Lemma 1

‖�xu‖2
1 =

1
N

N∑
j=1

(
u(xj) − u(xj−1)

Mx

)(
u(xj) − u(xj−1)

Mx

)

=
1

NMx2

N∑
j=1


(N=2)−1∑

k=−N=2

û k2i sin
!k

2
ei!kje−i!k=2





(N=2)−1∑

m=−N=2

û m(−2i) sin
!m

2
e−i!mjei!m=2




=
1

Mx2

(N=2)−1∑
k=−N=2

(N=2)−1∑
m=−N=2

(
û k4 sin

!k

2
e−i!k=2û m sin

!m

2
ei!m=2

)
 1
N

N∑
j=1

ei!kje−i!mj




=
1

Mx2

(N=2)−1∑
k=−N=2

(û k)24 sin2 !k

2
:

Theorem 1. Suppose that {T n
j ; �

n
j } and {S n

j ;  
n
j } are solutions of the scheme; Eqs. (16) and (23);

with the same boundary conditions (Eq. (25)); and initial values {T 0
j ; �

0
j } and {S 0

j ;  
0
j }; respectively.

Let U n
j = T n

j − S n
j ; "

n
j = �n

j −  n
j . Then {U n

j ; "
n
j } satisfy

1
�
‖"n‖2 + (�T + �q)‖�xU n‖2

16
1
�
‖" 0‖2 + 3

2(�T + �q)‖�xU 0‖2
1: (26)

Hence; the compact 4nite-di5erence scheme is unconditionally stable with respect to the initial
values.

Proof. To show stability, we consider the original equations (15)–(17) instead of Eqs. (16) and (23).
Assume that solutions {T n

j ; �
n
j ; f

n
j } and {S n

j ;  
n
j ; h

n
j } are obtained using the same boundary conditions

(Eq. (25)), and initial values {T 0
j ; �

0
j } and {S 0

j ;  
0
j }, respectively. Let U n

j =T n
j −S n

j ; "
n
j =�n

j − n
j and
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r n
j = fn

j − hn
j . Then {U n

j ; "
n
j ; r

n
j } satisfy

1
�Mt

("n+1
j − "nj ) = 1

2(r n+1
j + r n

j ) +
�T
Mt

(r n+1
j − r n

j ); (27)

1
2 ("n+1

j + "nj ) = 1
2(U n+1

j + U n
j ) +

�q
Mt

(U n+1
j − U n

j ); (28)

and

1
10r

n
j−1 + r n

j + 1
10r

n
j+1 =

6
5Mx2

(U n
j−1 − 2U n

j + U n
j+1): (29)

We introduce the discrete Fourier coeJcients of "nj , U n
j and r n

j as follows:

"̂ nk =
1
N

N−1∑
j=0

"nj e−i!kj; Û
n
k =

1
N

N−1∑
j=0

U n
j e−i!kj; r̂ n

k =
1
N

N−1∑
j=0

r n
j e−i!kj:

Then, we have

"nj =
(N=2)−1∑
k=−N=2

"̂ nk ei!kj; U n
j =

(N=2)−1∑
k=−N=2

Û
n
k ei!kj; r n

j =
(N=2)−1∑
k=−N=2

r̂ n
k ei!kj:

Substituting the above equations into Eqs. (27)–(29), we obtain

1
�Mt

("̂ n+1
k − "̂ nk ) = 1

2(r̂ n+1
k + r̂ n

k ) +
�T
Mt

(r̂ n+1
k − r̂ n

k ); (30)

1
2 ("̂ n+1

k + "̂ nk ) = 1
2(Û

n+1
k + Û

n
k ) +

�q
Mt

(Û
n+1
k − Û

n
k ); (31)

and

(1 + 1
5cos!k)r̂

n
k = − 24

5Mx2
sin2!k

2
Û

n
k : (32)

Solving for r̂ n
k from Eq. (32), we obtain

r̂ n
k = − Nk

Dk
Û

n
k ; (33)

where Nk = (24=5Mx2) sin2 !k=2 and Dk = 1 + 1
5 cos!k . Substituting Eq. (33) into Eq. (30) gives

1
�Mt

("̂ n+1
k − "̂ nk ) = − 1

2
Nk

Dk
(Û

n+1
k + Û

n
k ) − Nk

Dk

�T
Mt

(Û
n+1
k − Û

n
k ): (34)

Multiplying Eq. (34) by "̂ n+1
k + "̂ nk , we obtain

1
�Mt

[("̂ n+1
k )2 − ("̂ nk )2] = − 1

2
Nk

Dk
(Û

n+1
k + Û

n
k )("̂ n+1

k + "̂ nk ) − Nk

Dk

�T
Mt

(Û
n+1
k − Û

n
k )("̂ n+1

k + "̂ nk ): (35)

We then multiply Eq. (31) by (Nk=Dk)(Û
n+1
k + Û

n
k ) and (Nk=Dk)(Û

n+1
k − Û

n
k ), respectively, to obtain

1
2
Nk

Dk
("̂ n+1

k + "̂ nk )(Û
n+1
k + Û

n
k ) =

1
2
Nk

Dk
(Û

n+1
k + Û

n
k )2 +

�q
Mt

Nk

Dk
[(Û

n+1
k )2 − (Û

n
k )2] (36)
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and
1
2
Nk

Dk
("̂ n+1

k + "̂ nk )(Û
n+1
k − Û

n
k ) =

1
2
Nk

Dk
[(Û

n+1
k )2 − (Û

n
k )2] +

�q
Mt

Nk

Dk
(Û

n+1
k − Û

n
k )2: (37)

Substituting Eqs. (36) and (37) into Eq. (35), we obtain
1

�Mt
[("̂ n+1

k )2 − ("̂ nk )2] +
1
2
Nk

Dk
(Û

n+1
k + Û

n
k )2 +

�q
Mt

Nk

Dk
[(Û

n+1
k )2 − (Û

n
k )2]

+
�T
Mt

Nk

Dk
[(Û

n+1
k )2 − (Û

n
k )2] +

2�T �q
Mt2

Nk

Dk
(Û

n+1
k − Û

n
k )2

= 0: (38)

Since Nk=Dk ¿ 0, we may drop the second and last terms on the left-hand side of Eq. (38) and then
multiply by Mt to obtain

1
�

("̂ n+1
k )2 + (�T + �q)

Nk

Dk
(Û

n+1
k )26

1
�

("̂ nk )2 + (�T + �q)
Nk

Dk
(Û

n
k )2

6 · · ·
6

1
�

("̂ 0
k )2 + (�T + �q)

Nk

Dk
(Û

0
k )2: (39)

Since (4=Mx2) sin2!k=26Nk=Dk6 3
2 (4=Mx2) sin2 !k=2; we obtain

1
�

("̂ n+1
k )2 + (�T + �q)

4
Mx2

sin2 !k

2
(Û

n+1
k )2

6
1
�

("̂ n+1
k )2 + (�T + �q)

Nk

Dk
(Û

n+1
k )2

6
1
�

("̂ 0
k )2 + (�T + �q)

Nk

Dk
(Û

0
k )2

6
1
�

("̂ 0
k )2 + (�T + �q) 3

2

4
Mx2

sin2 !k

2
(Û

0
k )2: (40)

Summing k from −N=2 to (N=2) − 1 gives
(N=2)−1∑
k=−N=2

[
1
�

("̂ n+1
k )2 + (�T + �q)

4
Mx2

sin2 !k

2
(Û

n+1
k )2

]

6
(N=2)−1∑
k=−N=2

[
1
�

("̂ 0
k )2 + (�T + �q)

3
2

4
Mx2

sin2 !k

2
(Û

0
k )2

]
: (41)

Hence, we obtain Eq. (26) by Lemma 2.

4. Numerical examples

Two examples are given to test the accuracy of the scheme, Eqs. (16) and (23), with initial and
boundary conditions (24) and (25). We !rst consider a simple equation

@T
@t

+
(

1
�2

+ 102
)
@2T
@t2

=
@2T
@x2

+
(

1
�2

+ 10−6
)

@3T
@t @x2

; 06x610−4; t ¿ 0; (42)
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Fig. 1. Errors of the numerical solutions with di#erent time increments and a grid size of 0.000001.

where the exact solution is

T (x; t) = e−�
2t sin(104�x); 06x610−4; t ¿ 0 (43)

and test the accuracy of the solution with respect to time t.
The initial and boundary conditions are obtained based on the exact solution. To apply our scheme,

we chose a grid size Mx=0:0000001 and three time increments Mt=0:01; 0.001 and 0:0005, respec-
tively. To show convergence, we calculated the error of the numerical solution T for 06nMt61
as follows:

Error =


 1

10−4
Mx

N−1∑
j=1

|(Texact)n
j − T n

j |2



1=2

:

Errors for three di#erent time increments are shown in Fig. 1. From this !gure, we can see that the
numerical solutions are second-order accurate in time t compared with the exact solution.

We now consider another simple equation

1
2
@T
@t

+
3

2�2

@2T
@t2

=
@2T
@x2

+
2
�2

@3T
@t @x2

; 06x61; t ¿ 0; (44)

where the exact solution is

T (x; t) = e−�
2t sin (�x); 06x61; t ¿ 0 (45)

and test for the accuracy of the solution with respect to space x.
The initial and boundary conditions are obtained based on the exact solution. To apply our scheme,

we chose a time increment Mt = 0:001 and grid sizes Mx = 0:2, 0.1 and 0:05, respectively. To show
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Fig. 2. Errors of the numerical solutions with di#erent grid sizes and a time increment of 0.001.

convergence, we computed the error of the numerical solution T for 06nMt61 as follows:

Error =


Mx

N−1∑
j=1

|(Texact)n
j − T n

j |2



1=2

:

Also, we computed the errors obtained using our previous scheme in [3], that is a Crank–Nicholson
type of !nite-di#erence scheme where the truncation error is 0(Mt2 + Mx2); as follows:

3
�n+1
j − �n

j

Mt
= �2

x[
1
2T

n
j + 2�n

j ] + �2
x[

1
2T

n+1
j + 2�n+1

j ]; (46)

and

3
�2

T n+1
j − T n

j

Mt
= − 1

2 (T n+1
j + T n

j ) + (�n+1
j + �n

j ): (47)

Errors for three di#erent grid sizes are shown in Fig. 2. From this !gure, we can see that the
numerical solutions are more accurate than those obtained by the scheme in [3].

5. Conclusion

In this study, we develop a high-order compact !nite-di#erence scheme for a heat transport equa-
tion at the microscale. It is shown by the discrete Fourier analysis method that the scheme is
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unconditionally stable with respect to the initial values. Numerical results show that the solution is
accurate. The method can be readily generalized to the case where a higher-order compact !nite
di#erence is employed.
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