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Abstract

Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation is
different from the traditional heat diffusion equation since a second-order derivative of temperature with respect to time
and a third-order mixed derivative of temperature with respect to space and time are introduced. In this study, we develop
a high-order compact finite-difference scheme for the heat transport equation at the microscale. It is shown by the discrete
Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate.
(© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Heat transport through thin films is of vital importance in microtechnology applications [4,5]. For
instance, thin films of metals, of dielectrics such as SiO,, or Si semiconductors are important com-
ponents of microelectronic devices. The reduction of the device size to microscale has the advantage
of enhancing the switching speed of the device. On the other hand, size reduction increases the
rate of heat generation which leads to a high thermal load on the microdevice. Heat transfer at the
microscale is also important for the processing of materials with a pulsed laser [8,9]. Examples in
metal processing are laser micro-machining, laser patterning, laser processing of diamond films from
carbon ion-implanted copper substrates, and laser surface hardening. Hence, studying the thermal
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behavior of thin films or of microobjects is essential for predicting the performance of a microelec-
tronic device or for obtaining the desired microstructure [4]. The heat transport equations used to
describe the thermal behavior of microstructures are expressed as [7,11]

oT
— Vgt 0=pC—7 (1)
q(x, y,z,t + 1) = —kVT(x, y,z,t + 17), (2)

where ¢ = (g1, ¢2,q3) is the heat flux, T is the temperature, £ is the conductivity, p is the density,
C, is the specific heat, O is a heat source, 7, and 7 are the positive constants, which are the time
lags of the heat flux and temperature gradient, respectively. In the classical theory of diffusion, the
heat flux vector (¢) and the temperature gradient (V' 7') across a material volume are assumed to
occur at the same instant of time. They satisfy the Fourier’s law of heat conduction

q(x, y,z,t) = —kVT(x, y,z,1). (3)

However, if the scale in one direction is at the microscale, i.e., the order of 0.1 um, then the heat
flux and temperature gradient in this direction will occur at different times, as shown in Eq. (2)
[11]. Using Taylor series expansion, the first-order approximation of Eq. (2) gives [11]

oq 0
q+rqa_—k {VT—FTT&[VT]} . (4)

The divergence of Eq. (4) gives
V.q+rqavaitnq:—k [vaﬂT;[va]]. (5)

Substituting the expression of V - ¢ in Eq. (1) into Eq. (5) and introducing the thermal diffusion
o=k/pC, gives [11]

10T  1,0°T ) 0., 1 00

S VT 4, [VPT] + - =|. 6

2ot T VTV ]+k{Q+T[’6t} (6)
In the one-dimensional case, the above equation can be written as follows:

10T 1,0*T 0T >T

B R Bl — +g, 7

2ot Taor e Taca Y )

where g = (1/k)[O + 1,00/0t].

An analytic solution of this equation with its initial and boundary conditions may be difficult to
obtain. Tzou et al. [7,11] studied the lagging behavior by solving the above heat transport Eq. (7) in
a semi-infinite interval, [0, +00). The solution was obtained by using the Laplace transform method
and the Riemann-sum approximation for the inversion [2]. In this paper, we consider the interval to
be finite, 0<x, <L , where L is of order 0.1 pm. The initial and boundary conditions are

oT
T(x,0)=T, E(X’O) =7, 0<x<L, (8)
and
70,t)=Ts, T(L,t)=T4, ¢t>0. 9)

For simplification, we assume that 75 = T, = 0. Also, we assume that the solution is smooth.



W. Dai, R. Nassar|Journal of Computational and Applied Mathematics 132 (2001) 431-441 433

It is of interest to obtain a numerical solution for the above initial and boundary value problem.
Recently, we have developed a finite-difference scheme of the Crank—Nicholson type by introducing
an intermediate function for the heat transport equation at the microscale [3]. It is shown by the
discrete energy method that the scheme is unconditionally stable. The truncation error of the scheme
is 0(A#2 + Ax?). In this paper, we will develop a compact finite-difference scheme using a compact
finite difference [6] so that the truncation error could be 0(Af* + Ax*). The scheme is two-level in
time. We will use the discrete Fourier analysis [1,10] to show that the scheme is unconditionally
stable. The method is illustrated by two numerical examples.

2. Compact finite-difference scheme

To develop a compact finite-difference scheme, we first introduce

oT

0=T+7,% (10)

and
T
=, 11

f=% (1)
Then, Eq. (7) can be written as follows:

100 of

&a—fﬁLTTaerg (12)
The initial and boundary conditions in Egs. (8) and (9) become

T(x,0)=T,, 0x,0)=T +1,T,, 0<x<L, (13)
and

70,0)=T(L,t)=0, 0(0,t)=0(L,t)=0, t>0. (14)

We let 07 denote 0(jAx,nAt), where Ax and At are the spatial and temporal mesh sizes,
respectively. The finite interval, [0,L], is then divided into the mesh intervals by the points x; =
jAx (j=0,1,...,N), where N Ax =L. We now discretize Eqs. (10) and (12) using the trapezoidal
method. On the other hand, Eq. (11) is discretized using a fourth-order compact finite-difference [6].
Here, we only employ a fourth-order compact finite difference for simplification. Other higher-order
compact finite differences can be seen in Ref. [6]. As such, the compact finite-difference scheme for
Egs. (10)—(12) can be written as follows:

1

SO O =G D T = g (15)
T
%(9}(1-&-] + 0]11): %(7}"+1 + Tin) + th(Tjn-&-l _ Tjn)9 (16)
and
n n n 6 n n n
10fj 1+f J+1:7(Tj _2T +T+1) (17)

5Ax?
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where 1 <j <N —1. It can be seen that the truncation error at point (jAx, (n+%)At) is O(A72+ Ax*).
Since there are three variables (6,7, /) and the scheme is implicit, the computation is complicated.
We now simplify the computation. From Eq. (17), we have

6
n+1 +fn+1 0 Jn;rll — Ssz(Tjn:rll _ 2Tjn+1 + Tjijjll . (18)

Adding the above equation to Eq. (17), we obtain
W FmD) T+ )+ G+ fl) = §00T T + T, (19)

V&Lhefe 537}" = (I/sz)(Tj"_ 1 — 2T+ T/,). On the other hand, we subtract Eq. (17) from (18) to
obtain

Wl = D = D+ (S = ) =800 =T, (20)
Multiplying Eq. (19) by 3 1 and Eq. (20) by t/At, respectively, and adding them together, we obtain

sl e s o= o)
H{i e KZ(f;’“ -}
s LU S+ U - )

:%5§(Tin+l —|—T )_|_ A 52(Tn+1 T/'n)' (21)
By Eq. (15), we obtain from Eq (21)
1
9n+1 _ 9" - 9n+1 _ 0 6n+1 -0
10aAt ‘)+ ( )+ 10a At( i = Oin)
352(Tn+1 + T )+ 6 ‘ET 52(Tn+1 7—'] )
4 10gj+(l/2)_i_gjn-‘r(l/Z)_i_ 10 7:_1(1/2). (22)

Solving for 0]’7“ from Eq. (16) and then substituting the solution into Eq. (22), we obtain
1 27 At 67
|2y = (3 Tﬂ 77+l
oz (14 30) ~ e (F58)| 7
1 27, 2A¢t 671
_ 3 Tn+l
Lls) e b))
1 2‘L'q 3 6'[]" n+1
i (13~ e (1 530 oo
[z (14 30) 5 (- 55
100 Ax2 \> 5At)| !
1 27 2At 67
(%) 2 (-2
* oc( * ) Ac (5 5A7

1 3 6TT n
NENETE i
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1 n 2 n 1 n

1 n+(1/2 n+(1/2 n+(1/2
A7 (%gj_ﬂ( A O )) : (23)
The discretized initial and boundary conditions are
TP =(Tv);, 07 = (T1); + 1(T»), (24)
and
Iy =Ty =0, 0y =05 =0. (25)

One may use Eq. (23) to obtain Tj.”“and then use Eq. (16) to obtain 07",

3. Stability

A common method for studying the stability of compact finite-difference schemes is the eigenvalue
analysis [6]. In the eigenvalue analysis, the compact finite-difference scheme is first written in a
matrix form. The system is then reduced to an eigenvalue problem. For numerical stability, it is
required that all the eigenvalues lie in the left half of the complex plane. Here, we apply another
method called the discrete Fourier analysis [1,10] to study the stability.

Since x; = jL/N, j=0,1,...,N, then the discrete Fourier coefficients of a function u(x) in [0, L]
can be written as follows:

N—1

~ 1 —1i b N
= ; uxy)e L~ <k

1, i=v-1

N[ =

It can be seen that
(N/2)—1

u(xj):N Z uf\keikxﬂn/L.

k=—Nj2
We further define the inner product and norm as follows:

N—1

1 -
(u, U) = N Z u(xj)v(xj), ||MH2 = (u, u).

Jj=0

Lemma 1. (1/N) ij:_ol e P2l =1, p=Nm, m=0,%1,...; and (1/N) ij:_ol e~ P2l =0, otherwise.

Proof. It can be seen in [1].

Lemma 2 (Parseval’s equations).

(N/2)—1

ul® =D @)

k=—N/2
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and

Vol = 72 (u(x ) AZ(%’—l)) (u(x_,) —AZ(X./'—l))

Jj=1

AR
= Al Z (¢ )* 4s1n
k=—NJ2

where w; =2nk/N.

Proof. The first equation can be seen in [1,10]. Since

(N/2)—1
u(x;) —u(x;—) = Z e — et
k=—NJ2
(N/2)—1
= Z uk21sm 1“"fefi“"'/z,
k=—NJ2

we obtain by Lemma 1

I = 3 () ()

J=1

N (N/2)—1 (N/2)—1
u"kzl Sin%eiwk'ie_iwk/z i, —2i)sin =" Wy —lwmlelwm/Z
NAx2 2 5

j=1 \k=—Nj2 m=—N/2

| V-t

_ A w _
A ) Z Z <uk4 Sln 1(1);(/2 i, Sln 2m m)m/2> ( Z el(U//e iy, zJ)
X

—N/2 m=—Nj2
1 (N/2)—1
2
i, )4 sin’ O
=<5 > (@)4sin’ 2L

k=—N)2

Theorem 1. Suppose that {T}",07} and {S}',(}'} are solutions of the scheme, Egs. (16) and (23),

Jj>°Y
with the same boundary condztlons (Eq. (25)), and initial values {T?,00} and {S?, &)}, respectively.
Let U'=T/"—S}', ¢ =07 — . Then {U}",¢]'} satisfy
1 1
&HS"H2 + (i + ) VU <161 + 3(er + ) VU (26)

Hence, the compact finite-difference scheme is unconditionally stable with respect to the initial
values.

Proof. To show stability, we consider the original equations (15)—(17) instead of Egs. (16) and (23).
Assume that solutions {7/,07, f/'} and {S/",{/,h]'} are obtained using the same boundary conditions
(Eq. (25)), and initial Values {T0 07} and {S° é }, respectively. Let U =T/ —S/", ¢/ =07 — &' and
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r'=f] —hj. Then {U/,¢],r}'} satisfy
m(gjiﬁrl _ 8;’) 2(rn+l n) + ( ntl rjn)’ (27)
n n n n T n n
%(‘?/HJFSJ):%(U]'HJFUJ)+th(UjH_Uj)’ (28)
and
101 1+r +1o JHl 5Ax 2(Un _2Un+U+1)' (29)

We introduce the discrete Fourier coefficients of &, U " and r/' as follows:

1 N—-1
8n —iwy ) U" _ U —iwyj Al’l n —w)k/
) k — N j € s — I"
Jj=0

Then, we have

(N/2)—1 N/2)—1 (N/2)—1

8]’»1 — Z é\:eiwkj’ l]jn — Z U}:’eiwkj’ Z AN lwu
f=—N2 k=—NJ2 k=—NJ2
Substituting the above equations into Eqs. (27)—(29), we obtain
1 /] /] AN AN AN AN
@ D = O D+ LG =D, (30)
an AN n+1 AN
Yt e = Lo +U)-+4i(U+ U, 31)
and
~n 24 Wy A n
(1+%coswk)rk =" 5A2° 27Uk 32)
Solving for 7 from Eq. (32), we obtain
o Ny ~n
Fp=— D—kU o> (33)

where N, = (24/5Ax%)sin” w;/2 and Dy =1 + l cos wy. Substituting Eq. (33) into Eq. (30) gives

1 An+1 N 1 Nk A n+1 AN Nk Tr  ~ntl An
= -~k U —U)). 34
N, — &) 2Dk( v U - Ds At( k K) (34)

Multiplying Eq. (34) by &' + & , we obtain

Nk Tr  ~n+l

1 Nk A n+1 AN AR an N
T - pa U - UOET + 8. (35)

Mt[(""“f EP1= =35 (U +UOE +8) -
We then multiply Eq. (31) by (N/Dy (U : . +U : ) and (N/D (U : - : ), respectively, to obtain
lNk An+l

2Dy

HaOL 4 0D = 3 3RO O B! - () (36)
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and
1N, AN ,\n A n+1 1N, n+1 A n+1 AN
5p, B IO = U =55 10 ) = (U] + 5 (U ~ U (37)
Substltutmg Egs. (36) and (37) into Eq (35) we obtain
AN AN A n+l A n+1 AN
1 +1)2—(81()2]+ (U + Uy )2+K5 (U ) = (U]
Tr N, A n+1 2177, N, ~ n+1 AN
+ 20, U =0T+ 35 50 U
=0. (38)

Since N;/D; > 0, we may drop the second and last terms on the left-hand side of Eq. (38) and then
multiply by Ar to obtain

S (o e PO PG (o 7 0L
<SP + (o +7) SO, (39)

Since (4/Ax )sin®awy/2 <Nk/Dk <3 (4/Ax?)sin’ /2, we obtain

& w A n+l
( D Gt ) s smu(u,f)

AN A n+1
< +1)+(TT+Tq) (Uk)

»—Asz\»—

<) + (o + fq)f(U %

’—9

)
<G+ (o 1)y sin® (O] (40)
Summing & from —N/2 to (N/2) — 1 gives
(N2)—1

1 AR [6)] A n+1
> [ +‘>2+(7:T+rq> ;sin’ 240, )2}
k=—np L%
(N/2)—1

1 4
< 30 G Gk )y o sint 00, (41)

k=—N/2
Hence, we obtain Eq. (26) by Lemma 2. [J

4. Numerical examples

Two examples are given to test the accuracy of the scheme, Eqs. (16) and (23), with initial and
boundary conditions (24) and (25). We first consider a simple equation

oT 1 PT  PT 1 *T
10 ) — 107 ) —— <x<l107* 42
8t+<n+0)612 az+( +0>atax2’ 0<x<107*, >0, (42)
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107

Time increment = 0.01
— —— Time increment = 0.001
Time increment = 0.0005

10*

10° &
5 -
t: -
m - T~
10° & BN
= ~
i
~
10"r— A
~
E ~
- ~
- ~
\V\L o
ot oo LT AT NN T TN N AT D G R
0 0.25 0.5 0.75 1
t

Fig. 1. Errors of the numerical solutions with different time increments and a grid size of 0.000001.

where the exact solution is
T(x,t)= e ™! sin(10*my), 0<x<107* >0 (43)

and test the accuracy of the solution with respect to time ¢.

The initial and boundary conditions are obtained based on the exact solution. To apply our scheme,
we chose a grid size Ax=0.0000001 and three time increments Ar=0.01, 0.001 and 0.0005, respec-
tively. To show convergence, we calculated the error of the numerical solution 7 for 0<n Ar<1

as follows:

1/2
N—1 /

Ax Z ‘(Texact)_;l - Tjn|2

J=1

Error =
10—
Errors for three different time increments are shown in Fig. 1. From this figure, we can see that the
numerical solutions are second-order accurate in time ¢ compared with the exact solution.
We now consider another simple equation

lor | 3 @T_&r 2 et

_= — S 2 o<x<l, t>0, 44
2o tmor T e T e O (44)
where the exact solution is
T(x,t)=e "'sin(nx), 0<x<l, >0 (45)

and test for the accuracy of the solution with respect to space x.
The initial and boundary conditions are obtained based on the exact solution. To apply our scheme,
we chose a time increment Az =0.001 and grid sizes Ax=0.2, 0.1 and 0.05, respectively. To show
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10" =
= Grid size =0.2
— — — Gridsize=0.1
- Grid size = 0.05
~ o Method in [3] (grid size = 0.2)
2 a Method in [3} (grid size = 0.1)
107 = o Method in [3} (grid size = 0.05)
- . nunnnnnununnnnnnnnnn
- o Sog,
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- o ng
3 o absAAARAMAALL, , u""unn
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= o a 844, oy
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2 . 00000000000, “‘A.‘ n""nun
[ & o° °°°°°Oo° ““A nn“"n
I~ :: ooo 009000 A“‘A °
g 10* ®eoo
‘.,
84 beasl

Fig. 2. Errors of the numerical solutions with different grid sizes and a time increment of 0.001.

convergence, we computed the error of the numerical solution 7' for 0 <n A¢<1 as follows:

1/2
N—1 /

Error = | Ax Z |(Texact)] — T].”|2
j=1
Also, we computed the errors obtained using our previous scheme in [3], that is a Crank—Nicholson
type of finite-difference scheme where the truncation error is 0(A#* + Ax?), as follows:

ot — or
3L = ST+ 20)1+ ST + 207, (46)
and
3 Tn+l _Tr
ST A N T 0 ) @)

Errors for three different grid sizes are shown in Fig. 2. From this figure, we can see that the
numerical solutions are more accurate than those obtained by the scheme in [3].

5. Conclusion

In this study, we develop a high-order compact finite-difference scheme for a heat transport equa-
tion at the microscale. It is shown by the discrete Fourier analysis method that the scheme is
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unconditionally stable with respect to the initial values. Numerical results show that the solution is
accurate. The method can be readily generalized to the case where a higher-order compact finite
difference is employed.
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