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Abstract

This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex
quadratic programmings. Results show that one may compute a bound of the radius of the feasible space by a linear programming
which is known to be a P -problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4
(1984) 373–395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality
theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377–399] for solving a
standard quadratic programming problem.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper concerns solutions of the following standard quadratic programming (problem (P)):

(P ) : min
x∈Rn

P (x) = 1

2
xTAx − f Tx (1.1)

s.t. Bx�b, (1.2)

where A = AT ∈ Rn×n and B ∈ Rm×n are given two matrices, f ∈ Rn and b ∈ Rm are two vectors. The primal
feasible space

D = {x ∈ Rn | Bx�b} (1.3)

is a convex subset of Rn. We assume that D �= ∅ and the radius r0 of D, defined by ‖x‖�r0, ∀x ∈ D, is finite, i.e.,
D is bounded. It follows that the problem (P) has at least one solution. Also it implies that b �= 0. In fact, if b = 0,
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except for the trivial case D = {0} (we always assume D is not trivial), there is a nonzero point x ∈ D such that for
every positive real �, �x ∈ D, which implies that D is unbounded, then it leads to a contradiction to the assumption of
D being bounded.

Nonconvex quadratic programming problem has great importance both from the mathematical and application
viewpoints. During the last decade, several authors have shown the general quadratic programming problem (P) is an
NP-hard problem in global optimization (cf. [8–10,5]). In order to solve this difficult problem, many efforts have been
made during the last decade. Duality is a fundamental concept that plays a central role in almost all natural science. For
dealing with the general quadratic programming problem (P), Gao (cf. [3]) developed a canonical dual transformation
method in general nonconvex systems. The main idea is as follows. In order to use the canonical dual transformation to
solve the nonconvex quadratic programming problem (P), an additional normality constraint ‖x‖2 �2� is introduced,
where � > 0 is a given parameter. By use of this constraint, a parametric optimization problem can be proposed as the
following:

(P�) : min
x∈Rn

P (x) = 1

2
xTAx − f Tx (1.4)

s.t. Bx�b, ‖x‖2 �2�. (1.5)

It is easy to see that (P�) has at least one global minimizer x̄� and if ���0 = 1
2 r2

0 , with r0 being the radius of the
feasible space D, then x̄� solves also the original problem (P). By the canonical dual transformation method Gao (see
[4]) formulated the canonical dual problem (P d

� ) associated with the parametric problem (P�) as the following:

(P d
� ) : ext[− 1

2 (f − BT�∗)T(A + �∗I )−1(f − BT�∗) − ��∗ − bT�∗]

s.t. �∗ �0, �∗ �0, det(A + �∗I ) �= 0, (1.6)

where ext P(x) stands for finding all the extremum values of P(x). It is shown in [4] that the primal problem (P�) is
equivalent to the canonical dual problem (P d

� ) in the sense that they have the same set of KKT points.
In this paper we study to estimate the bounds of the radius of the feasible space D by solving a linear programming

which can be solved by a polynomial-time algorithm according to the classical linear programming theory (see [6]).
The rest of the paper is organized as follows. In Section 2, we present a way to find a bound of the radius of the

feasible space D by constructing a linear programming. We give an example and a remark in Section 3.

2. Estimating the bounds of the radius of the feasible space

To estimate the bounds of the radius of the feasible space D = {Bx�b}, we consider the following negative definite
programming problem:

�(b) = min
x∈Rn

Q(x) = −1

2
xTx (2.1)

s.t. Bx�b. (2.2)

Assumption 2.1. {Bx�b} �= ∅.

Remark 2.1. It is easy to see that Assumption 2.1 means that there is a vector � ∈ Rn such that B��b.

Let c(x) denote − 1
2x. For a given nonzero feasible point x̂ of the problem (2.1)–(2.2), consider the following linear

programming:

�(b, x̂) = min
x∈Rn

[c(x̂)]Tx (2.3)

s.t. Bx�b. (2.4)



J. Zhu / Journal of Computational and Applied Mathematics 213 (2008) 205–211 207

It follows from x̂ �= 0 and D being bounded that �(b, x̂) is well defined. It follows from D being not trivial that b �= 0.
The dual problem of (2.2)–(2.3) is

L(b, x̂) = max yTb (2.5)

s.t. yTB = [c(x̂)]T, y�0. (2.6)

For a given nonzero point x̂ ∈ D, let D(x̂) = {(xT, yT)T | yTB = [c(x̂)]T, y�0}. By the classical theory of the linear
programming [7], we see that D(x̂) �= ∅ and

L(b, x̂) = �(b, x̂). (2.7)

Since D is bounded, there exists a global minimizer for the problem (2.1)–(2.2). Let x∗ be an global minimizer of
(2.1)–(2.2). Since D is not trivial, noting that D has a nonzero point x̄ such that − 1

2 x̄Tx̄ < 0, we have x∗ �= 0. It follows
from (2.7) that

L(b, x∗) = �(b, x∗). (2.8)

We need the following lemma.

Lemma 2.1. If x∗ is a global optimum of (2.1)–(2.2), then we have

�(b, x∗) = �(b), (2.9)

where, by the notation (2.3)–(2.4),

�(b, x∗) = min
x∈Rn

[c(x∗)]Tx

s.t. Bx�b.

Proof. Since D = {x | Bx�b} is convex and x∗ ∈ D, when x ∈ D, x − x∗ is a feasible direction at x∗ with respect
to D. By the classical optimization theory [7], it follows from x∗ being a global optimum that, for each x ∈ D,

[%Q(x∗)]T(x − x∗)�0. (2.10)

Noting that

c(x∗) = − 1
2 x∗ = 1

2 %Q(x∗), (2.11)

and x∗ is a global minimizer of (2.1)–(2.2), we deduce by (2.10) that, for each x ∈ D,

�(b) = − 1
2 (x∗)Tx∗ = [c(x∗)]Tx∗ = 1

2 [%Q(x∗)]Tx∗ � 1
2 [%Q(x∗)]Tx = [c(x∗)]Tx. (2.12)

It follows from the definition of �(b, x∗) that

�(b, x∗) = �(b). � (2.13)

It is well known that a point x ∈ D is a K–K–T point [1] of the problem (2.1)–(2.2) if the following relationships
hold:

Bx�b;

−x + BT	 = 0, 	�0;

	T(Bx − b) = 0.
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Define L(b) for a given b(�= 0) as follows:

L(b) = min yTb (2.14)

s.t. yTB = − 1
2 xT, y�0; (2.15)

Bx�b; (2.16)

−x + BT	 = 0, 	�0; (2.17)

	T(Bx − b) = 0. (2.18)

Let D1 denote the feasible set of the above mathematical programming (2.14)–(2.18):

{(xT, yT, 	T)T | yTB = − 1
2 xT, y�0; Bx�b; −x + BT	 = 0, 	�0; 	T(Bx − b) = 0}.

Since D �= {0}, there is a nonzero global minimizer x∗ for the problem (2.1)–(2.2). Thus D(x∗) �= ∅. x∗ is also a
K–K–T point of the problem (2.1)–(2.2). It implies D1 being not empty, noting that D(x∗) ⊂ D1. If yTb is bounded
below on D1, then L(b) is well defined. It is clear that

L(b)�L(b, x∗). (2.19)

But we need to show that yTb is bounded below on D1. We will do it after defining l(b) as follows:

l(b) = min yTb (2.20)

s.t. yTB = − 1
2 xT, y�0; (2.21)

Bx�b. (2.22)

Let D2 denote the feasible set of the above linear programming (2.20)–(2.22)

{(xT, yT)T | yTB = − 1
2 xT, y�0; Bx�b}. (2.23)

It is clear that D1 ⊂ D2. If we have shown that yTb is bounded below on D2, then we can deduce that yTb is bounded
below on D1, i.e., l(b) is finite, and, at the same time,

l(b)�L(b). (2.24)

Lemma 2.2. If D is bounded and {Bx�b} �= ∅, then yTb is bounded below on D2.

Proof. Since {Bx�b} �= ∅, there are vectors � ∈ Rn and 
 ∈ Rm such that 
 = B��b. Noting that y�0 on D2, we
have, for (xT, yT)T ∈ D2,

yTb�yT
 = yTB� = − 1
2 xT
. (2.25)

It follows from D being bounded and 
 being fixed that yTb is bounded below on D2. �

As a conclusion of all of the above we reach the following theorem.

Theorem 2.3. If D is bounded and {Bx�b} �= ∅, then
√−2l(b) is a bound of the radius of D.

Proof. By Lemma 2.2, l(b) is finite. Further by (2.24), (2.19), (2.8), (2.9) we have, for each x ∈ D,

l(b)�L(b)�L(b, x∗) = �(b, x∗) = �(b)� − 1
2 xTx�0. (2.26)

Thus

−�(b)� − l(b).

By (2.1)–(2.2), −�(b) = maxD{ 1
2 xTx}. It follows that

√−2l(b) is a bound of the radius of D. �
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3. An example and a remark

Example 3.1. Estimate the bounds of the radius of the following feasible space:

D = {x1 + x2 �1; x1 − x2 �1; −x2 �0}. (3.1)

Solution: Let b = (1, 1, 0)T and

B =
(1, 1

1, −1
0, −1

)
.

Thus, for x = (x1, x2)
T ∈ R2,

D = {x | Bx�b}.
For seeing the fact that {x | Bx�b} �= ∅, one may choose �= (1, 5, 2)T and 
= (3, −2) to deduce easily the following
relationship:

B
 = ��b.

Then we can estimate the bounds of the radius of D by Theorem 2.3 as follows.
Consider the following negative programming problem:

�(b) = min − 1
2 xTx (3.2)

s.t. x ∈ D. (3.3)

To find a bound of −�(b), by Theorem 2.3, we solve the following linear programming to get l(b):

l(b) = min(y1 + y2)

s.t. y1 + y2 + 1
2 x1 = 0;

y1 − y2 − y3 + 1
2 x2 = 0;

y1 �0, y2 �0, y3 �0;

x1 + x2 �1, x1 − x2 �1, −x2 �0.

By Matlab, we got

l(b) = −2.6361. (3.4)

By Theorem 2.3 we obtain a bound of the radius of D (noting that the exact radius of D is equal to 1):√−2l(b) = √
4.2722.

Remark 3.2. In the following, the meanings of notations like D, D1, D2 are the same as that appearing in the last
section. Let b = (1, 1, 1, 1)T and

B =
⎛
⎜⎝

1, 1
1, −1

−1, −1
−1, 1

⎞
⎟⎠ .

It is easy to see that, for x = (x1, x2)
T ∈ R2,

{x | Bx�b} = ∅.
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Noting that D ={x | Bx�b} is bounded, let us follow the way as in the last section to estimate a bound of the radius
of D by the following programming:

min yTb (3.5)

s.t. yTB = − 1
2 xT, y�0; (3.6)

Bx�b. (3.7)

But the dual problem of the linear programming (3.4)–(3.7) is the following:

max 	Tb (3.8)

s.t. B��b; (3.9)

1
2 �T − 	TB �0; (3.10)

− 1
2 �T + 	TB �0; (3.11)

	�0. (3.12)

Since {B��b} = ∅, the feasible space of the problem (3.8)–(3.12) is empty. We note that D1 �= ∅. Since D1 ⊂ D2,
D2 �= ∅. It follows from the classical theory [7,2] of the linear programming that yTb −→ −∞ on D2 = {(xT, yT)T |
yTB = − 1

2 xT, y�0; Bx�b}. We conclude that the way using the linear programming (3.5)–(3.7) is not valid in the
case that {x | Bx�b} = ∅.

4. More details on using the presented estimate in Gao’s parametric optimization problem

Although the relationship between the presented estimate and Gao’s parametric optimization problem is obvious, it
still needs to note that it usually takes a key role in Gao’s dual problem (Eq. (1.6)) to provide numerical solutions. For
clarifying this issue, we consider to restate Example 2 in [4] without the extra ball constraint x2

1 + x2
2 �4 as follows:

min P(x1, x2) = 1
2 (−0.5x2

1 − 0.3x2
2 ) − 0.3x1 − 0.3x2 (4.1)

s.t. 1
2 x1 + x2 �2, x1 �0, x2 �0. (4.2)

We have b = (1, 0, 0)T and

B =
(0.5, 1

−1, 0
0, −1

)
.

Thus, for x = (x1, x2)
T ∈ R2,

D = {x | Bx�b}.
By Theorem 2.3, we solve the following linear programming to get l(b):

l(b) = min(y1)

s.t. 1
2 y1 − y2 + 1

2 x1 = 0;

y1 − y3 + 1
2 x2 = 0;

y1 �0; y2 �0; y3 �0;

1
2 x1 + x2 �1; −x1 �0; −x2 �0.

By Matlab, we got

l(b) = −2.0. (4.3)
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By Theorem 2.3 we obtain the bounds of the radius of D (noting that the exact radius of D is exactly equal to 2):√−2l(b) = √
4.0 = 2.0, (4.4)

which is just used in Example 2 in [4] as an extra ball constraint.
This presentation shows that Theorem 2.3 is very useful to obtain a good bound of the radius of the feasible space

D which is used in Gao’s parametric optimization problem.

5. Conclusion

It follows from the classical theory [6] that a linear programming is a P -problem, i.e., it can be solved by an algorithm
of polynomial time. A way of estimating a bound of the radius of the feasible space D presented in this paper will be
helpful in using the canonical dual transformation method developed in [4] to solve a standard quadratic programming.
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