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1. Introduction

This paper is devoted to the singularly perturbed diffusion-convection-reaction problem with a special focus on
anisotropic diffusion: for f € L?(£2) and g € L?(Iy), let u be the solution of

u=0 on Ip, (1)

{—div(AVu)+b~Vu—|—cu:f in £2,
AVu-n=g on Iy,

where the matrix A and the functions b and ¢ satisfy assumptions (A1)-(A6) below, and £2 ¢ R¢, d = 2 or 3, is a bounded
domain with a polygonal (d = 2) or polyhedral (d = 3) boundary I'. This boundary is divided into two parts I'p and Iy,
where Dirichlet and Neumann boundary conditions are imposed, respectively.

We are particularly interested in the case when A becomes small in some direction, for instance the cases

e 0 e 0 O
A= (0 1) d=2), or A= (0 1 0) (d =3),
0 0 1

& > 0.In the case when ¢ is small with respect to b and c, the problem is singularly perturbed and the solution may generate
sharp boundary or interior layers, where the solution of the limit problem (corresponding to & = 0) is not smooth or does
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not satisfy the boundary condition. Let us quote [1-3] for the a priori error analysis in two dimensions. It is shown that
anisotropic finite elements must be used in order to achieve convergence uniformly in the perturbation parameter ¢.

There is a vast amount of literature on a posteriori error estimation. For singularly perturbed problems with convection
we cite [4-12], where anisotropic finite element meshes were considered in [5,7,8] only. An anisotropic diffusion tensor is
considered only in [13].

In this paper we combine all those ingredients and derive a residual type error estimator. We prove the reliability and
efficiency of this error estimator where the involved constants are independent of the coefficients of the operator, namely
A, b and c. The lower bound is, as usual, mainly based on inverse inequalities and integration by parts, but the efficiency
is achieved independently of the coefficients of the operator. The reliability is based on the introduction of an alignment
measure as it was done in [14,15]. This quantity is of the order one if the mesh is well-adapted to the problem, see the
discussion in Section 3.3.

Let us mention that, to our knowledge, no approach is known that leads to two-sided estimates on anisotropic meshes
without any assumption on the mesh. The classical results as summarized in [ 16,17] are obtained for isotropic meshes only.
The dual weighted residual method, see [18] for an overview, is applied in [5,19] on anisotropic meshes, but there is no
estimate from below. The more recent approach in [20] is not yet analyzed for anisotropic meshes and two different error
estimators are used for the upper and lower bounds. Let us finally mention the approach by Picasso [8] who considers
anisotropic meshes and proves reliability for an estimator that depends on V (u — u;,) where Vu is replaced in practice by a
recovered gradient VRu. We note that we can control the alighment measure in the same way.

In this paper we develop an estimator of residual type for problems with convection, reaction and anisotropic diffusion.
For the discretization we use the h-version of the streamline upwind Petrov-Galerkin method (SUPG). Without the
stabilization term, the method reduces to a standard Galerkin method and produces non-physical oscillations. We note
that our error estimator works as well in this case.

In comparison with the paper [13], where a posteriori error estimation is investigated for an isotropic discretization of
a problem with anisotropic diffusion but without convection, our residual error estimator allows one to prove an optimal
lower bound. The factor £~'/2 in the upper bound in [13] is retained in our analysis, since the alignment measure is of the
same order in the isotropic case. Our experiments show, however, that the effectivity index is bounded uniformly in ¢ on
adequately refined anisotropic meshes. In this sense, our analysis is sharper.

The outline of the paper is as follows. In Sections 2 and 3 we introduce the discretization, notation, and estimates for
bubble functions and the interpolation. The a posteriori error estimator is introduced in Section 4 where also the the upper
and lower bounds are proved. The paper is completed with a numerical test in Section 5 and with conclusions.

As usual, we denote by [2(.) the Lebesgue spaces and by H*(.), s > 0, the standard Sobolev spaces. The usual norm and
seminorm of H*(D) are denoted by || - ||s.p and | - | p. For the sake of brevity the L?(D)-norm will be denoted by || - ||p and
in the case D = £2, we will drop the index £2. The space H}D(Q) is defined, as usual, by H}D(Q) ={veH(R):v=0
on I'}. In the sequel the symbol | - | will denote either the Euclidean norm in RY, d = 2 or 3, or the length of a line segment,
or the measure of a domain of R?. Finally the notation a < b means here and below that there exists a positive constant C
independent of a and b (of the mesh size of the triangulation, as well as the diffusion matrix A, the convection function b
and the reaction term c) such that a < C b. The notation a ~ b means thata < b and b < a hold simultaneously.

2. Discretization of the diffusion-convection-reaction equation

We consider the standard elliptic problem: for f € L?(£2) and g € L*>(I'y), let u be the solution of (1) where A, b and ¢
satisfy the following assumptions:

(A1) b e Wh®(2)4 ¢ € L®(£2),

(A2) 3o = 0: ¢ — 3divb > o and if o = O then ¢ = 0,
(A3) b-n > 0on Iy,

(A4) A € R¥? s symmetric,

(A5) Jog > 0 : AE - & > ag, V& € RY

Note that the assumption “if co = 0 then ¢ = 0” is not necessary for our proofs but simplifies the presentation.
Now we define the weighted H! (semi-)norm

lull?, = /(l/‘\”ZVUI2 + colul®) (2)

on a subdomain w of £2. Let us further introduce the space
H[, (2)={veH'(2):v=00nTp}
and the forms

B(u,v) = / (AVu-Vv+b - Vuv + cuv)dx,
Q2

F(v):/fvdx—f—/ gvdI(x).
2 I'n
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For further purposes, we denote by B, the restriction of B on a subset w of £2, namely
B,(u,v) = /(AVu - Vv +b - Vuv + cuv)dx.
With this notation, the variational formulation of problem (1) reads: Find u € H}D (£2) such that

B(u,v) =F(v) Vv € H}, (). (3)

In order to obtain a robust lower bound, as in [12], we need to use the dual norm of the convective derivative. Hence for
¢ € [2(£2), let us denote by ||¢||. its norm as a element of the dual of H}D (£2), namely

Iol = sup 92

ueH}D 2)\{0} flvll

(4)

Note that the assumption ¢ € L?(£2) guarantees that there exists at least one v; € H}D (£2) such that

floall =1 and i@l = fgdm. (5)
The assumptions (A1)-(A6) guarantee that B is continuous and coercive, i.e., B satisfies
B(v,v) = [lvl> ¥v € H}, (), (6)
B(u, v)| < (ellull + b - Vull)llvll Yu, v e Hp, (2), (7
where
x = max{1, ¢ 'lclloo, 0} (8)

If ¢ = 0, then the term CO_1 lIc|loo. > disappears and « is equal to one. By the Lax-Milgram lemma, problem (3) has a unique
solution u € H}D(Q).

Note that the case divb = 0, c = 0, i.e. ¢p = 0, is admitted. It is excluded in several other publications.

To approximate problem (3) by a finite element scheme we fix a family {T;},-o of meshes of £2 that satisfies the usual
conformity conditions, cf. [21, Chapter 2]. In 2D we assume that all elements of Ty are triangles, while in 3D the mesh is
made up of tetrahedra. For T € T, we denote by hy the diameter of T, and h = maxy¢r, hr.

Let Vj, be the subspace of H}-D(Q) defined by

Vi = {vy € H[, (2) : vy € PX(T) VT € Ty},

where k is a positive integer.
Problem (3) is now approximated by a Streamline Upwind Petrov Galerkin scheme (SUPG): Find uj, € V}, such that

By (up, vp) = Fp(vy) Yoy € Vi, (9)
where
By (up, vp) = B(un, vp) + Z 87 (—div (AVuy) +b - Vuy + cup, b - Voy)r,
TeTy
Fa(vn) = F(un) + > 81(f. b~ Vup)r.
TeTy

The parameters 67 > 0 should satisfy similar assumptions as in [7] where the case of isotropic diffusion was investigated:

hminA T
o < ——fh 10
T A bl (10)
8 <2(1 — )2k Al 5. (11)
-1
8r <2(1 —a)cg (maTxc(x)z) ifc £ 0, (12)
Xe

forall T € T, and some @ € (0, 1) (where ||A]|,—., means the spectral matrix norm of A, induced by the Euclidean vector
norm). The element quantities hpin t and hmpin 4.7 are introduced below, and u is the constant in the inverse inequality
IV - Vullr < p,h;iln IV llr. Note further that (11) and (12) guarantee the coercivity By (vs, vn) > «af|vs [I> with the
above a € (0, 1), compare [22, Lemma 3.25] for the case of isotropic meshes. The optimal choice of §; was discussed for
the slightly different Galerkin-Least-Squares method and for the case of isotropic diffusion in [23]. This choice satisfies the
conditions (10)-(12). We note also that the choice §1 = 0 (pure Galerkin method) satisfies these conditions. Meanwhile it
is well-known that this choice is suited within boundary layers if adequately refined anisotropic meshes are used there [22,
p. 391 ff.]. Outside the layers, the choice 7 = 0 leads in general to non-physical oscillations. Therefore this choice is not
advisable, but the error estimator still works and estimates the large error.
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Fig. 1. Notation of tetrahedron T.

3. Analytical tools

Let us define Ej, as the set of edges (d = 2) or faces (d = 3) of the triangulation and let E,i{‘t = {E € Ey/E C £2} be the set
of interior edges/faces of Ty, while E&* = E, \ Ei™ is the set of boundary edges/faces of Ty.

For an edge/face E of a 2D/3D element T we denote by nr  the unit outward normal vector to T along E. Furthermore
we fix one of the two normal vectors of E and denote it by ng. The jump of some function v across an edge/face E at a point
y € E is defined as

lim v(y + ang) — v(y — ang) VE € E™,
o) T, = oo v E) —v(y E) b
v(y) VE € E;*.

Finally we will need local subdomains, also called patches. For any T € Ty, let, as usual, wr be the union of all elements
having a common vertex with T. Similarly let wg be the union of the elements having E as edge/face.

3.1. Some anisotropic quantities

As explained in the introduction, anisotropic discretizations can be very advantageous or, in certain situations, even
mandatory. More information and arguments concerning anisotropy can be found in [24,14].

Let us shortly recall some useful anisotropic quantities from Kunert [14], see also [25,7]. We start with an arbitrary
(anisotropic) tetrahedron T and enumerate its vertices so that PyP; is the longest edge, meas; (APyP1P;) > meas,(APyP1Ps3),
and meas; (P1P,) > meas;(PyP,). Further, we introduce three orthogonal vectors p; r of length h; r := |p; r|, as described in
Fig. 1.

The minimal element size is particularly important; thus we define

hmin,r := h3r.

The three main anisotropic directions p; r play an important role in several proofs. They span the matrix
Cr == (P11, P21, P3,7) € R,

This matrix may be considered as a transformation matrix which defines implicitly a reference element TT via
Tr == G N(T — Pp),

cf. Fig. 2. Note in particular that the reference element Tr is of size o).

In 2D the notation is similar. For a triangle T the enumeration is as in the bottom triangle PoP;P, of Fig. 1. We set
Bmin,r := ha,1, and Cr becomes a 2 x 2 matrix.

The new idea is now to transform any T € T}, by the matrix A~'/2. More precisely, we transform T into T, by the affine
transformation

Far:T—Ta:x— A2 (x—gr) +gr, (13)
where gr is the center of gravity of T. This element Ty is a triangle in 2D or a tetrahedron in 3D that can be isotropic or not.

Therefore we use its anisotropic quantities h; 1,, imin,1,, Cr, as introduced before.

Remark 3.1. In 2D, take

e 0
1=(o )

c =1,b=0and 2 = (0, 1)?, Iy = @.Iff is smooth then u has boundary layers near x; = 0 and x; = 1. The transformation

02— Q2:x— A V%,
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Fig. 2. Reference tetrahedron Tr.

replaces the problem (1) into

T 1
—Au+u=f 1n9_<0,ﬁ)x(0,1),

i=0 ondf.

Py P

2809

Take for simplicity a uniform triangular triangulation of §2. Then the triangle T € £ with nodes (0, 0), (h, 0), and (0, h)
becomes the triangle T € 2 with vertices (0, 0), (1/¢h, 0), and (0, h) by the inverse transformation. This element T is a
good one to capture adequately the boundary layer near x; = 0. Moreover by using Fy 1, the triangle T is transformed into

an isotropic element T, which is a translation of T, and therefore G; = h™'Id.

For further use, we denote

hmin,A,T = min hmin,T’~
T'Cor A

Note that the composition of the transformation
Iy

A —)TAZX—> CTAX+P0,

with FA_}, see (13), yields the following transformation from fTA toT:
Ty

A—)T:)%—)CA‘T}A(-f—bT

with
Car =A"2Cy,.

Note that 'TTA depends on T and A but is of unit size in the sense of Fig. 2.
Finally we introduce a scaling factor ar that will be used quite often:

. —1/2
ar = min{c; "%, hin a1}-

Here and below, we use the convention that C0_1/2 = +ooifcy =0.

For an edge/face E of an element T introduce the height hy r = %
We finally require, as usual, that

ITI ~|T'| fTNT #8,

the number of elements containing a vertex x is bounded uniformly.

O

(14)

(17)

Remark 3.2. If A = ¢ld (the case treated by Kunert in [25,7]), then T, r is simply a homothetic transformation of T with a

factor e ~1/2

hmin,sld,T = S_l/zhmin,ﬂ
This last property implies that
ar = min{c; /*, &7 hynin 7},

which is exactly the scaling factor introduced in [7].

. Therefore the matrix C.4 r defined by (16) is equal to Cr. Moreover we have
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3.2. Bubble functions, extension operator, and inverse inequalities

For our further analysis we require standard bubble functions and extension operators that satisfy certain properties
recalled here for the sake of completeness.

We need two types of bubble functions, namely by and bg associated with an element T and an edge E, respectively. For
a triangle or a tetrahedron T, denoting by A r,i = 1, ..., d + 1, the barycentric coordinates of T and by af, i=1,...,d the
vertices of the edge/face E C 9T we recall that

d+1

d
br=[]ry and bp=]]xe
i=1 i=1

We note that
br =0 onadT, by =0 ondwg, Ibrlloo,r = IIbEllco,wp ~ 1.

In 2D, denote by T the standard reference element with vertices (0, 0), (1, 0), and (0, 1). For an edge E of T included into
the x; axis, the extension Fex (vz) of v; € C(E) to T is defined by Fex: (V) (X1, X2) = vg(X1). The extension operator Fex: (vg) of
vg € C(E) to T for an edge E C 9T is obtained using the affine transformation mapping T to T and E to E and the extension
operator defined above. We proceed similarly in 3D.

Now we may state the so-called inverse inequalities that are proved using classical scaling techniques, cf. [17] for the
isotropic case and [ 14] for the anisotropic case.

Lemma 3.3 (Inverse Inequalities). Let vr € Py, (T) and vg € Py, (E), for some nonnegative integers ko and k;. Then the following
inequalities hold, with the constants in the inequality depending on the polynomial degrees kg or ky but noton T, E or vr, vg.

lorby 2l ~ llorlr, (20)
loeby 2 1le ~ Ilvelle, (21)
lvrbrllr < a5 vl (22)

Proof. The equivalences (20) and (21) are proved in [14], see also Lemma 1 of [7]. For the last estimate, we write
lorbrllz = collorbrllf + IAY2V (urbr) |7
< collvrllF + 1, I ICL AV (urbr) |17

Now recalling that [|C;" || ~ hyj

min.1, and using the affine transformation (15), we obtain

lorbrll < collvrll? + i a7 ITHIV Brbr)II3.

min,A,T
Since T is regular in Ciarlet’s sense we can use the inverse inequality with h; ~ 1 to deduce that

2 2 p-2 A2
llorbrllz < collvrllT + hainarIT1 V7115

Going back to T again using the affine transformation (15), we obtain (22). O

As usual for singularly perturbed problems, we need to use squeezed edge/face bubble functions b ,,. Here according to
our previous point of view, they are defined through the transformation Fy r from (13). Namely for a fixed edge/face E of T,
the mapping (13) transforms E into an edge/face E4 of To. Now for a parameter y € (0, 1], we define the squeezed element
Tg, , of Ty as in [7]. The squeezed element T, of T is simply the element obtained by the inverse transformation

Ty = FapTe,y-
Note that T ,, is the usual squeezed element on T with the parameter y depending on A. For the sake of simplicity we do
not write this dependence.

The squeezed edge/face bubble function bg ,, is defined on the two elements Ty g, and T, g, sharing y, as the usual
edge/face bubble function on these elements and extended by zero outside Ty ¢, U Ty .

Lemma 3.4 (Further Inverse Inequalities). Under the assumptions of Lemma 3.3, we have
e,y Fexe W)l < v /2 T l[vel, (23)
A2V (b, Fexe WD) Ir S 721 Th, vl (24)
Proof. Scaling arguments yield

l1be.y Fexe (Ve) IT = ||| Tal =2 ||bg. Fexe (V) 17,



T. Apel et al. / Journal of Computational and Applied Mathematics 235 (2011) 2805-2820 2811

where we write v(X) = v(x). Now using Lemma 2 of [7] in T4, we have
|Tal™ "2 1B, Fext () 17, < ¥/ 1Eal ™" 1D |l -
Again scaling arguments lead to
|Eal ™" 110elle, < 1E1™2 gl (25)

The three above estimates imply (23).
For the second estimate, scaling arguments yield

1AV (be , Fexe (o) I = ITIV?|Tal =21V (b, , Fext (96)) Iz,
Again Lemma 2 of [7] applied in T, leads to

IAY2V (b, Fexc (o) I S |T1"?y V2 |Eal =/ (| g lg, min{y he, 1, in,1,} "
Using the estimate (25), we arrive at

A2V (b, Fext (WD)l < "/ hg 7 l[ve lls miny b, 1, imin,} ™"
The estimate (24) will be proved if we can show that

min{y hg, 1, hmin,TA}_1 S V_lh;nln,Aj,
or equivalently

min{y hg, 1, Amin, 74} 2 ¥ Mmin,a,T- (26)
But it was proved in Lemma 3.1 of [25] that

he, 14 Z Pmin, 7y -
Since y € (0, 1] we then have

Yhe, 1y 2 Vhmint, = VhAminar and  Amint, = Yhminar.

This leads to (26). O

3.3. Anisotropic interpolation error estimates

In order to obtain an accurate discrete solution uy, it is obviously helpful to align the elements of the mesh according to
the anisotropy of the solution. It turns out that this intuitive alignment is also necessary to prove sharp upper error bounds. In
particular the proof employs specific interpolation error estimates. These interpolation estimates hold for isotropic meshes,
but do not hold for general anisotropic meshes; instead the mesh has to have the aforementioned anisotropic alignment
with the function to be interpolated.

In order to quantify this alignment, we introduce a so-called alignment measure m(v, A, Tp) which was originally
introduced in [15] for the identity matrix A and that we extend here to any matrix A.

Definition 3.5 (Alignment Measure). Let v € H'(£2), and 7 = {T;} be a family of triangulations of £2. Define the alignment
measure m; : H'(£2) x 7 +— R by

1/2
mi(v, A, Tp) = (Z hmfn,A,Tuc;TvUn%) /||A‘/2vU||. (27)

TeTy

One has mq(v, A, Tp) 2> 1 since
G Vollr = ICLAY Vol 2 hinar|AY? V7.

For arbitrary isotropic meshes one obtains that mq (v, Id, T;) ~ 1. The same is achieved for anisotropic meshes Ty that
are aligned with the anisotropic function v. Therefore the alignment measure is not an obstacle for reliable a posteriori error
estimation. We refer to [15,26] for discussions concerning this alignment measure.

Now we recall the definition of the Clément interpolation operator that maps a function from H}D (£2) into

Vhi = {vp € H}D(Q) DT € ]Pl, VT € Ty} C V.
For that purpose, let the basis function ¢, € Vj, 1 associated with the node x be determined by the condition
ox(y) = 6x,y Vy € Ny,

where Ny, is the set of nodes of the triangulation included into £2 and I'y. Then, the Clément interpolation operator will be
defined via these basis functions:
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Definition 3.6 (Clément Interpolation Operator). The Clément interpolation operator I : H}D (£2) — V1 is defined by

1
law =2 (|wx| fw ”) o

XeNp

with wy being the union of elements T of T, having x has vertex.
Lemma 3.7 (Global Interpolation Error Bounds). For each edge/face E, let us set
Be = max(hg thl \ ). (28)
TCwg T

Let v € H}D (£2), then the following estimates hold:

lavll S mi(u, A, T vl (29)
> oo —lavlif < miv, A, Tw)* o], (30)
TeTy

doart Y Bellv—lavllE < miu. A T vl (31)
TeTy EedT\Ip:

PE=hg,Thini a7
Note that in (31), every edge/face E € E, with E ¢ I'p appears in the double sum at least once.

Proof. Lemma 3.1 of [ 14] says that

lavll < fvl, (32)
lv=Tavllr £ > G Volr, (33)
T'Cor
ICI V@ —lav)lir £ Y 1C Vol (34)
T'Cor

Multiplying the estimate (34) by h;ﬁlm A and summing the squares for all T yields
Z hr;izn»A,T |CITV(U —lav)[1? < Z hr;izn,A,T |C/ITVU”%-
TeTy TeTy
By the definition of the alignment measure, we get
> bt arlCir V0 = lav)[F < mi(v, A, To)? [AV2 V>, (35)
TeTy

In the same manner by (34) and (33) we have

Y B ar G Viavli} < mi, A, T A2 V%, (36)
TeTy
D htarll@ = Ia)llF < mi(, A, T AV, (37)
TeTy

Now we remark that
1/2
IA2VIqu|? = > A7 * Vigvl)?
TeTy

—1,2 T 2
> G, P IC Viali?
TeTy

-2 T 2
Z hmin,A,T “CA.TVICIU”T'
TeTy

IA

N

By the estimate (36), we conclude that
IA"2V1qul* < mi(v, A, Ty)*|AV2 Vv )%, (38)
The estimates (32) and (38) prove (29).
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Let us go on with the estimate (30):
-2 2 2 -2 2
D et v—lavli < D collv —lavllF + Y hyh 4 rllv = lav|3.
TeTy TeTy TeTy

By (32) and (37), we obtain (30).
For the last estimate, for any edge/face E of Ej;, take any element T € Ty such that §g = hg rh
standard trace inequality on T to get

v —Iavlf < hgrllv —=lavlir(lv = lavlir + G V(v = lav) 7).

-1

minA7- NOW We use a

-1
min,A,T

Bellv —lavllF < hin arllv = lavllr (v = lavllr + 1C V(= Iav) 7).

Multiplying this estimate by Bg (= hg rh ), we get

Multiplying this estimate by o 'and summing on E and then on T, we have obtained

-1 2 —1p—1 T
oot > Bellv—lavli £ D ap hiarllv = lavlir - (v = lavlr + 1G V@ = lav)llr).
TeTy ECOT\Ip: TeTy
BE=hE Thinin a7

Now using the discrete Cauchy-Schwarz inequality, we arrive at

Slert Y el —lavl?

TeTy ECOT\Ip:
-1
BE=hE Thinin AT

1/2 1/2
s(Za;znv—lavn%) -(Zh;izn,A,T(||v—Ic1v||%+||c,ITV<v—1av)||%>) :

TeTy TeTy

We conclude thanks to (30), (34) and (37). O

Remark 3.8. If A = ¢Id, then the estimate (31) implies the estimate (21) of [7], since

h
Ber = «/Ehi > e

min, T

4. Error estimator
4.1. Definition of the error estimator

We investigate a residual error estimator. The exact element residual is defined by
Rr =f —Auy onT.
Similarly the exact edge/face residual is
[AVu, -ngJ; onE € E™,

Re={g—AVu,-n onE e E* NIy,
0 onE € E;* N Ip.

As usual, these exact residuals are replaced by some finite-dimensional approximation r; € P*0(T) and r; € P*1(E) called
approximate element residuals.
Now for further uses for any edge/face E, we set

O = ar,
for one element T C wy such that Bz = hg rh,\ , ;. Note that from the definition of B¢, we have

—1
min,A,T"?

hgrhi sz = herh VT’ C wg,
and since the assumption (18) implies that
hgr ~hgr, VT C w,
we deduce that
hl >hl

min,A,T ~ ""min,A,T’*

VT/ C wg,
and consequently

O = Ut 5 ar/, VT’ C wg. (39)
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Definition 4.1 (Residual Error Estimator). The local and global residual error estimators are defined by
np =t + D B el 0t =) nf
E€dT\Ip TeTy
The local and global approximation terms are defined by

tPi=ad Y ARy ol + Y B IR —relE =) R

T'Cor Ee€dT\Ip TeTy

4.2. Upper error bound

Theorem 4.2. Assume that St satisfies (10). Let u be a solution of (3) and uy a solution of (9). Then the error is bounded as

follows:

llu —upll < my(u —up, A, T) (7 + ).

Proof. By (6) we have

llu — unll® < B(u — up, u — up) < B(u — up, v — Iqv) + B(u — up, Iqv),

where for shortness we write v = u — up.
For the first term, element-wise integration by parts yields

B(u —up, v —Iqv) = Z(RT, v —Iqv)r + Z(RE» v —Igv)E.

TeT, E€Ep
By the continuous and by the discrete Cauchy-Schwarz inequality and the use of Lemma 3.7, we arrive at
B(u —up, v —Igv) S mi(v, A, Tp) ( + O IvII.
For the second term of the right-hand side of (41), we first estimate ||AY/2VIqv||7. Indeed we first write
A2Vl = IIC;," LAY Viqullr

hr;iln,A.T ”C/ITA]/ZVICIUHT

A

A

-1
hmin,A,T avllr,

this last estimate coming from the inverse inequality on fTA and scaling arguments. This finally implies that

1/2 -1 —1/2
||A / Vlc[U“T S hmin,A,TCO ”lIClvl”T-

On the other hand, we trivially have
IAY2V1avllr S Mavllr = Ry o rhminarllavllr,
and, by the definition of o7, we have obtained
A2Vl < bty areer lavllz.
Now using (3) and (9), we get

B(u—up, lav) = — Y 8r(Rr, b- Vigv)r,
TeTy

and by the Cauchy-Schwarz inequality we obtain

B —up, Iev) < Y 8rlIRrllr Al 1|4 Vigw]lr.
TeTy

Using (43), we obtain

B(u—up, Tav) S Y SrlIRr 1A bl rhity 4 rerr lllavlly,
TeTy

and by the assumption on 87, we arrive at

B(u — up, Iev) < ) erllRrrlllcvllr
TeTy

(40)

(41)

(42)

(43)
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The discrete Cauchy-Schwarz inequality and the estimate (29) lead to
B(u — up, Iqv) < mi(v, A, To)(n + Ol
This estimate and (42) in the identity (41) lead to the conclusion. O

Now we estimate the dual norm of the convective derivative.

Theorem 4.3. Assume that 5t satisfies (10). Let u be a solution of (3) and uy, a solution of (9). Let v, be any function in H}D (£2)
such that (see (5))

llvill =1 and |Ib- V(u —up)ll. = /;Zb -V (u—up)vs. (44)
Then the error is bounded as follows:

Ilb- V(@ —uplls < «llu—unll + my(v1, A, To)(n + £). (45)
Proof. According to (44) and the definition of B, we have

b - V@ —uplls = /Qb - V(U —up)vy = B(u — up, v1) — [Q(AV(u — up) - Vug + c(u — up)vy).

Consequently, applying the Cauchy-Schwarz inequality we obtain (see (7))
IIb-V(u—uplls < B —un, v1) + «llu — upll.

We conclude by using the arguments of the previous proof with v replaced by v;. O

Corollary 4.4. Under the assumptions of the previous theorem, we have the error bound

llu —upll + b - V(u —up)ll < (my(u — up, A, Tp) + my(v1, A, T)) (0 + £).

4.3. Lower error bound

Theorem 4.5. The following global lower error bound holds:

n < kllu—unll + b~ V(u—upll +¢. (46)
Proof. As already mentioned element-wise integration by parts yields

B(u—up, w) = Y (Rr,w)r + »_(Re, w)g, Yw € HJ, (). (47)
TeTy E€Ep

Element residual. For a fixed element T define wr = ryby which belongs to H}D (£2). From the definition of Ry and using
(47) with w = Y, a7 wr we have

Za%/rrwr = ZO{%/(TT—RT)IUT—FZOZ%/RTU)T
T T T

TeTy TeTy TeTy
2
= ZaT /(rT — Rp)wr + B(u — up, w).
TeTy T

Using the equivalence (20) and the estimate (7) we obtain

1 1
2 2
Za%urTn%s(Za%an—RTn%) (Za%ann%) + (illu = wgll + b - ¥t — up) ) w]l.

TeTy TeTy TeTy
By the definition of w, we have
2 4 2
lwll® =" efflwrlif,
TeTy
and by the inverse inequality (22) we get
2 2 2
lwll® < eflirrl}.

TeTy
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Similarly by the inverse inequality (20), we have

2 2 2 2
S edwrl? £ i3,

TeTy

TeTy

This last three estimates yield

TeTy

1
2
(Z a%nnn%) S et wllu—ull+ b V= up)ll.

Edge/face residual. Fix an arbitrary edge/face E € Ej, \ I'p. We apply (47) with w = wg, where

WEg = Fext(TE)bE,yE,T onTg, CT C wg,

(48)

where T ,, . is the squeezed element associated with T defined with the parameter y¢ ; € (0, 1] that will be fixed later on.

This yields '

(re, we)e = (re — Re, wg)g + (Re, we)E

= (g — Rg, wg)g + B(u — up, wg) — Z (Rr, we)r.

TCwg

Multiplying this identity by a8; !, and setting

w = ZaEﬁEle,

EeEp

we arrive at

Z apfy (e, we)p = ZOlEﬂE](TE — Rg, wg)g + Z:OlEﬁE_1 Z (rr — Rr, wg)r

E€Ep

Ec€Ep E€Ep TCwr
-1
- Z ag Py Z (rr, we)t + B(u — up, w).
Ec€Ep TCwg

Using the equivalence (21) and the estimate (7) we obtain

Z By lIrell < ZaEﬂE1(rE — Re, wp)g + X:OIEL‘}E1 Z (rr — Rr, we)t

E€Ey

E€Ep E€Ey TCwg

— >t Y (o wedr + (el — il + b V@ — w2 wll.

EcEp TCwg

Using the Cauchy-Schwarz inequality, (23), (24), (39) and (48) we deduce that

— 1/2 1/2 1/2 1/2 12
Y e tlrelE < >0 trag By Prelle + )0 Y cro B v Phy T live e

EeEy

EcEp TCwp EcEp TCwg

+ (¢ el — wgll + 11 - V(u — )l (Z 3 B 2 verher el

EcEp TCwg
+ (el — upll + b - V@ — up) [l lwll-

Similarly by the definition of w and (23) and (24), we have

lwli® <Y B Y (verher + virherhys o ) lITel.

EeEy TCwg

In view of these two estimates we need that

1/2/35

121/2 <051/213 1/2

yET E.T ) VTCCUE7

B: *verher Saefy', VT C o,
aEﬂE VEThET<aE/3;, VT C w,

1
By’ Yerhe, ThmmAT Saefy's VT C o,

)]/2

(49)
(50)
(51)
(52)
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since these conditions imply that

1
2
(Z By ! ||f5||§> <S¢ wllu—upll + b - V(u —up)ll (33)

EcEp

The conclusion then follows from the estimates (48) and (53) if we can show that conditions (49)-(52) hold with an
appropriate choice of yg 1.

First since vzt < 1and o < 1, condition (50) implies (49) and (51). Hence it remains to check (50) and (52). The first
one is clearly equivalent to

J/E,ThE,TaE]ﬂEI <1, (54)

and since B¢ 2 hE.,Thr;i]n,A,Tv forall T C wg, the estimate (54) holds if

~1 -1 _ -1
Ver Saghg pherhpi ar = el ar (55)

is satisfied.
On the other hand (52) holds if and only if

1 -1 2
B Verherhpinar < 1.

Again by the definition of S, this estimate holds if

aEhr;;n,A,T S VeT (56)
To satisfy these two conditions (55) and (56), we take
VET = min{aEhr;;nyAyT, 1}.

Obviously this right-hand side is <1 and condition (55) holds. Second to check that condition (56) is satisfied, we distinguish
two cases:

1. ]faEhr;i]n,A,T <1 thenygr = aEhr;iln.A,T and (56) is trivially satisfied.

2. Ifagh_} r > 1,then yg r = 1, but by the property oz < ar, forall T C wg (see (39)), we have

min,A,

<arh?l . <1,

1 _
aEhmin,A,T ~ minA,T ~

which again yields (56). O
Remark 4.6. In comparison with the case A = ¢ld treated in [27,24,7] for anisotropic meshes and in [28,10] for isotropic

meshes, we have obtained as in [12] for isotropic meshes, a robust lower bound due to the use of the dual norm of the
convective derivative.

5. Numerical results

The aim is to test the behavior of the estimated error in the relationship with the true error. Therefore we use a test
example with a known exact solution. We consider the problem

—div(AVu) +b-Vu=f in2=(0,1)% u=g onrl,
with

e 0 1
a=(o 1) v=(o)
e = 107 k = 4, 8, and choose the data

f=10y(1 —y)(—ge™ —e™) +20(e™™ — e‘”%),

_ J1ioya—-ya—-e ) ifx =0,
£ 0 else.

This results in the solution
u=10y(1 —y)(e™ —e ),

which is illustrated in Fig. 3. Note that both the data and the solution are O(1) in the L?(£2)- and L*°(£2)-norms uniformly
in €. The solution contains a typical boundary layer of that problem.
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06 0.8 ;1

Fig. 3. The solution u for e = 1074,

Table 1
Computation of errors in the maximum norm and norm |[-]| for ¢ = 1074,
N lellzo () Rate [[e]l Rate
153 1.62E—01 6.86E—01
561 7.12E—02 1.27 3.16E—01 1.19
2145 2.57E—02 152 1.53E—01 1.08
8385 7.89E—03 1.73 7.61E—02 1.03
33,153 2.20E—03 1.86 3.80E—02 1.01
131,841 5.81E—04 1.93 1.90E—02 1.00
525,825 1.49E—04 1.96 9.48E—03 1.00
Table 2
Computation of errors in the maximum norm and norm |[-]| for ¢ = 1078,
N lellzoc () Rate [[e]l Rate
153 3.42E-01 5.35E4+00
561 1.64E—01 1.14 1.78E4-00 1.69
2145 6.92E—02 1.29 5.19E—-01 1.84
8385 2.50E—02 1.49 1.60E—01 173
33,153 7.68E—03 1.72 5.97E—02 143
131,841 2.14E—-03 1.85 2.67E—-02 1.17
525,825 5.65E—04 1.92 1.29E—-02 1.05

The mesh is piecewise uniform with an anisotropic part in the boundary strip 2, = (1 — 2¢|In¢|, 1) x (0, 1). Both £2;
and 2 = £2 \ £, are subdivided into 2¥ x 2%, k = 3,...,9, congruent rectangles which are afterwards split into two
triangles each. In this way the aspect ratio of the elements is about £~! in £2; and about unity in £2;.

The problem is discretized with the SUPG scheme (9) where

5 — {ﬁh%,min in the boundary layer,

2
h% min elsewhere

is chosen. The error is computed in various norms and also estimated with the method investigated above, see Definition 4.1.
Tables 1 and 2 display the error in norms which are typically investigated in an a priori error analysis, the maximum norm

and “SUPG norm” defined by |[v]|?> = B(v, v) + Zrer,, Sr|b - Vvllf2 . The convergence rates are computed with respect

to the mesh size h = 2~% which seems more convenient than the relationship to the number N = (2 - 2¥ + 1)(2% + 1),
k =3, ...,9.The error behaviour shows that the meshes are appropriately chosen.

Tables 3 and 4 show the error estimator 7 as well as the error in the norms ||e]|, see (2), ||b - Ve||., see (4), and the
efficiency index

Legr := S R
off 1= .
llefl + b - Vel

It can be seen well, that the effectivity index converges for h — 0 to some limit of about 6 independent of . This experiment
illustrates the efficiency and reliability of our estimator.
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Table 3
Behaviour of the error estimator for ¢ = 1074,
N n Rate llell Rate Ib- Vel Rate Lot
153 3.10E+00 5.86E—01 7.73E—02 4,68
561 1.63E4-00 0.988 3.00E-01 1.03 2.44E—02 1.77 5.03
2145 8.46E—01 0.981 1.51E-01 1.02 6.85E—03 1.89 5.35
8385 4.33E-01 0.983 7.58E—02 1.01 1.86E—03 1.91 5.58
33,153 2.20E—-01 0.988 3.79E—-02 1.01 4.95E—04 1.93 572
131,841 1.11E-01 0.993 1.90E—02 1.00 1.28E—04 1.96 5.79
525,825 5.55E—02 0.996 9.48E—03 1.00 3.23E-05 1.99 5.84
Table 4
Behaviour of the error estimator for ¢ = 1078,
N n Rate lell Rate Ib- Vel Rate Leg
153 3.69E+00 6.65E—01 2.19E-01 417
561 1.96E4-00 0.973 3.78E—01 0.869 8.50E—02 1.46 423
2145 1.04E4-00 0.939 2.00E—-01 0.952 2.52E—02 1.81 4,64
8385 5.52E-01 0.935 1.02E-01 0.993 6.71E—03 1.94 5.10
33,153 2.87E—01 0.950 5.10E—02 1.00 1.74E—03 1.97 5.45
131,841 1.47E—-01 0.969 2.55E—02 1.00 4.46E—04 1.97 5.67
525,825 7.46E—02 0.982 1.28E—02 1.00 1.14E—-04 1.97 5.80

Remark 5.1. The error in the dual norm ||¢||. is approximately computed here by

v dnvp
il =  sup o A sup fgi

veH}, (2)\(0) vl vnevi\io}  [lonll

where ¢y, is an approximation of ¢ in a finite dimensional space Wj, here the space of piecewise constants. This expression
can be easily computed: Let ¢ and v be the vectors of the coefficients of ¢, and v, in some bases of Wj and Vj, respectively.

With appropriate mass and stiffness matrices M and K we can write fQ dpvy = QTMQ and [|vp]|> = v"Kv. By using the
Cholesky decomposition K = LL" and the substitutions w = L'v and ¢ = L~ "M"¢ we can reformulate

(/o dnvn)’ wp@mﬁ:w<ww@2

sup ~£_7 —
mevivio)  llvall? vern\jo) V'KV upernyioy  w'w

Y w)? wyy'w

= s e o up ST yTy

weRM\{0} W W weRM\{0} W W -

where we used for the computation of the Rayleigh quotient that the only non-zero eigenvalue of the matrix MT is ﬂT V.
By substituting back we obtain

v,
sup f_@ ¢h h

— (¢TMK—1MT¢)1/2.
vnevin(o) ol = =

6. Conclusions

We have proposed and rigorously analyzed a new a posteriori error estimate for the finite element approximation of
anisotropic diffusion-convection-reaction equations with anisotropic finite elements. We have shown that this estimate is
reliable and efficient. Numerical experiments confirm our theoretical predictions.

References

[1] J. Li, Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem, Comput. Math. Appl. 33 (1997) 11-22.

[2] J. Li, Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed
reaction-diffusion problems, Appl. Numer. Math. 36 (2001) 129-154.

[3] J. Li, M.F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM ]. Numer.
Anal. 38 (2000) 770-798.

[4] L. Angermann, Balanced a posteriori error estimates for finite volume type discretizations of convection-dominated elliptic problems, Computing 55
(4)(1995) 305-323.

[5] L.Formaggia, S. Perotto, P. Zunino, An anisotropic a posteriori error estimate for a convection-diffusion problem, Comput. Vis. Sci. 4 (2) (2001) 99-104.

[6] D.Kay, D. Silvester, The reliability of local error estimators for convection-diffusion equations, IMA J. Numer. Anal. 21 (1) (2001) 107-122.

[7] G.Kunert, A posteriori error estimation for convection dominated problems on anisotropic meshes, Math. Methods Appl. Sci. 26 (2003) 589-617.



2820 T. Apel et al. / Journal of Computational and Applied Mathematics 235 (2011) 2805-2820

[8] M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems, SIAM ]. Sci.
Comput. 24 (4) (2003) 1328-1355.
[9] G. Sangalli, Robust a posteriori estimator for advection-diffusion-reaction problems, Math. Comp. 77 (261) (2008) 41-70. (electronic).

[10] R. Verfiirth, A posteriori error estimators for convection-diffusion equations, Numer. Math. 80 (4) (1998) 641-663.

[11] R. Verfiirth, Robust a posteriori error estimators for the singularly perturbed reaction-diffusion equation, Numer. Math. 78 (1998) 479-493.

[12] R. Verfiirth, Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM ]. Numer. Anal. 43 (4) (2005) 1766-1782.
(electronic).

[13] F.Fierro, A. Veeser, A posteriori error estimators, gradient recovery by averaging, and superconvergence, Numer. Math. 103 (2006) 267-298.

[14] G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes, Ph.D. Thesis, TU Chemnitz, 1999, Logos,
Berlin, 1999.

[15] G.Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes, Numer. Math. 86 (2000) 47 1-490.

[16] M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York, 2000.

[17] R. Verfiirth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley and Teubner, Chichester, Stuttgart, 1996.

[18] R.Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. 37 (2001) 1-225.

[19] E.H. Georgoulis, E. Hall, P. Houston, Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes,
SIAM ]. Sci. Comput. 30 (1) (2007-2008) 246-271.

[20] P. Neittaanmadki, S. Repin, Reliable Methods for Computer Simulation: Error Control and a Posteriori Error Estimates, in: Studies in Mathematics and
its applications, vol. 33, Elsevier, Amsterdam, 2004.

[21] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978, Reprinted by SIAM, Philadelphia, 2002.

[22] H.-G.Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow
Problems, Springer, Berlin, 2008.

[23] Th. Apel, G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math. 74 (1996) 261-282.

[24] Th. Apel, Anisotropic Finite Elements: Local Estimates and Applications, in: Advances in Numerical Mathematics, Teubner, Stuttgart, 1999.

[25] G.Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes, Adv. Comput.
Math. 15 (2001) 237-259.

[26] G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes, SIAM J. Numer. Anal. 39 (2001) 668-689.

[27] R. Hangleiter, G. Lube, Stabilized Galerkin methods and layer-adapted grids for elliptic problems, Comput. Methods Appl. Mech. Engrg. 166 (1-2)
(1998) 165-182.

[28] H.-G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations Convection-Diffusion and Flow Problems,
Springer, Berlin, 1996.



	A posteriori error estimation of residual type for anisotropic diffusion--convection--reaction problems
	Introduction
	Discretization of the diffusion--convection--reaction equation
	Analytical tools
	Some anisotropic quantities
	Bubble functions, extension operator, and inverse inequalities
	Anisotropic interpolation error estimates

	Error estimator
	Definition of the error estimator
	Upper error bound
	Lower error bound

	Numerical results
	Conclusions
	References


