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a b s t r a c t

The least-squares linear estimation of signals from randomly delayed measurements is
addressed when the delay is modeled by a homogeneous Markov chain. To estimate the
signal, recursive filtering and fixed-point smoothing algorithms are derived, using an
innovation approach, assuming that the covariance functions of the processes involved
in the observation equation are known. Recursive formulas for filtering and fixed-point
smoothing error covariancematrices are obtained tomeasure the goodness of the proposed
estimators.
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1. Introduction

Traditionally, the estimation problem of signals has been addressed assuming that the measurement data are
transmitted over perfect communications channels. In practice, unfortunately, this is not the case; for example, in wireless
communication networks an unavoidable problem is the existence of errors during the transmission, which can lead to
delays in the arrival of the measurements. These delays may be deterministic (see e.g. [1,2]), but in most practical cases,
such asmobile communications or exploration seismology, the delay is random and can bemodeled by a stochastic process.

The practical application of systems affected bydelays has been themainmotivation tomany recent studies of control and
estimation problems. With respect to the problem of signal estimation in randomly delayed systems, different approaches
have been considered, differing in the delaymodel and estimation criteria adopted. A common formulation formodeling the
random delay is to consider it as a sequence of Bernoulli random variables that takes values of 0 or 1 depending on whether
the real observation is received on time or otherwise. In this context, Yaz and Ray [3] studied linear unbiased state estimation
for dynamic systems with a one-step sensor delay and presented full and reduced order estimators by reformulating the
state estimation problem as one of the parameter designs within the filtering problem. More recently, Wang et al. [4]
addressed the robust filtering problem with variance constraints. Wen et al. [5] derived new filtering algorithms, both
full and reduced order, for a stochastic dynamic system with a random one-step sensor delay. The filtering problem for
systems with uncertain observations, packet dropouts and a random sensor delay through the same framework using the
stochastic H2-norm for systems with stochastic parameters has been studied in [6]. In all the aforementioned papers, the
state-space model is known. However, in many practical situations the only information available to estimate the signal are
the covariance functions of the processes involved in the observation model. Under this assumption, recursive filtering and
smoothing algorithms have also been derived assuming the random delay to be modeled by independent Bernoulli random
variables (see e.g. [7,8]).

For randomly delayed models, the signal estimation problem has been usually addressed assuming that the delay is
modeled by independent random variables. However, in real communication systems, current time delays are usually
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correlated with previous ones, and then a reasonable way to model the dependence on the delays is to consider the random
delay as a homogeneous Markov chain. Thus, state estimation algorithms for a hidden Markov model have been presented
in [9], while a H∞ filtering was obtained in [10]. In both the papers, the delay steps were known on-line via time-stamped
data. Assuming an unknown Markov delay, Han and Zhang [11] solved the optimal estimation problem by considering that
the single Markov delayed measurement can be rewritten as an equivalent measurement with multiple constant delays;
the estimator is then derived on the basis of geometric arguments in the Hilbert space. Song et al. [12] investigated the H∞

filtering problem for a class of network systemswith a randomdelaymodeled by aMarkov chain.When the delay ismodeled
by Bernoulli random variables, the signal estimation problem has been investigated assuming some kind of correlation on
the Bernoulli random variables (see for example [13,14]). However, to the best of our knowledge, the problem of signal
estimation in systems where Bernoulli random variables are a Markov chain has not yet been studied.

In this paper, assuming no signal equation is available and that the delay is modeled by a homogeneous discrete-time
Markov chain to capture the dependence between delays, we study the least-squares linear estimation problem of a signal
based on randomly delayed measurements. This signal estimation problem is addressed assuming that the covariance
functions of the processes involved in the observation equation are known and that the covariance function of the signal
is expressed in a semi-degenerated kernel form. The proposed recursive filtering and fixed-point smoothing algorithms
are obtained using an innovation approach which, as it is known, enables straightforward derivation of the estimation
algorithms. Recently, the innovation based methods are applied to estimation and filtering as well as system identification
(e.g. [15–22]). Finally, a numerical simulation example is included to illustrate the feasibility of the proposed algorithms for
estimating a signal from randomly delayed observations.

2. Problem formulation

2.1. Observation model

Consider the measurement of an n × 1 signal, xk, described by the equation

zk = xk + vk, k ≥ 0, (1)

where {vk, k ≥ 0} is a white measurement noise. It is assumed that the measurement of the signal, zk, is transmitted
to a processing unit through an unreliable network, where some data may be delayed by one sampling time during the
transmission; if so, the last available measurement is processed. According to [3], this situation can be modeled by the
following equation

yk = (1 − ξk)zk + ξkzk−1, k ≥ 1, (2)

where {ξk, k ≥ 1} are Bernoulli random variables that model the random delay. If ξk = 1, then the measurement is delayed
by one sample period; otherwise the measurement is up-to-date.

In order to address the least-squares linear estimation problem of the signal, xk, from the observations given by (2), the
following hypotheses are made regarding the signal and noise processes:

(i) The signal, {xk, k ≥ 0}, has a zero mean and its covariance function is

E[xkxTs ] = αkβ
T
s , s ≤ k

where α and β are known n × M matrix functions.
(ii) The measurement noise, {vk, k ≥ 0}, is white noise with a zero mean and E[vkv

T
k ] = Rk.

(iii) The sequence of Bernoulli variables {ξk, k ≥ 1} is a homogeneous Markov chain with P[ξk = 1] = pk and transition
probability matrix P =


p00 p01
p10 p11


with pij = P[ξk = j/ξk−1 = i], i, j ∈ {0, 1}.

(iv) The signal, {xk, k ≥ 0}, and the measurement noises, {vk, k ≥ 0} and {ξk, k ≥ 1}, are mutually independent.

2.2. Least-squares linear estimation problem

Our aim is to determine the least-squares linear estimatorxk/L of the signal, xk, based on the information provided by the
measurements y1, . . . , yL, given by (2). Specifically, recursive algorithms for the filtering (L = k) and fixed-point smoothing
(k fixed and L > k) problems will be derived.

As is well known, the estimatorxk/L is the orthogonal projection of the vector xk onto the linear space spanned by
y1, . . . , yL and so the estimator is the only linear combination of y1, . . . , yL satisfying the orthogonality property E[(xk −xk/L)yTs ] = 0, s = 1, . . . , L. Since the observations are generally nonorthogonal vectors, we use an innovation approach
to address the estimation problem. This provides straightforward means of resolving the problem because the innovation
process is white. This approach is based on an orthogonalization procedure by means of which the observation process is
transformed into an equivalent one, the innovation process, defined as νk = yk −yk|k−1, k ≥ 1, whereyk/k−1 denotes
the linear estimator of yk based on the observations y1, . . . , yk−1. As the innovations and observations provide the same
information and the innovation process is white, the linear estimator can be calculated as a linear combination of the
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innovations, as follows

xk/L =

L−
i=1

Sk,iΠ−1
i νi, (3)

where Sk,i = E[xkνT
i ] and Πi is the covariance matrix of the innovation, νi.

Taking into account general expression (3) of the estimator, our first aim is to derive explicit formulas for the innovations
as well as for their covariance matrices.

3. Innovation process

Theorem 1. Under hypotheses (i)–(iv) set out in Section 2, the innovation process is given by

νk = yk − ΛkQk−1 − p01(1 − pk−1)Rk−1Π
−1
k−1νk−1, k ≥ 2,

ν1 = y1,
(4)

where the vectors Qk are recursively calculated as

Qk = Qk−1 + MkΠ
−1
k νk, k ≥ 1; Q0 = 0 (5)

with

Mk = Γ T
k − mk−1Λ

T
k − p01(1 − pk−1)Mk−1Π

−1
k−1Rk−1, k ≥ 2,

M1 = Γ T
1 ,

(6)

mk = mk−1 + MkΠ
−1
k MT

k , k ≥ 1; m0 = 0, (7)

and the matrices Λk and Γk are given by

Λk = (αk, αk−1)(Pk
⊗ IM)T , Γk = ((1 − pk)βk, pkβk−1)(P−k

⊗ IM), (8)

where ⊗ denotes the Kronecker product and IM is the M × M-dimensional identity matrix.

The innovation covariance matrix is given by

Πk = (1 − pk)[αkβ
T
k + Rk] + pk[αk−1β

T
k−1 + Rk−1] − Λkmk−1Λ

T
k − p01(1 − pk−1)ΛkMk−1Π

−1
k−1Rk−1

− p01(1 − pk−1)Rk−1Π
−1
k−1M

T
k−1Λ

T
k − p201(1 − pk−1)

2Rk−1Π
−1
k−1Rk−1, k ≥ 2,

Π1 = (1 − p1)[α1β
T
1 + R1] + p1[α0β

T
0 + R0].

(9)

Proof. In order to obtain the explicit formula (4) for the innovations, νk = yk −yk/k−1, it is necessary to determineyk/k−1,
the one-stage predictor of observation yk,which is given by

yk/k−1 =

k−1−
i=1

Tk,iΠ−1
i νi, k ≥ 2; y1/0 = 0, (10)

where Tk,i = E[ykνT
i ], i ≤ k − 1.

First, we obtain an expression for the coefficients Tk,i = E[ykyTi ] − E[ykyTi/i−1]. Using (2) and taking into account that
{ξk, k ≥ 1} is a homogeneous Markov chain, we have

E[ykyTi ] = p(k−i)
00 (1 − pi)E[zkzTi ] + p(k−i)

10 piE[zkzTi−1] + p(k−i)
01 (1 − pi)E[zk−1zTi ] + p(k−i)

11 piE[zk−1zTi−1], i ≤ k − 1,

where p(k−i)
sj denotes the (k − i)-step transition probability from state s to j, with s, j ∈ {0, 1}. Using (1) and the hypotheses

of the model, we have

E[ykyTi ] = p(k−i)
00 (1 − pi)αkβ

T
i + p(k−i)

10 piαkβ
T
i−1 + p(k−i)

01 (1 − pi)αk−1β
T
i

+ p(k−i)
11 piαk−1β

T
i−1 + p01(1 − pk−1)Rk−1δi,k−1, i ≤ k − 1,

which, equivalently, can be expressed in matrix form as

E[ykyTi ] = (αk, αk−1)(P(k−i)
⊗ IM)T ((1 − pi)βi, piβi−1)

T
+ p01(1 − pk−1)Rk−1δi,k−1, i ≤ k − 1,

where P(k−i) is the (k − i)-step transition probability matrix and is the δ the Kronecker delta function.
Substituting the above expectation in Tk,i = E[ykyTi ] − E[ykyi/i−1], taking into account the properties of the transition

probability matrix and those of the Kronecker product, (P(k−i)
⊗ IM)T = (Pk

⊗ IM)T (P−i
⊗ IM)T and using (10) for predictor
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yi/i−1, the coefficients Tk,i can be written as

Tk,i = ΛkΓ
T
i −

i−1−
j=1

Tk,jΠ−1
j T T

i,j + p01(1 − pk−1)Rk−1δi,k−1, i ≤ k − 1,

where Λk and Γi are given by (8).
Introducing a functionMi that satisfies

Mi = Γ T
i −

i−1−
j=1

MjΠ
−1
j T T

i,j, i ≥ 2,

M1 = Γ T
1

(11)

the coefficients Tk,i are given by

Tk,i = ΛkMi + p01(1 − pk−1)Rk−1δi,k−1, i ≤ k − 1. (12)

Substituting the above expression of Tk,i in (10) and defining Qk =
∑k

i=1 MiΠ
−1
i νi, for k ≥ 1 and Q0 = 0, we obtain

yk/k−1 = ΛkQk−1 + p01(1 − pk−1)Rk−1Π
−1
k−1νk−1, k ≥ 2,y1/0 = 0 (13)

and, therefore, expression (4) is obtained.
From the definition of Qk, the recursive relation given by (5) is clear.
Now, performing i = k in (11) and using expression (12) for Tk,j for j ≤ k − 1, we obtain

Mk = Γ T
k −

k−1−
j=1

MjΠ
−1
j MT

j ΛT
k − p01(1 − pk−1)Mk−1Π

−1
k−1Rk−1, k ≥ 2,

M1 = Γ T
1 ,

and denoting

mk = E[QkQ T
k ] =

k−
j=1

MjΠ
−1
j MT

j , k ≥ 1; m0 = 0,

formula (6) forMk is obtained. From the definition ofmk, the recursive relation (7) is immediate.
Finally, we obtain the covariance matrix of the innovation process. Since the estimation error is orthogonal to the

estimator, Πk = E[ykyTk ]− E[yk/k−1yTk/k−1]; so, let us calculate both expectations. From the expression of observation Eq. (2)
and taking into account the hypotheses of the model, it is clear that

E[ykyTk ] = (1 − pk)[αkβ
T
k + Rk] + pk[αk−1β

T
k−1 + Rk−1], k ≥ 1.

In order to determine the expectation E[yk/k−1yTk/k−1], we use (13) foryk/k−1 and the definition ofmk = E[QkQ T
k ] obtaining

E[yk/k−1yTk/k−1] = Λkmk−1Λ
T
k + p01(1 − pk−1)ΛkMk−1Π

−1
k−1Rk−1 + p01(1 − pk−1)Rk−1Π

−1
k−1M

T
k−1Λ

T
k

+ p201(1 − pk−1)
2Rk−1Π

−1
k−1Rk−1, k ≥ 2,

E[y1/0yT1/0] = 0,

where we make use of the fact that Mk = E[Okν
T
k ]. From these two expectations, the innovation covariance matrix, given

by (9), is then obtained. �

Now, taking into account the general expression for the linear estimator (3) together with the results of Theorem 1, in
the following section, recursive algorithms are derived for the filtering and fixed-point smoothing estimation problems.

4. Recursive estimation algorithms

4.1. Filtering algorithm

Under hypotheses (i)–(iv) set out in Section 2, the filter of the signal is obtained byxk/k = αkOk, k ≥ 0, (14)

where the vectors Ok are recursively calculated as

Ok = Ok−1 + JkΠ−1
k νk, k ≥ 1; O0 = 0 (15)
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with

Jk = (1 − pk)βT
k + pkβT

k−1 − rk−1Λ
T
k − p01(1 − pk−1)Jk−1Π

−1
k−1Rk−1, k ≥ 2,

J1 = (1 − p1)βT
1 + p1βT

0

(16)

and

rk = rk−1 + JkΠ−1
k MT

k , k ≥ 1; r0 = 0. (17)

The innovation, νk, k ≥ 1, its covariance matrix, Πk, andMk are given in Theorem 1.

Proof. Taking into account the general expression of estimators (3) in terms of the innovations, to derive the linear filter of
the signal, it is necessary to calculate the coefficients Sk,i = E[xkνT

i ] for 1 ≤ i ≤ k. Using expression (4) for νi, (2) and the
hypotheses of the model, we obtain

Sk,i = αk[(1 − pi)βT
i + piβT

i−1] − E[xkQ T
i−1]Λ

T
i − p01(1 − pi−1)E[xkνT

i−1]Π
−1
i−1Ri−1, i ≤ k,

Sk,1 = αk[(1 − p1)βT
1 + p1βT

0 ],

and from the definition Qi =
∑i

j=1 MiΠ
−1
j νj,

Sk,i = αk[(1 − pi)βT
i + piβT

i−1] −

i−1−
j=1

Sk,jΠ−1
j MT

j ΛT
i − p01(1 − pi−1)Sk,i−1Π

−1
i−1Ri−1.

So,

Sk,i = αkJi, 1 ≤ i ≤ k, (18)

where Ji is a function satisfying

Ji = (1 − pi)βT
i + piβT

i−1 −

i−1−
j=1

JjΠ−1
j MT

j ΛT
i − p01(1 − pi−1)Ji−1Π

−1
i−1Ri−1, 1 < i ≤ k,

J1 = (1 − p1)βT
1 + p1βT

0 .

(19)

Now, substituting (18) in the expression of the filter,xk/k =
∑k

i=1 Sk,iΠ
−1
i νi, and defining Ok =

∑k
i=1 JiΠ

−1
i νi, k ≥ 1 and

O0 = 0, expression (14) for the filter is deduced.
Clearly, the recursive relation (15) is obtained from the definition of Ok.
Expression (16) for Jk is derived by performing i = k in (19) and defining

rk = E[OkQ T
k ] =

k−
j=1

JjΠ−1
j MT

j , k ≥ 1; r0 = 0.

Finally, from the above definition of rk, the recursive relation (17) is immediate. �

4.2. Filtering error covariance matrices

The performance of the filter can bemeasured by the estimation errors, xk−xk/k, and,more specifically, by the covariance
matrices of these errors,

Pk/k = E[(xk −xk/k)(xk −xk/k)T ], k ≥ 0.

Since the estimation error is orthogonal to the estimator, taking into account hypothesis (i),

Pk/k = αkβ
T
k − E[xk/kxTk/k], k ≥ 0.

Now, using (14) forxk/k, the filtering error covariance matrices are given by

Pk/k = αk[β
T
k − dkαT

k ], k ≥ 0,

where dk = E[OkOT
k ]. Using the recursive relation (15) for Ok and taking into account that Ok−1 and νk are uncorrelated, the

following recursive relation is obtained for dk:

dk = dk−1 + JkΠ−1
k JTk , k ≥ 1; d0 = 0.

In the following, we focus on the fixed-point smoothing problem; that is, our aim is to obtain the least-squares linear
estimator of the signal xk based on the observations y1, . . . , yL, being L > k.
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4.3. Fixed-point smoothing algorithm

Under hypotheses (i)–(iv) set out in Section 2, the fixed-point smoother of the signal xk can be recursively obtained by

xk/L =xk/L−1 + Sk,LΠ−1
L νL, L > k, k ≥ 0 (20)

with initial conditionxk/k, given by (14).
The smoothing gain, Sk,L, is given by

Sk,L = βk[(1 − pL)αT
L + pLαT

L−1] − Fk,L−1Λ
T
L − p01(1 − pL−1)Sk,L−1Π

−1
L−1RL−1, L > k,

S0,1 = β0[(1 − p1)αT
1 + p1αT

0 ],
(21)

where the matrices Fk,L satisfy the following recursive formula

Fk,L = Fk,L−1 + Sk,LΠ−1
L MT

L , L > k,
Fk,k = αkrk.

(22)

The innovation νL and the matricesML, ΠL are determined according to Theorem 1 and the matrix rk is given by (17).

Proof. The recursive relation (20) is immediate from (3). Then, our aim is to determine the smoothing gain, Sk,L =

E[xkνT
L ], L > k by means of reasoning analogous to that used to obtain Sk,i, i ≤ k in the filtering algorithm, obtaining

Sk,L = βk[(1 − pL)αT
L + pLαT

L−1] −

L−1−
j=1

Sk,jΠ−1
j MT

j ΛT
L − p01(1 − pL−1)Sk,L−1Π

−1
L−1RL−1,

S0,1 = β0[(1 − p1)αT
1 + p1αT

0 ].

Then, by defining

Fk,L =

L−
j=1

Sk,jΠ−1
j MT

j ,

expression (21) for the smoothing gain is derived.
From the above definition of Fk,L the recursive relation (22) is immediate. �

4.4. Fixed-point error covariance matrices

As observed above, a measure of the goodness of the estimators is the estimation error covariance matrices; then,
as in the study of the filter, we determine a recursive formula for the fixed-point smoothing error covariance matrices
Pk/L = E[xkxTk ] − E[xk/LxTk/L]. Using (20) and taking into account thatxk/L−1 is uncorrelated with νL, we obtain

Pk/L = E[xkxTk ] − E[xk/L−1xTk/L−1] − Sk,LΠ−1
L STk,L, L > k

and the following recursive expression at L for the smoothing error covariance matrices is obtained

Pk/L = Pk/L−1 − Sk,LΠ−1
L STk,L, L > k

with the initial condition of the filtering error covariance matrices, Pk/k.

5. Simulation example

In this section, a simulation example is given to illustrate the effectiveness of the proposed algorithms. This is
implemented in a MATLAB program which, at each iteration, simulates the signal and the observed values and provides
the filtering and smoothing estimates, as well as their corresponding error variances.

Consider a zero-mean scalar signal {xk, k ≥ 0} with covariance function

E[xkxs] = 1.025641 × 0.95k−s, s ≤ k

which is expressed according to hypothesis (i) by taking

αk = 1.025641 × 0.95k and βs = 0.95−s.

The measurement of the signal, zk, is given by (1) where the measurement noise, {vk, k ≥ 0}, is a zero-mean white noise
with Rk = 0.9.

According to the theoretical model, it is assumed that the available measurements of the signal can be delayed by one
sample period during the transmission; that is, the processed observations are modeled by

yk = (1 − ξk)zk + ξkzk−1, k ≥ 1,
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Fig. 1. Simulated signal, filtering and smoothing estimates.

Fig. 2. Filtering and smoothing error variances.

where {ξk, k ≥ 1} are Bernoulli random variables. As in Section 2.1, it is assumed that this sequence is a homogeneous
Markov chainwith initial distribution P[ξ1 = 1] = 0 (the first observation is not delayed), and that the transition probability
matrix is given by P =


0.95 0.05
0.11 0.89


.

Moreover, the signal and noise processes are assumed to be mutually independent.
In order to realize the simulation process, the signal is assumed to be generated from the following first-order

autoregressive model,

xk+1 = 0.95xk + wk

where {wk, k ≥ 0} is a zero-mean white Gaussian noise with E[w2
k ] = 0.1, ∀k.

To analyze the performance of the algorithms proposed in Section 4, 100 iterations of each one were performed and the
filtering and smoothing error variances were calculated.

Fig. 1 shows a simulated signal together with the filtering estimates,xk/k, and fixed-point smoothing estimates,xk/k+3.
This figure reveals, as expected, that the smoothing estimates follow the evolution better than the filtering estimates, which
means that the estimation performance is better as the number of available observations increases. Fig. 2 shows the filtering
and fixed-point smoothing error variances, Pk/k, Pk/k+1 and Pk/k+3. Examination of this figure confirms the simulated results
in Fig. 1, showing that the best estimations are obtained by the fixed-point smoothers since, as seen, the smoothing error
variances, Pk/k+1 and Pk/k+3, are smaller than the filtering error variances, Pk/k. On the other hand, we also observe that the
smoothing error variances decrease as the number of observations increase; that is, the best results are obtained forxk/k+3.

Moreover, we have also calculated the filtering error variances assuming that the arrival of the signal (no delay or delay)
is modeled by different Markov chains. Concretely, we assume the same initial distribution and the following transition
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Fig. 3. Filtering error variances for different transition probability matrix.

probability matrices

P1 =


0.99 0.01
0.06 0.94


, P2 =


0.95 0.05
0.11 0.89


,

P3 =


0.89 0.11
0.03 0.97


and P4 =


0.85 0.15
0.01 0.99


.

The properties of the Markov chains lead us to conclude that the delay probability converges to a constant value; in our
case these values, for the different transition probability matrices considered, are p1 ≃ 0.142, p2 ≃ 0.312, p3 ≃ 0.785
and p4 ≃ 0.937, respectively. Fig. 3 shows the filtering error variances for these models, reflecting only the values of the
filtering error variances for time k ≥ 60 since from this iteration the delay probabilities are stabilized in all cases considered.
Analysis of this figure reveals that as the limit probability of delay decreases, the filtering error variances become smaller
and, consequently the performance of the estimator improves.

6. Conclusions

Recursive filtering and fixed-point smoothing algorithms to estimate the signal from randomly delayed observations are
proposed. The variables modeling the random delays are assumed to be non-independent Bernoulli random variables, and
the dependence is modeled by a homogeneous Markov chain. Assuming that the state-space model generating the signal is
unknown, the algorithms are derived, using an innovation approach, under the assumption that the second-order moments
of the signal and noises are known. In order to provide a measure of the goodness of the proposed estimators, recursive
expressions to calculate the filtering and smoothing error covariance matrices are also derived.
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