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a b s t r a c t

In the previous works, the authors presented the reproducing kernel method(RKM) for
solving various boundary value problems. However, an effective error estimation for this
method has not yet been discussed. The aim of this paper is to fill this gap. In this paper, we
shall give the error estimation for the reproducing kernel method to solve linear boundary
value problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Reproducing kernel theory has important applications in numerical analysis, differential equations, probability and
statistics, learning theory and so on. Boundary value problems have been investigated in many application areas. However,
these problems are difficult to solve analytically. Recently, reproducing kernel methods for solving a variety of boundary
value problems were presented by Cui and Geng [1–6], Lin and Zhou [7,8], Yao, Chen and Jiang [9,10], Wang, Li and Wu
[11,12], Mohammadi and Mokhtari [13], Akram and Ur Rehman [14].

In this paper, we consider the error estimation for the reproducing kernel method applied to the following second order
two-point boundary value problems:

u′′(x)+ p(x)u′(x)+ q(x)u(x) = f (x), 0 < x < 1,
u(0) = 0, u(1) = 0, (1.1)

where p(x), q(x) are continuous and f is given such that (1.1) satisfies the existence and uniqueness of the solutions. There
is no loss of generality in considering only homogeneous boundary conditions in (1.1) because it is always possible to reduce
nonhomogeneous problems to the treated cases, by means of suitable transformations.

The rest of the paper is organized as follows. In the next section, the reproducing kernel method for solving (1.1) is
introduced. The error estimation is presented in Section 3. Numerical examples are provided in Section 4. Section 5 ends
this paper with a brief conclusion.

2. Reproducing kernel method for (1.1)

In this section, we introduce the RKM for solving linear two-point boundary value problems.
To solve (1.1), first, we construct reproducing kernel spaces Wm

[0, 1], (m ≥ 3) in which every function satisfies the
boundary conditions of (1.1).
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Definition 2.1. Wm
[0, 1] = {u(x) | u(m−1)(x) is an absolutely continuous real value function, u(m)(x) ∈ L2[0, 1], u(0) = 0,

u(1) = 0}. The inner product and norm inWm
[0, 1] are given respectively by

(u, v)m =

m−1
i=0

u(i)(0)v(i)(0)+

 1

0
u(m)(x)v(m)(x)dx

and

∥u∥m =


(u, u)m, u, v ∈ Wm

[0, 1].

By [1,6],Wm
[0, 1] is a reproducing kernel space and its reproducing kernel k(x, y) can be obtained.

In [6], Cui and Lin defined a reproducing kernel spaceW 1
[0, 1] and gave its reproducing kernel

k(x, y) =


1 + y, y ≤ x,
1 + x, y > x.

In (1.1), put Lu(x) = u′′(x)+ p(x)u′(x)+ q(x)u(x), it is clear that L : Wm
[0, 1] → W 1

[0, 1] is a bounded linear operator.
Put ϕi(x) = k(xi, x) and ψi(x) = L∗ϕi(x) where k(xi, x) is the reproducing kernel of W 1

[0, 1], L∗ is the adjoint operator
of L. The orthonormal system {ψ i(x)}

∞

i=1 of Wm
[0, 1] can be derived from the Gram–Schmidt orthogonalization process of

{ψi(x)}∞i=1,

ψ i(x) =

i
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .). (2.1)

According to [1,6], we have the following theorem:

Theorem 2.1. For (1.1), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the complete system of Wm
[0, 1] and ψi(x) = Lsk

(x, s)|s=xi .

Theorem 2.2. If {xi}∞i=1 is dense on [0, 1] and the solution of (1.1) is unique, then the solution of (1.1) is

u(x) =

∞
j=1

Ajψ j(x), (2.2)

where Aj =
j

l=1 βjlf (xl).

Now, the approximate solution u(x) can be obtained by taking finitely many terms in the series representation of u(x)
and

uN(x) =

N
j=1

Ajψ j(x). (2.3)

Remark. Since Wm
[0, 1] is a Hilbert space, it is clear that


∞

i=1(
i

k=1 βikf (xk))2 < ∞. Therefore, the sequence uN is con-
vergent in the sense of norm ∥ · ∥m.

Lemma 2.1. If u(x) ∈ Wm
[0, 1], then there exists a constant c such that |u(x)| ≤ c∥u(x)∥m, |u(k)(x)| ≤ c∥u(x)∥m 1 ≤ k ≤

m − 1.

Proof. Since

|u(x)| = |(u(y), k(x, y))m| ≤ ∥u(y)∥m∥k(x, y)∥m,

there exists a constant c0 such that

|u(x)| ≤ c0∥u∥m.

Note that

|u(i)(x)| =

u(y), ∂ ik(x, y)∂xi


m


≤ ∥u∥4

∂ ik(x, y)∂xi


m

≤ ci∥u∥m, (i = 0, 1, 2, . . . ,m − 1),

where ci are constants.
Putting c = max0≤i≤m−1{ci} and the proof of the lemma is complete. �
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From above lemma, by convergence of un(x) in the sense of norm, it is easy to obtain the following theorem.

Theorem 2.3. The approximate solution un(x) and its derivatives u(k)n (x), 1 ≤ k ≤ m − 1 are all uniformly convergent.

3. Error estimation

Theorem 3.1. Let uN(x) be the approximate solution of (1.1) in space W 4
[0, 1] and u(x) be the exact solution of (1.1). If

0 = x1 < x2 < · · · < xN = 1, and if p(x), q(x), f (x) ∈ C2
[0, 1], then

∥u(x)− uN(x)∥∞ ≤ d1 h, ∥u(k)(x)− u(k)N (x)∥∞ ≤ d1 h, 1 ≤ k ≤ 2

where ∥u(x)∥∞ = maxx∈[0,1] |u(x)|, d1 is a constant, h = max1≤i≤N−1 |xi+1 − xi|.

Proof. Note here that

LuN(x) =

N
i=1

AiLψ i(x)

and

(LuN)(xn) =

N
i=1

Ai(Lψ i, ϕn) =

N
i=1

Ai(ψ i, L
∗ϕn) =

N
i=1

Ai(ψ i, ψn).

Therefore,

n
j=1

βnj(LuN)(xj) =

N
i=1

Ai


ψ i,

n
j=1

βnjψj


=

N
i=1

Ai(ψ i, ψn) = An. (3.1)

If n = 1, then (LuN)(x1) = f (x1).
If n = 2, then β21(LuN)(x1)+ β22(LuN)(x2) = β21f (x1)+ β22f (x2).
It is clear that (LuN)(x2) = f (x2).
Moreover, it is easy to see by induction that

(LuN)(xj) = f (xj), j = 1, 2, . . . ,N. (3.2)

Put RN(x) = f (x)− LuN(x). Obviously, RN(x) ∈ C2
[0, 1] and RN(xj) = 0, j = 1, 2, . . . ,N . Suppose that l(x) is a polynomial

of degree = 1 that interpolates the function RN(x) at xi, xi+1. It is clear that l(x) = 0. Also, for ∀ x ∈ [xi, xi+1],

RN(x) = RN(x)− l(x) =
R′′

N(ξi)

2!
(x − xi)(x − xi+1), ξi ∈ [xi, xi+1]. (3.3)

Hence, for ∀ x ∈ [xi, xi+1],

|RN(x)| ≤
|R′′

N(ξi)|

8
h2
i = cih2

i , ci =
|R′′

N(ξi)|

8
, hi = |xi+1 − xi|.

Putting c = max1≤i≤N−1 ci and h = max1≤i≤N−1 hi, we have

∥RN(x)∥∞ = max
x∈[0,1]

|RN(x)| ≤ c h2.

Obviously,

R2
N(0) ≤ c2 h4. (3.4)

From (3.3), one obtains 1

0
(R′

N)
2dx =

N−1
i=1

 xi+1

xi
(R′

N)
2dx ≤ cc h2, (3.5)

where cc is a constant.
In view of (3.4) and (3.5), there exists a constant c such that

∥RN(x)∥1 =


R2
N(0)+

 1

0
(R′

N)
2dx
 1

2

≤ ch.
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Noting that

u(x)− uN(x) = L−1RN(x),

there exists a constant d1 such that

∥u(x)− uN(x)∥4 = ∥L−1RN(x)∥4 ≤ ∥L−1
∥ ∥RN(x)∥1 ≤ d1 h.

According to Lemma 2.1, it is easy to see that

∥u(x)− uN(x)∥∞ ≤ d1 h, ∥u(k)(x)− u(k)N (x)∥∞ ≤ d1 h, 1 ≤ k ≤ 2. �

Theorem 3.2. Let uN(x) be the approximate solution of (1.1) in space W 5
[0, 1] and u(x) be the exact solution of (1.1). If

0 = x1 < x2 < · · · < xN = 1, and if p(x), q(x), f (x) ∈ C4
[0, 1], then

∥u(x)− uN(x)∥∞ ≤ d2 h3, ∥u(k)(x)− u(k)N (x)∥∞ ≤ d2 h3, 1 ≤ k ≤ 2

where d2 is a constant, h = max1≤i≤N−1 |xi+1 − xi|.

Proof. From the proof of Theorem 3.1, we have

LuN(xj) = f (xj), j = 1, 2, . . . ,N.

Put

RN(x) = f (x)− LuN(x).

Obviously,

RN(x) ∈ C4
[0, 1], RN(xj) = 0, j = 1, 2, . . . ,N.

On interval [xi, xi+1], the application of Roll’s theorem to RN(x) yields

R′

N(yi) = 0, yi ∈ (xi, xi+1), i = 1, 2, . . . ,N − 1.

On interval [yi, yi+1], the application of Roll’s theorem to R′

N(x) yields

R′′

N(zi) = 0, zi ∈ (yi, yi+1), i = 1, 2, . . . ,N − 2.

Putting

h = max
1≤i≤N−1

{|xi+1 − xi|}, hy = max
1≤i≤N−2

{|yi+1 − yi|}, hz = max
1≤i≤N−3

{|zi+1 − zi|},

clearly,

hy ≤ 2h, hz ≤ 4h.

Suppose that l1(x) is a polynomial of degree = 1 that interpolates the function R′′

N(x) at z1, z2. It is clear that l1(x) = 0. Also,
for ∀ x ∈ [x1, z2], there exist η1 ∈ [x1, z2] and a constant b1 such that

R′′

N(x) = R′′

N(x)− l1(x) =
R(4)N (η1)

2!
(x − z1)(x − z2) ≤ b1 h2.

In a similar way, there exist constants ci, b2 such that

R′′

N(x) ≤ ci h2, x ∈ [zi, zi+1], i = 2, 3, . . . ,N − 3,

and

R′′

N(x) ≤ b2 h2, x ∈ [zN−2, xN ].

Hence, there exist a constant d2 such that

∥R′′

N(x)∥∞ ≤ d2 h2.

On interval [xi, xi+1] i = 1, 2, . . . ,N − 1, noting that

R′

N(x) =

 x

yi
R′′

N(s)ds,

there exist constants ai

|R′

N(x)| ≤ ∥R′′

N(x)∥∞|x − yi| ≤ ai h3.
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It turns out that

∥R′

N(x)∥∞ ≤ a0 h3, x ∈ [x1, xN ] = [0, 1] (3.6)

where a0 is a constant.
In a similar way, there exists a constant a1 such that

∥RN(x)∥∞ ≤ a1 h4, x ∈ [0, 1].

Obviously,

|R2
N(0)| ≤ a21 h

8. (3.7)

From (3.4), one obtains 1

0
(R′

N)
2dx ≤ a2 h6, (3.8)

where a2 is a constant.
From (3.7) and (3.8), there exists a constant a3 such that

∥RN(x)∥1 =


R2
N(0)+

 1

0
(R′

N)
2dx
 1

2

≤ a3 h3.

Noting that

u(x)− uN(x) = L−1RN(x),

there exists a constant d2 such that

∥u(x)− uN(x)∥4 = ∥L−1RN(x)∥4 ≤ ∥L−1
∥ ∥RN(x)∥1 ≤ d2 h3.

According to Lemma 2.1, it is easy to see that

∥u(x)− uN(x)∥∞ ≤ d2 h3, ∥u(k)(x)− u(k)N (x)∥∞ ≤ d2 h3, 1 ≤ k ≤ 2. �

Theorem 3.3. Let uN(x) be the approximate solution of (1.1) in space W 6
[0, 1] and u(x) be the exact solution of (1.1). If

0 = x1 < x2 < · · · < xN = 1, and if p(x), q(x), f (x) ∈ C6
[0, 1], then

∥u(x)− uN(x)∥∞ ≤ d2 h5, ∥u(k)(x)− u(k)N (x)∥∞ ≤ d3 h5, 1 ≤ k ≤ 2

where d3 is a constant, h = max1≤i≤N−1 |xi+1 − xi|.

Proof. The proof of this theorem is similar to Theorem 3.2. �

4. Numerical examples

Example 4.1. Consider the following linear two-point boundary value problemu′′(x)+ 200exu′(x)+ 300 sin(x)u(x) = f (x), 0 < x < 1,

u(0) = 1, u(1) =

√
3
2
,

where f (x) is given such that the exact solution is u(x) = sinh(x).

Using the method presented in Section 2, taking N = 11, xi = 0.1(i− 1), i = 1, 2, . . . ,N , the numerical results of uN(x)
in different reproducing kernel spaces are shown in Figs. 1–3.

5. Conclusion

In this paper, we give firstly an error estimation for the reproducing kernel method applied to linear two point boundary
value problems. The error estimation presented in this paper can be extended to more general linear boundary values with
linear boundary conditions.
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Fig. 1. Absolute errors of u11(x) in W 4 and W 5 .

Fig. 2. Absolute errors of u′

11(x) in W 4 and W 5 .

Fig. 3. Absolute errors of u′′

11(x) in W 4 and W 5 .
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