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a b s t r a c t

We develop algorithmic techniques for the Coxeter spectral analysis of the class UBigrn
of connected loop-free positive edge-bipartite graphs ∆ with n ≥ 2 vertices (i.e., signed
graphs). In particular, we present numerical and graphical algorithms allowing us a
computer search in the study of such graphs ∆ by means of their Gram matrix Ǧ∆, the
(complex) spectrum specc∆ ⊆ C of the Coxeter matrix Cox∆ := −Ǧ∆ · Ǧ−tr∆ , and the
geometry of Weyl orbits in the set MorD∆ of matrix morsifications A ∈ Mn(Z) of a simply
laced Dynkin diagramD∆ ∈ {An, Dn, E6, E7, E8} associatedwith∆ andmesh root systems
of type D∆. Our algorithms construct the Coxeter–Gram polynomials cox∆(t) ∈ Z[t] and
mesh geometries of root orbits of small connected loop-free positive edge-bipartite graphs
∆. We apply them to the study of the following Coxeter spectral analysis problem: Does
the Z-congruence ∆≈Z ∆′ hold (i.e., the matrices Ǧ∆ and Ǧ∆′ are Z-congruent), for any pair
of connected positive loop-free edge-bipartite graphs ∆, ∆′ in UBigrn such that specc∆ =

specc∆′? The problem if any square integer matrix A ∈ Mn(Z) is Z-congruent with its
transpose Atr is also discussed. We present a solution for graphs in UBigrn, with n ≤ 6.

© 2013 Elsevier B.V. All rights reserved.

1. Preliminaries and notation

One of the aims of the paper is to develop algorithmic techniques for the study of Coxeter spectral analysis problems
formulated in [1–3] for loop-free edge-bipartite graphs ∆ = (∆0, ∆1), with n ≥ 2 vertices. Here we keep the terminology
and notation introduced in [3,4]. In particular, we denote by N the set of non-negative integers, by Z the ring of integers,
and by Q ⊆ R ⊆ C the rational, the real, and the complex number field, respectively. We view Zn, with n ≥ 1, as a free
abelian group, and we denote by e1, . . . , en the standard Z-basis of Zn. We denote by Mn(Z) the Z-algebra of all square
n by n matrices, by E ∈ Mn(Z) the identity matrix. We also use the right action ∗ : Mn(Q) × Gl(n, Z) −→ Mn(Q),
(A, C) → A ∗ C := C tr

· A · C of the general Z-linear group Gl(n, Z) := {A ∈ Mn(n, Z), det A ∈ {−1, 1}} on Mn(Q).
Following [3,4], by an edge-bipartite graph (bigraph, for short), we mean a pair ∆ = (∆0, ∆1), where ∆0 is a finite

non-empty set of vertices and ∆1 is a finite set of edges equipped with a bipartition ∆1 = ∆−1 ∪ ∆+1 such that the set
∆1(i, j) = ∆−1 (i, j) ∪∆+1 (i, j) of edges connecting the vertices i and j does not contain edges lying in ∆−1 (i, j) ∩∆+1 (i, j), for
each pair of vertices i, j ∈ ∆0, and either ∆1(i, j) = ∆−1 (i, j) or ∆1(i, j) = ∆+1 (i, j). Obviously, edge-bipartite graphs can be
viewed as signed multi-graphs satisfying a separation property, see [3,5]. We call ∆ = (∆0, ∆1) loop-free if it has no loops,
that is, ∆1(j, j) = ∅, for all j ∈ ∆0. We denote by Bigrn the category of finite edge-bipartite graphs, with n ≥ 2 vertices,
and the usual edge-bipartite graph maps as morphisms, see [3] for details. The full subcategory of Bigrn consisting of all
loop-free graphs is denoted by UBigrn.
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Wevisualize∆ as a graph in a Euclidean spaceRm,m ≥ 2,with the vertices a1, . . . , an numbered by the integers 1, . . . , n;
usually we simply write ∆0 = {1, . . . , n}. An edge in ∆−1 (ai, aj) is visualized as a continuous one ai−−−− aj, and an edge in
∆+1 (ai, aj) is visualized as a dotted one ai- - -aj.

We view any finite graph ∆ = (∆0, ∆1) as an edge-bipartite one by setting ∆−1 (ai, aj) = ∆1(ai, aj) and ∆+1 (ai, aj) = ∅,
for each pair of vertices ai, aj ∈ ∆0. We study the loop-free edge-bipartite graphs ∆ ∈ UBigrn by means of the non-
symmetric Gram matrix

Ǧ∆ = [d∆
ij ] ∈ Mn(Z),

where d∆
ij = −|∆

−

1 (ai, aj)|, if there is an edge ai−−−− aj and i ≤ j, d∆
ij = |∆

+

1 (ai, aj)|, if there is an edge ai- - -aj and i ≤ j.
We set d∆

ij = 0, if ∆1(ai, aj) is empty or j < i. The matrix G∆ :=
1
2 (Ǧ∆ + Ǧtr

∆) is called the symmetric Gram matrix. We
call ∆ = (∆0, ∆1) positive (resp. non-negative), if the rational symmetric Gram matrix G∆ :=

1
2 (Ǧ∆ + Ǧtr

∆) of ∆ is positive
definite (resp. positive semi-definite). Two graphs ∆, ∆′ ∈ Bigrn are defined to be Z-equivalent (resp. Z-bilinear equivalent)
if there exists B ∈ Gl(n, Z) such that G∆′ = Btr

·G∆ ·B (resp. Ǧ∆′ = Btr
· Ǧ∆ ·B). In this case, wewrite∆∼Z ∆′ (resp.∆≈Z ∆′)

and we say that B ∈ Gl(n, Z) defines the Z-equivalence ∆∼Z ∆′ (resp. ∆≈Z ∆′).
Following [3] (see also [6]), we associate with any edge-bipartite graph ∆ in UBigrn, with n ≥ 2, the Coxeter spectrum

specc∆ ⊆ C, i.e., the spectrum of the Coxeter(–Gram) matrix and of the Coxeter(–Gram) polynomial

Cox∆ := −Ǧ∆ · Ǧ−tr∆ ∈ Mn(Z), cox∆(t) := det(t · E − Cox∆) ∈ Z[t]. (1.1)

The Coxeter transformation Φ∆ : Zn
→ Zn of ∆ is defined by Φ∆(v) := v · Cox∆ and the Coxeter number c∆ of ∆ is a

minimal integer c ≥ 2 such that Φc
∆ is the identity map on Zn. By the integral quadratic form of ∆ we mean

q∆(x) := b∆(x, x) = x21 + · · · + x2n +

i<j

d∆
ij xixj = x · G∆ · xtr = x · Ǧ∆ · xtr . (1.2)

We recall from [3, Lemma 2.1] that the Coxeter spectrum specc∆ ⊆ C lies on the unit circle S1
:= {z ∈ C; |z| = 1}

and all points in specc∆ are roots of unity, if ∆ is non-negative. If, in addition, ∆ is positive then 1 ∉ specc∆ and the set
R∆ := {v ∈ Zn

; v · G∆ · v
tr
= 1} ⊆ Zn of roots of ∆ is finite.

One of our aims of the paper is to present an algorithmic technique for a computer search of the following Coxeter spectral
analysis problems stated in [3] and discussed in [2–4,7].

Problem 1.3. Given n ≥ 2, compute the set CGpol+n of all Coxeter(–Gram) polynomials cox∆(t) ∈ Z[t], with positive
connected loop-free edge-bipartite graphs ∆ in UBigrn.

Problem 1.4. Show that, given a pair of connected positive loop-free edge-bipartite graphs∆ and∆′ inUBigrn, the equality
specc∆ = specc∆′ is equivalent to the existence of a Z-invertible matrix B ∈ Mn(Z) such that Ǧ∆′ = Btr

· Ǧ∆ · B. Construct
an algorithm computing such a matrix B ∈ Gl(n, Z).

Problem 1.5. For any matrix A ∈ Mn(Z), with det A = 1, find a matrix C ∈ Gl(n, Z) such that Atr
= C tr

· A · C and C2
= E,

see [8].

Problem 1.6. Given a connected positive loop-free edge-bipartite graph ∆ in UBigrn, construct a minimal Φ∆-mesh
geometry of roots of ∆ (that is, a Φ∆-mesh translation quiver Γ ( R∆, Φ∆) satisfying the conditions of [2, Definition 1.11],
see Section 2) such that, for any a pair of connected positive edge-bipartite graphs ∆ and ∆′ in UBigrn, the equality
specc∆ = specc∆′ implies the existence of a group automorphism Zn ∼= Zn that restricts to a Φ∆-mesh translation quiver
isomorphism Γ ( R∆, Φ∆) ∼= Γ ( R∆′ , Φ∆′).

The main results of the paper are the following two theorems (proved in Section 3) that contain a partial solution of
Problems 1.3–1.6 for edge-bipartite graphs ∆, ∆′ in UBigrn, with n ≤ 6.

Theorem 1.7. Assume that ∆, ∆′ are positive connected loop-free edge-bipartite graphs in UBigrn, with 2 ≤ n ≤ 6 and
D∆,D∆′ are the simply laced Dynkin diagrams associated in Theorem 2.1, with ∆∼Z D∆ and ∆′∼Z D∆′.

(a) (cox∆(t), c∆) is one of the pairs (F (j)
D∆(t), c(j)

D∆) listed in Table 1.8, see also [3, Figure 3].
(b) specc∆ = specc∆′ if and only if ∆≈Z ∆′.
(c) Given ∆, there exists a matrix C ∈ Gl(n, Z) such that Ǧtr

∆ = C tr
· Ǧ∆ · C and C2

= E.
(d) Given ∆, there is a minimal Φ∆-mesh geometry of roots Γ ( R∆, Φ∆) of ∆ satisfying the conditions listed in 1.6.

The following theorem contains a complete classification of positive connected loop-free edge-bipartite graphs with at
most six vertices, up to the congruence ∆≈Z ∆′.

Theorem 1.9. Assume that ∆ is a positive connected loop-free edge-bipartite graph in UBigrn, with 2 ≤ n ≤ 6. Under the
notation in Theorem 1.7, we have

(a) If cox∆(t) = F (1)
D∆(t) then ∆≈Z D∆.
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Table 1.8
Coxeter polynomials cox∆(t) and Coxeter numbers c∆ of positive connected bigraphs∆ ∈ UBigrn , with n ≤ 6 andD = D∆.

D = D∆ CP ol+∆ = {F
(j)
D (t)}j≤s∆ c(j)

∆ #Φ∆-orbits inR∆

An F (1)
An (t) = tn + tn−1 + · · · + t + 1 n+ 1 no× n+ 1

D4 F (1)
D4

(t) = t4 + t3 + t + 1 6 4o× 6
F (2)

D4
(t) = t4 + 2t2 + 1 4 6o× 4

D5 F (1)
D5

(t) = t5 + t4 + t + 1 8 5o× 8
F (2)

D5
(t) = t5 + t3 + t2 + 1 12 2o×12+2o×6+1o×4

D6 F (1)
D6

(t) = t6 + t5 + t + 1 10 6o× 10
F (2)

D6
(t) = t6 + t4 + t2 + 1 8 7o× 8+ 1o× 4

F (3)
D6

(t) = t6 + 2t3 + 1 6 10o× 6

E6 F (1)
E6

(t) = t6 + t5 − t3 + t + 1 12 6o× 12
F (2)

E6
(t) = t6 + t3 + 1 9 8o× 9

F (3)
E6

(t) = t6 − t5 + 2t4 − t3 + 2t2 − t + 1 6 12o× 6

(b) If cox∆(t) = F (j)
D∆(t) and j ≥ 2 then D∆ ∈ {D4, D5, D6, E6} and ∆≈Z ∆

(j)
D∆, where

•3 ___ •4
∆

(2)
D4
:

�
�
�

•1 ___ •2

•4 ___ •2
∆

(2)
D5
:

�
�
�

•1 ___ •5 ___ •3

•2 •3 •4
∆

(2)
D6
:

•1

}
}

}
}

•6 •5

•1

AA
AA

AA
AA

•2 •4
∆

(3)
D6
:

�
�
�

•5 ___ •3 •6

•4

A
A

A
A •6

∆
(2)
E6
:

•3

}
}

}
}

•1 •5 ___ •2

•2 ___ •5 •6
∆

(3)
E6
:

�
�
�

•3 •1 •4

Our study is inspired on one hand by the spectral graph theory, a graph coloring technique and algebraic methods in
graph theory (see [3,6,9–13]), and on the other hand by application in the representation theory of posets, finite groups,
finite-dimensional algebras over a field, cluster algebras, Lie theory, and elementary Diophantine geometry, where various
problems of extremal graph theory, discrete mathematics technique, numeric and symbolic algorithms, and computer
algebra tools are successfully applied, see [1–7,9,10,12–37].

We recall that the main idea of the classical spectral analysis of signed graphs ∆ (and edge-bipartite graphs) is to study
them bymeans of the properties of the symmetric adjacency matrix Ad∆, its (real) spectrum spec∆ ⊂ R, and in terms of the
Laplacian matrix of ∆. In particular, Laplacian spectral space and the signed graphs ∆ with the Laplacian matrix positive
semi-definite are studied in [31], where application to spectral machine learning methods, electrical networks, to link
sign prediction in signed unipartite and bipartite networks, and community partition in social networks are discussed, see
also [3,10,25,31,38].

Main results of the paper were presented at the International Conference on Applied and Computational Mathematics
(ICACM) organized by the Institute of Applied Mathematics, Middle East Technical University, Ankara, October 3–6, 2012.

2. On mesh root systems and mesh geometries of root orbits

Our Coxeter spectral analysis of positive connected edge-bipartite graphs in UBigrn essentially uses the inflation
algorithm ∆ → D∆ defined in [11, Algorithm 5.9] and [3, Algorithm 3.1] that associates with any positive edge-bipartite
graph in UBigrn a simply laced Dynkin diagram D∆ ∈ {An, Dn, E6, E7, E8} by means of two types of inflation operators
∆ → t−a ∆, a ∈ ∆0, and ∆ → t−ab∆, with a − − − b in ∆+. It successively reduces ∆ to an edge-bipartite graph in
UBigrn having no dashed edges. The effect of the inflation algorithm is described in the following theorem proved in [3]
(see also [11]).

Theorem 2.1. Assume that ∆ is a positive connected loop-free edge-bipartite graph inUBigrn, with n ≥ 2. There exists a simply
laced Dynkin diagram D∆ ∈ {An, Dn, E6, E7, E8}, called the Dynkin type of ∆ (uniquely determined by ∆, up to permutation of
vertices) and a sequence ts, ts−1, . . . , t1 of inflations such that D∆ = ts ◦ ts−1 ◦ · · · ◦ t1(∆) and GD∆ = C tr

· G∆ · C = G∆ ∗ C,
for some C ∈ Gl(n, Z). �

It is pointed out in [3,18–20,35,39] that the study of Problems 1.3–1.6 is related to the classification of irreducible root
systems in the sense of Bourbaki (see [36]). We recall that a (reduced) root system is a finite subset R ⊂ Rn generating the
Euclidean space Rn, n ≥ 1, satisfying:
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(i) 0 ∉ R,
(ii) for every v ∈ R there exists an R-linear map v∨ : Rn

→ R such that v∨(v) = 2 and R is invariant under the
reflection sv(x) = x− v∨(x) · v, and

(iii) if v, w ∈ R then sv(w)− w is an integer multiple of v.
With any such an irreducible root systems R a Coxeter–Dynkin CR diagram is associated.
It is observed in [3,20] that, given a positive connected graph ∆ in UBigrn, its set of roots R∆ is finite and conditions

(i)–(iii) are satisfied, where the R-linear map v∨ : Rn
→ R is defined by the formula v∨(x) = 2 · v · G∆ · xtr . Moreover,

by Theorem 2.1, the inflation algorithm ∆ → D∆ [3, Algorithm 3.1] reduces ∆ to a uniquely determined Dynkin graph
D∆ ∈ {An, Dn, E6, E7, E8} such that ∆∼Z D∆, that is, GD∆ = G∆ ∗ B, for some B ∈ Gl(n, Z). It follows that the
Coxeter–Dynkin diagram CR associated with the root system R = R∆ equals D∆ and is one of the following simply laced
Dynkin diagrams:

An :
•1−−−− •2−−−− •3−−−− . . . −−−− •−−−− •n

E6 :
•4
|

•1−−−− •2−−−− •3−−−− •5−−−− •6;

Dn :
•2
|

•1−−−− •3−−−− •4−−−− . . . −−−− •−−−− •n
E7 :

•4
|

•1−−−− •2−−−− •3−−−− •5−−−− •6−−−− •7;

E8 :
•4
|

•1−−−− •2−−−− •3−−−− •5−−−− •6−−−− •7−−−− •8;

By [35, Proposition 4.1], the set R∆ = {v ∈ Zn
; q∆(v) = 1} of roots of the quadratic form q∆ : Zn

→ Z (1.1) is finite.
We frequently use the following well-known result (see [3,28,32]).

Lemma 2.2. If ∆ is a simply laced Dynkin diagram, viewed as an edge-bipartite graph and c∆ is the Coxeter number of ∆ then
cox∆(t) = F∆(t), where

F∆(t) :=


tn + tn−1 + · · · + t2 + t + 1, c∆ = n+ 1, for ∆ = An, n ≥ 1,
tn + tn−1 + t + 1, c∆ = 2(n− 1), for ∆ = Dn, n ≥ 4,
t6 + t5 − t3 + t + 1, c∆ = 12, for ∆ = E6,
t7 + t6 − t4 − t3 + t + 1, c∆ = 18, for ∆ = E7,
t8 + t7 − t5 − t4 − t3 + t + 1, c∆ = 30, for ∆ = E8. �

Let ∆ be a connected positive loop-free edge-bipartite graph in UBigrn, n ≥ 2 and let Φ∆ : Zn
→ Zn be the

Coxeter transformation of ∆. By [35, Proposition 4.1], R∆ is a Φ∆-invariant subset of Zn and Φ∆ restricts to the bijection
Φ∆ : R∆ → R∆. Then R∆ splits into finitely many Φ∆-orbits Φ∆-O(v), with v ∈ R∆, each of length at most c∆. We
visualize Φ∆-O(v) as an infinite planar graph

Φ∆-O(v) : · · · −−−Φ3(v) −−−Φ2(v) −−−Φ(v) −−− v −−−Φ−1(v) −−−Φ−2(v) −−−Φ−3(v) −−− · · ·

in the Euclidean plane R2. Since Φ
j
∆(v) = Φ

j+c∆
∆ (v), the orbit lies on a circle, if we make the identification Φ

j
∆(v) ≡

Φ
j+c∆
∆ (v), for any j ∈ Z. It is shown in [1–3,35] that for an edge-bipartite graph ∆, with the Coxeter polynomial cox∆(t) ∈

Z[t] of a special form, the set of all Φ∆-orbits Φ∆-O(v), with v ∈ R∆, admits a geometrical structure Γ (R∆, Φ∆) of a Φ∆-
mesh translation quiver (digraph) in the sense of [35]. We recall from [35] that the vectors u, v(1), . . . , v(s), w ∈ Zn form a
Φ∆-mesh starting from u and terminating at w, if the following two conditions are satisfied:

(a) u = Φ(w) and u+ w = v(1)
+ · · · + v(s), and

(b) the vectors v(1), . . . , v(s) are pairwise different and none of them lies in the Φ∆-orbit of u.
If each of the vectors u, v(1), . . . , v(s) is non-zero, we say that the mesh is of width s ≥ 1. If the Φ∆-mesh is of width 1

and lies in R∆, we say that Φ∆-O(v) is the border Φ∆-orbit in R∆, that is, the vector v + Φ∆(v) is a root. We visualize the
Φ∆-mesh (resp. the border Φ∆-mesh) as the following quivers in R2:

v(1)

��:
::

::
::

v(2)

%%KKK
K

u

BB��������
::uuuu

$$III
II

...
Φ−1A (u)

v(s)

99ssss

(resp. u
##GGG

G Φ−1∆ (u)

v

88qqq
)

Example 2.3. Consider the following connected edge-bipartite graph ∆ in UBigr5:

4•
@

@

00
00

00
00

3• ____
~

~
•5

1•

�
�

�
�

�
�

nnnn
•2

PPPPPPP

with Ǧ∆ =

1 −1 1 1 1
0 1 −1 −1 −1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

and Cox∆ =

 0 0 0 0 −1
−1 0 0 0 1
0 −1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

 .
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One shows that ∆ is positive, the Coxeter–Dynkin graph D∆ is the Dynkin diagram A5 (apply the inflation algorithm
[3, Algorithm 3.1]), cox∆(t) = t5+ t4+ t3+ t2+ t+ 1 = coxA5(t), and c∆ = 6. The set R∆ of roots of ∆ has 30 vectors and
splits into five Φ∆-orbits O(1), O(2), O(3), O(4), O(5). It is easy to see that the orbits form the following Φ∆-mesh root system
Γ (R∆, Φ∆) (that is, Φ∆-mesh translation quiver) lying on a cylinder, with two border orbits:

O(1): 0011̂0 · · · 00011̂ · · · 00001 · · · 1̂0000 · · · 11000 · · · 01̂1̂00 · · · 0011̂0 · · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O(2): 01̂01̂0 · · · 00101̂ · · · 00010 · · · 1̂0001 · · · 01000 · · · 101̂00 · · · 01̂01̂0 · · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

Γ (R∆, Φ∆): O(3): 01̂001̂ · · · 00100 · · · 1̂0010 · · · 01001 · · · 001̂00 · · · 1001̂0 · · · 01̂001̂ · · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O(4): 10001̂ · · · 01̂000 · · · 1̂0100 · · · 01010 · · · 001̂01 · · · 0001̂0 · · · 10001̂ · · ·

↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O(5): 10000 · · · 1̂1̂000 · · · 01100 · · · 001̂10 · · · 0001̂1 · · · 00001̂ · · · 10000 · · ·

where1 = −1. One shows that ∆≈Z A5, that is, the non-symmetric Gram matrices Ǧ∆ and ǦA5 are Z-congruent (as is

claimed in Problem 1.6). The congruence is defined by the matrix C =


0 0 0 −1 1

0 0 −1 1 0

0 1 1 0 0

−1 −1 0 0 0

1 0 0 0 0

, because ǦA5 = Ǧ∆ ∗ C tr
=

C · Ǧ∆ · C tr .
The matrix C is constructed by applying the algorithmic procedure described in the following theorem that contains a

partial solution of Problem 1.4. In Example 2.3, we apply Theorem 2.4 to the framed vector v = [0, 0, 0,−1, 1].

Theorem 2.4. Assume that ∆ is a connected positive edge-bipartite graph inUBigrn, 2 ≤ n ≤ 6, such that cox∆(t) = coxAn(t)
= tn + tn−1 + · · · + t + 1 (i.e., specc∆ = speccAn ).

(a) The simply laced Dynkin graph D∆ of ∆ equals An, c∆ = n + 1, R∆ splits into nΦ∆-orbits, each of them is of length
c∆ = n+ 1, and there are exactly two different border Φ∆-orbits in R∆.

(b) ∆≈Z D∆ = An and we have ǦAn = Ǧ∆ ∗ C tr
= C · Ǧ∆ · C tr , where C ∈ Gl(n, Z) is the matrix with rows v, Φ∆(v), . . . ,

Φn−1
∆ (v) and v ∈ R∆ is a fixed root lying on a border Φ∆-orbit, that is, v is a root such that v + Φ∆(v) is a root, too.
(c) The set of Φ∆-orbits in R∆ admits a unique structure of Φ∆-mesh root system Γ (R∆, Φ∆), with two border Φ∆-orbits,

such that every root v is a source (and a sink) of a unique Φ∆-mesh of width at most two. If n = 5, the Φ∆-mesh root system
Γ (R∆, Φ∆), viewed as a mesh translation quiver, is isomorphic with the mesh root system constructed in Example 2.3.

The proof is outlined in Section 3. It essentially uses a reduction from a positive edge-bipartite graph in UBigrn to the
Coxeter spectral analysis of orbits of matrix morsifications under the action (3.1) of the Gl(n, Z)D isotropy group, for the
simply laced Dynkin diagrams D.

3. A matrix morsification technique

It is shown in [2] that a key role in the Coxeter spectral classification of positive edge-bipartite graphs ∆ in UBigrn is
played by the right action

∗ : Mn(Q)× Gl(n, Z)∆ −→ Mn(Q), (A, B) → A ∗ B := Btr
· A · B (3.1)

of the isotropy group Gl(n, Z)∆ = {B ∈ Gl(n, Z); G∆ ∗ B = G∆} of ∆. By [2, 2.12], the matrix Weyl group W∆ of ∆ is a
subgroup of Gl(n, Z)∆. Our main aim in this section is to show that the computation of the set CGpol+n of all polynomials
cox∆(t), with connected edge-bipartite graphs ∆ in UBigrn, n ≥ 2, and solutions of Problems 1.3–1.6 reduce to analogous
problems for matrix morsifications A, A′ ∈ MorD∆, with a simply laced Dynkin diagram D∆ = D∆′ associated with ∆ and
∆′ in Theorem 2.1. Using this idea, we construct algorithmic procedures for the Coxeter spectral analysis and we partially
solve Problems 1.3–1.6, by applying symbolic computer algebra computations and numerical algorithmic computations in
Linux, Maple and C++, with GNU Scientific Library. Here we apply the technique and results given in [2,3,18–22].

We recall that matrix morsifications of Dynkin diagrams are introduced in [35] and applied in [1] in the mesh geometric
study of solutions of a class of Diophantine equations. Following [1,2,35], an integral (resp. rational) matrix morsification of
an edge-bipartite graph ∆ in UBigrn is a non-singular matrix A ∈ Mn(Z) (resp. A ∈ Mn(Q)) such that

(i) A+ Atr
= 2 · G∆, and

(ii) the Z-invertible Coxeter matrix CoxA := −A · A−tr has integer coefficients.

We denote by Mor∆ ⊆
Mor∆ the sets of all integral and all rational morsifications of ∆. Note that Ǧ∆ lies in Mor∆, and G∆

lies in Mor∆ in the case when ∆ is positive. It is not clear (at the moment) if, given ∆ in UBigrn, the sets Mor∆ ⊆
Mor∆

and {coxA(t); A ∈ Mor∆} are finite.
It is shown in [2] that det A ≥ 1, for any A ∈ Mor∆, if ∆ is positive, and the map

∗ : Mor∆ × Gl(n, Z)∆ →
Mor∆, (A, B) → A ∗ B := Btr

· A · B, (3.2)
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is a right action of the isotropy group Gl(n, Z)∆ of ∆, and of the matrix Weyl group W∆ ⊆ Gl(n, Z)∆. The subset Mor∆ ⊆Mor∆ is Gl(n, Z)∆-invariant. Moreover, det A ∈ Q, the Coxeter number cA ≥ 2 (i.e., a minimal integer r ≥ 2 such that
CoxrA = E), and the Coxeter polynomial coxA(t) := det(t · E − CoxA) ∈ Z[t] of A are Gl(n, Z)∆-invariant, see [1,2,35].
The Coxeter spectrum of A is the set speccA of all n complex roots of the polynomial coxA(t). The group automorphism
ΦA : Zn

→ Zn, v → v · CoxA, is called the Coxeter transformation of A.

Example 3.3. The matrices

A =

 1 −1 1 −3
1 1 −1 1
−2 0 1 0
3 −1 −1 1

 , with det A = 4, A′ =



1 −
1
3
−

2
3

1
3

1
3

1 −
2
3

1
3

−
1
3
−

1
3

1 −1

−
1
3
−

1
3

0 1


, with det A′ =

4
9
,

and

A5 =


1 1 −1 0 0
−1 1 −1 0 2
0 0 1 0 −2
0 0 −1 1 0
0 −2 2 −1 1

 , det A5 = 2,

are morsifications of the Dynkin diagrams D4 and D5, respectively, with

coxA(t) = t4 − t2 + 1, cA = 12, coxA′(t) = t4 + 2t3 + 3t2 + 2t + 1, cA′ = 3,
coxA5(t) = t5 + 1, cA5 = 10, coxA′5(t) = t5 + 3t4 + 4t3 + 4t2 + 3t + 1, cA′5 = 4.

The following theorem (implicitly applied in the proof of [3, Theorem 3.3]) defines an important relation between the
Coxeter spectral study of positive edge-bipartite graphs in UBigrn and the Coxeter spectral study of matrix morsifications
in MorD∆, where D∆ is the simply laced Dynkin diagram associated with ∆.

Theorem 3.4. Let ∆ be a connected positive edge-bipartite graph in UBigrn and let D∆ be a unique simply laced Dynkin
diagram such that ∆∼Z D∆, as in Theorem 2.1. Fix a matrix C ∈ Gl(n, Z) defining the congruence D∆∼Z ∆, that is, the equality
GD∆ = C tr

· G∆ · C holds.
(a) The non-symmetric Gram matrix Ǧ∆ of ∆ lies in Mor∆, the matrix A∆ := C tr

· Ǧ∆ · C lies MorD∆, coxA∆
(t) = cox∆(t),

and cA∆
= c∆.

(b) The correspondence A → hCA := C tr
· A · C = A ∗ C defines the bijection

hC : Mor∆ → MorD∆ (3.5)

such that det hCA = det A, coxhCA(t) = coxA(t), and the Coxeter numbers cA and chCA of the morsifications A and hCA coincide.
(c) The group automorphism h′C : Z

n
→ Zn, v → v · C tr , makes the following diagram commutative, with A∆ := Ǧ∆ ∗ C,

Zn ΦA∆
−−−−−−→ Zn

h′C

≃ h′C

≃
Zn Φ∆
−−−−−−→ Zn

(3.6)

(d) The group automorphism h′C : Z
n
→ Zn restricts to the bijection h′C : RD∆ → R∆, carries ΦA∆

-orbits of length ℓ ≥ 1 in
RD∆ to Φ∆-orbits of length ℓ in R∆, carries ΦA∆

-meshes of width s ≥ 1 in RD∆ to Φ∆-meshes of width s ≥ 1 in R∆, and carries
any ΦA∆

-mesh geometry of roots Γ ( R∆, ΦA∆
) in the sense of [35] to a Φ∆-mesh geometry of roots.

Proof. (a) is a consequence of (b), because Ǧ∆ ∈ Mor∆.
(b) By our assumption, we have GD∆ = G∆ ∗ C . Then, given A ∈ Mor∆, we get

hCA+ (hCA)tr = A ∗ C + (A ∗ C)tr = (A+ Atr) ∗ C = 2G∆ ∗ C = 2GD∆.

Furthermore, one shows that the matrices CoxA∗C and CoxA are adjoint by C tr . Hence CoxA∗C has integer coefficients and (b)
follows, compare with [2, Proposition 2.8]. To prove (c), we note that CoxǦ∆∗C

= C tr
· Cox∆ · C−tr . Hence it easily follows

that the diagram (3.6) is commutative. Since statement (d) is a consequence of (c), the proof is complete. �



R. Bocian et al. / Journal of Computational and Applied Mathematics ( ) – 7

Example 3.7. Assume that D ∈ {D4, D5, D6, E6} and let ∆ = ∆
(j)
D be one of the six edge-bipartite graphs ∆

(2)
D4

, ∆(2)
D5

, ∆(2)
D6

,
∆

(3)
D6

, ∆(2)
E6

, ∆(3)
E6

of Theorem 1.9(b). By applying the inflation algorithm (see Theorem 2.1) to ∆
(j)
D we get:

(a) D∆
(j)
D = D, cox

∆
(j)
D

(t) = F (j)
D (t), ∆(j)

D ∼Z D, and the congruence is defined by the matrix C (j)
D , where

C (2)
D4
=

1 1 −1 0
1 −1 1 −1
0 1 0 −1
0 0 0 1

 , C (2)
D5
=


1 0 0 −1 0
0 1 −1 0 0
0 0 0 −1 1
0 0 1 −1 0
0 0 0 1 0

 ,

C (2)
D6
=



0 1 0 −1 1 0
0 0 0 0 0 1
0 −1 0 1 0 0
0 −1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 , C (3)
D6
=



−1 0 0 1 0 0
−1 0 0 0 1 0
0 −1 1 0 0 0
−1 0 0 0 0 1
−1 1 0 0 0 0
1 0 0 0 0 0

 ,

C (2)
E6
=



0 0 0 1 0 0
1 −1 0 0 0 0
0 0 1 0 −1 0
0 −1 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1

 , C (3)
E6
=


0 1 0 0 0 −1
0 0 0 −1 1 −1
0 0 1 −1 0 −1
1 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 0 1



(b) The bijection hC : MorF
(j)

∆
(j)
D
→ MorF

(j)

D (3.5) defined by the matrix C := C (j)
D carries the non-symmetric Gram matrix

Ǧ
∆

(j)
D
∈ MorF

(j)

∆
(j)
D

to the morsification A(j)
D ∈ MorD, where

A(2)
D4
=

 1 −1 0 0
1 1 −1 0
−1 0 1 0
0 0 −1 1

 , A(2)
D5
=


1 0 −1 1 0
0 1 0 0 0
0 −1 1 −1 0
−1 0 0 1 −1
0 0 0 0 1

 ,

A(2)
D6
=



1 −1 0 0 0 0
1 1 0 −1 1 −1
−1 −1 1 0 0 0
0 1 −1 1 −1 1
0 −1 0 0 1 −1
0 1 0 −1 0 1

 , A(3)
D6
=


1 −1 1 −1 0 0
1 1 −1 0 0 0
−2 0 1 0 0 0
1 0 −1 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

 ,

A(2)
E6
=



1 0 0 0 0 0
−1 1 0 0 −1 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 1 −1 0 1 −1
0 0 0 0 0 1

 , A(3)
E6
=



1 0 0 0 0 0
−1 1 −1 0 0 1
0 0 1 −1 0 −1
0 0 0 1 −1 0
0 0 −1 1 1 0
0 −1 1 0 −1 1


It follows from Theorem 3.4 that the bijection (3.5) reduces our original problems for graphs in UBigrn to analogous

problems for matrix morsifications A ∈ MorD, with det A = 1, where D is one of the Dynkin diagrams An, Dn, E6, E7, E8.
We can construct efficient computational algorithms for the Coxeter spectral analysis of matrices A ∈ MorD by using the set

CoxD :=

C ∈ Gl(n, Z)trD ; det(E − C) ≠ 0 and GD = GD · (E − C)−tr + (E − C)−1 · GD


,

where GD is the symmetric Gram matrix of the Dynkin diagram D, and the pair of bijections

CoxD
ξD
−−−−→
←−−−−
ΘD

Mor∆ ⊆Mn(Q), (3.8)
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(inverse to each other) defined by Θ∆(A) := CoxA = −A · A−tr and ξ∆(C) := 2G∆ · (E − C)−tr , for any A ∈ Mor∆ and any
C ∈ Cox∆, see [2, Note Added in Proof]. It was shown in [2] that, given C ∈ Gl(n, Z)D and a root v ∈ RD of qD, the vector
v · C tr lies in RD. Hence we conclude the following important facts:

Fact A. The sets CoxtrD ⊆ Gl(n, Z)D are finite and the rows of the matrices C ∈ Gl(n, Z)D lie in the finite set RD ⊆ Zn of roots
of D.

Fact B. A Z-invertible matrix C ∈ Mn(Z) is of the form C = CoxA, with A ∈ Mor∆ if and only if 1 is not an eigenvalue of C, the
rows of C lie in the finite set R∆ of roots of ∆, and the equality G∆ = G∆ · (E − C)−tr + (E − C)−1 · G∆ holds.

Details of the proof will be presented in a subsequent paper. By applying Facts A and B, we construct the following
algorithms computing the finite set CoxD (and the finite set MorD), the finite group Gl(n, Z)D, the Gl(n, Z)D-orbits of the
action (3.2), the finite set of all Coxeter polynomials coxA(t) ∈ Z[t], the Coxeter numbers cA and the determinants det A,
with A ∈ MorD.

Algorithm 3.9. Input: A simply laced Dynkin diagram D, with n ≥ 2 vertices enumerated as in the table shown in Section 2,
and its symmetric Gram matrix GD ∈ Mn(Q).

Output: The set MorD of all rational morsifications A ∈ Mn(Q), together with their Coxeter numbers cA, Coxeter
polynomials coxA(t), and the determinant det A.

Step 1: Compute the set R := RD.

Step 2: Construct a generic matrix C =

w1
.
.
.

wn

, with the jth row wj = [wj1, . . . , wjn].

Step 3: Given i ∈ {1, . . . , n}, form the sequential subset of R = RD:

iR = {(r1, . . . , rn) ∈ R; r1 ≥ 0, . . . , ri−1 ≥ 0, ri > 0, ri+1 = · · · = rn = 0}.

Step 4: For i = 1, . . . , n, substitute the unknown matrix row wi, sequentially by vectors in the set R \ {w1, . . . ,
wi−1,−w1, . . . ,−wi−1, ei}. After the subsequent i-substitution, check if r · C ∈ R, for any r ∈i R. If the condition is not
fulfilled, take a sequent i-substitution.

Step 5: If det(E − C) ≠ 0 and GD = GD · (E − C)−tr + (E − C)−1 · GD then we add the matrix A := 2GD · (E − C)−1 to
the set MorD, we calculate the Coxeter number cA, the determinant det A, and the Coxeter polynomial coxA(t), next we go
to Step 4 with a new substitution.

Remark 3.10. By applying Algorithm 3.9, we easily compute the set MorD, for D ∈ {An, Dn, E6, E7}n≤7. If D = An, the
cardinality |MorD| equals 5, 15, 69, 345, 2.295, 16.065, for n = 2, 3, 4, 5, 6, 7, respectively. If D = Dn and n = 4, 5, 6, 7, the
cardinality |MorD| equals 385, 945, 10.395, 135.135. Finally, if D = E6 and D = E7, the cardinality |MorD| equals 28.163
and 740.340, respectively.

Algorithm 3.11. Input: A simply lacedDynkin diagramD, with n ≥ 2 vertices enumerated as in the table shown in Section 2,
and its symmetric Gram matrix GD ∈ Mn(Q).

Output: The isotropy group Gl(n, Z)D.
Step 1: Compute the set R := RD.
Step 2: Construct a generic matrix B = [κ1 · · · κn], with columns κ1 . . . κn and n rows.
Step 3: Given i ∈ {1, . . . , n}, form the sequential subset of R = RD:

iR = {(r1, . . . , rn) ∈ R; r1 ≥ 0, . . . , ri−1 ≥ 0, ri > 0, ri+1 = · · · = rn = 0}.

Step 4: For i = 1, . . . , n, substitute the unknown matrix column κi, sequentially by a vector in the set R \ {w1, . . . ,
wi−1,−w1, . . . ,−wi−1}. After the subsequent i-substitution, check if r · Btr

∈ R, for any r ∈i R. If the condition is not
fulfilled, take a sequent i-substitution.

Step 5: If GD = Btr
· GD · B, then add the matrix B to the set Gl(n, Z)D, next go to Step 4 with a new substitution.

Algorithm 3.12. Input: A simply lacedDynkin diagramD, with n ≥ 2 vertices enumerated as in the table shown in Section 2,
and its symmetric Gram matrix GD ∈ Mn(Q).

Output: The Gl(n, Z)D-orbits of the action (3.2), the finite set CPolD of all Coxeter polynomials coxA(t) ∈ Z[t], the Coxeter
numbers cA and the determinants det A.

Step 1: Compute the set M := MorD (from Algorithm 3.9).
Step 2: Compute Gl(n, Z)D (from Algorithm 3.11).
Step 3: Given A ∈M, calculate A ∗ Gl(n, Z)D, the Coxeter number cA, the determinant det A and the Coxeter polynomial

coxA(t).
Step 4: M :=M \ A ∗ Gl(n, Z)D. If M ≠ ∅ then go to Step 3.

By applying Algorithms 3.9–3.12, a routine computer calculation yields the following result.
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Proposition 3.13. Assume that D is a simply laced Dynkin diagram, with n ≤ 6 vertices.
(a) The set CPolD is finite and coincides with that presented in [4, Table 3.11]. Moreover, a polynomial F(t) ∈ Z[t] is of the

form F(t) = coxA(t), for some A ∈ MorD with det A = 1, if and only if there exists a connected positive ∆ ∈ UBigrn such that
D∆ = D and F(t) = cox∆(t).

(b) For any F(t) ∈ Z[t] theGl(n, Z)D-invariant subset MorFD := {A ∈ Mor; coxA(t) = F(t)} of MorD is of the formMorFD =
AF ∗ Gl(n, Z)D, for some AF ∈ MorD.

(c) If D and D′ are a simply laced Dynkin diagram with at most six vertices and coxA(t) = coxA′(t), for some A ∈ MorD and
A′ ∈ MorD′ then D ∼= D′. �

Outline of proof of Theorem 1.7. (a) If ∆ is positive and connected in UBigrn and D∆ = D and C ∈ Gl(n, Z) is such that
GD = G∆ ∗ C then, by Theorem 3.4, the matrix A∆ := Ǧ∆ ∗ C lies inMorD, det A∆ = 1, and (coxA∆

(t), cA∆
) = (cox∆(t), c∆).

This proves the sufficiency of (a). The necessity follows from the fact that cox∆(t) = F (j)
D (t), if 2 ≤ j ≤ 3,D ∈ {D4, D5, D6, E6}

and ∆ = ∆
(j)
D is one of the edge-bipartite graphs of Theorem 1.9(b). Note also that coxD(t) = F (1)

D (t), for arbitrary D.
(b) Assume that ∆, ∆′ ∈ UBigrn are positive, connected, and n ≤ 6. If ∆≈Z ∆′ then [1, Proposition 4.8] and

[3, Lemma 2.1(e)] yield specc∆ = specc∆′ . Conversely, assume that specc∆ = specc∆′ . Then, by Theorem 3.4, coxA∆
(t) =

cox∆(t) = cox∆′(t) = coxA∆′
(t), det A∆′ = 1 = det A∆ and A∆ ∈ MorD∆, A′∆ ∈ MorD∆. Since n ≤ 6, Proposition 3.13(c)

yields D∆ = D∆′.
To show that ∆≈Z ∆′, we set D := D∆ = D∆′ and we use the isotropy group Gl(n, Z)D of the Dynkin diagram D,

where GD is the symmetric Gram matrix of D. Consider the right action (3.2) of Gl(n, Z)D on MorD. Denote by F(t) ∈ Z[t]
the Coxeter polynomial F(t) := cox∆(t) = cox∆′(t) = coxA∆

(t) = coxA∆′
(t). It follows from Proposition 3.13(b) that

MorFD = AF ∗ Gl(n, Z)D, for some AF ∈ MorFD. Since, by Theorem 3.4, the matrices Ǧ∆ and Ǧ∆′ lie in MorFD = AF ∗ Gl(n, Z)D

then there is a matrix B ∈ Gl(n, Z)D such that A∆ = Btr
· A∆′ · B = A∆ ∗ B, that is, Ǧ∆ ∗ C = (Ǧ∆′ ∗ C ′) ∗ B. It follows that

Ǧ∆ = Ǧ∆′ ∗ (C ′BC−1), that is, ∆≈Z ∆′.
(c) It is easy to see that each of the matrices Ǧ∆, Ǧtr

∆ lies in Mor∆ and they have the common Coxeter polynomial
F(t) := cox∆(t). It follows from Theorem 3.4 and Proposition 3.13(b) that the images A := hC Ǧ∆ and A′ := hC Ǧtr

∆ = Atr

of Ǧ∆ and Ǧtr
∆ under the map (3.5) lie in MorFD = AF ∗ Gl(n, Z)D, where D = D∆. Then there is a matrix B ∈ Gl(n, Z)D

such that A = Btr
· A′ · B = A′ ∗ B. Hence we conclude as above that Ǧ∆ = Ǧ∆′ ∗ (C · B · C−1) = Ǧ∆′ ∗ C1, where

C1 = C · B · C−1 and C2
1 = C · B2

· C−1. Then the first part of (c) follows. To get such a matrix C1 that C2
1 = E, we need

a more advanced technique analogous to that applied in [22]. We present it in a subsequent paper. For ∆, with D∆ = D4,
the result is proved in [2]. For the edge-bipartite graph ∆ := ∆

(2)
D5

of Dynkin type D∆ = D5 shown in Theorem 1.9(b) we
can use the mesh quiver technique presented below. By applying the symmetry of the triangle marked on the third part
of the mesh quiver presented below we find the matrix (compare with the method illustrated in [22, Figures 7.7–7.8] and
[23, Algorithm 5.6])

C =


1 0 0 −1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 −1 0
0 0 0 0 −1


such that C tr

· Ǧ∆ · C = Ǧtr
∆ and C2

= E.
(d) Let F(t) := cox∆(t) and let D = D∆ be a unique simply laced Dynkin diagram such that ∆∼Z D∆, as in Theorem 2.1.

Fix amatrix C ∈ Gl(n, Z) defining the congruenceD = D∆∼Z ∆, that is, the equality GD = C tr
·G∆ ·C holds. By Theorem 3.4,

the bijection hC : MorF∆ → MorFD reduces the existence of a Φ∆-mesh geometry Γ ( R∆, Φ∆) of roots of ∆ to the existence
of such a ΦA-mesh geometry Γ ( RD, ΦA), for a fixed A ∈ MorFD, with det A = 1. Indeed, if A′ ∈ MorFD, with det A′ = 1, is
arbitrary then A′ = A ∗ B, for some B ∈ Gl(n, Z)D (by 3.13(b)). It follows that the group automorphism h′B : Zn

→ Zn,
v → v · Btr , makes the following diagram commutative:

Zn ΦA′
−−−−−−→ Zn

h′B

≃ h′B

≃
Zn ΦA
−−−−−−→ Zn

(3.14)

Moreover, h′B : Z
n
→ Zn restricts to the bijection h′B : RD → RD, carries ΦA′-orbits of length ℓ ≥ 1 in RD to ΦD-orbits of

length ℓ in RD, carries ΦA′-meshes of width s ≥ 1 in RD to ΦA-meshes of width s ≥ 1 in RD and, consequently, carries any
ΦA′-mesh geometry of roots Γ ( RD, ΦA′) to a ΦA-mesh geometry of roots.

In the case when D = D∆ = An, n ≥ 2, Theorem 2.4 and its proof given below apply. If D = D∆ ≠ An and n ≥ 2, then
D = Dn and 4 ≤ n ≤ 6 or D = E6, by our assumption in 1.7. For D = D4, the result is proved in [2,7]. Now we construct
the geometry of root orbits for the edge-bipartite graph ∆ := ∆

(2)
D5

of Dynkin type D∆ = D5 presented in Theorem 1.9(b).
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Note that

Ǧ∆ =


1 0 0 −1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 , with Cox∆ =


1 0 1 1 −1
0 1 1 −1 −1
1 1 0 0 −1
−1 1 0 −1 0
1 1 1 0 −1

 c∆ = 12,

cox∆(t) = t5 + t3 + t2 + 1,

and q∆(x) = x ·A ·xtr = x21+x22+x23+x24+x25−x1x4+x2x4+x2x5+x1x5+x3x5, where c∆ = 12 is the Coxeter number of∆.
We define the Coxeter transformationΦ∆ : Z5

→ Z5 by the formulaΦ∆(v) = v ·Cox∆. The set R∆ = {v ∈ Z5
; q∆(v) = 1}

of roots of ∆ consists of 40 vectors and is Φ∆-invariant. An easy computation shows that R∆ splits into the following five
Φ∆-orbits (two of length c∆ = 12, two of length 6, and one of length 4):

O1,1 : 10000 · · ·10011 · · ·10101 · · · 01010 · · · 10001 · · · 01111 · · · 01000 · · · 01011 · · · 01101 · · ·10010 · · · 01001 · · · 10111 · · · 10000
O2,1 : 01000 · · · 01011 · · · 01101 · · · 10010 · · · 01001 · · ·10111 · · ·10000 · · · 10011 · · · 10101 · · · 01010 · · ·10001 · · · 01111 · · · 01000
O3,1 : 00001 · · ·11102 · · ·11101 · · · 00001 · · · 11102 · · · 11101 · · · 00001
O4,1 : 00100 · · · 00101 · · ·11001 · · · 00100 · · · 00101 · · · 11001 · · · 00100
O5,1 : 00010 · · · 11010 · · · 00010 · · ·11010 · · · 00010

where we seta = −a, for a ∈ N. Note that O4,1 = −O4,1 is a unique border orbit, O1,1 = −O2,1, O3,1 = −O3,1, O5,1 =

−O5,1, and we have the following Φ∆-mesh in R∆ of width three (see [1,35])

w

��<
<<

<<
<<

w′

%%LLL

u(3.15)

AA�������
99tttt

%%LLL
LL Φ−1∆ (u)

v

88qqqq

(3.15)

(i.e., w + w′ + v = u + Φ−1∆ (u)), where w = [00101] ∈ O4,1, w′ = [00010] ∈ O5,1, u = [01000] ∈ O2,1, Φ−1∆ (u) =
[01011] ∈ O2,1, and v = [00100] ∈ O4,1. We construct the following three Φ∆-mesh translation quivers in Zn:

O2,1 :10001 · · · 01111 · · · 01000 · · · 01011 · · · 01101· · ·10010· · ·01001· · ·10111· · ·10000· · ·10011· · ·10101· · ·01010· · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O4,1 : 00101 · · · 11001 · · · 00100 · · · 00101 · · ·11001· · ·00100· · ·00101· · ·11001· · ·00100· · ·00101· · ·11001· · ·00100· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O1,1 : 10000 · · · 10011 · · · 10101 · · · 01010 · · · 10001· · ·01111· · ·01000· · ·01011· · ·01101· · ·10010· · ·01001· · ·10111· · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O5,2 : 00110 · · · 11111 · · · 11011 · · · 11110 · · ·00111· · ·02011· · ·00110· · ·11111· · ·11011· · ·11110· · ·00111· · ·20011· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O2,1 : 10101 · · · 01010 · · · 10001 · · · 01111 · · · 01000· · ·01011· · ·01101· · ·10010· · ·01001· · ·10111· · ·10000· · ·10011· · ·
O2,1 :10001 · · · 01111 · · · 01000 · · · 01011 · · · 01101· · ·10010· · ·01001· · ·10111· · ·10000· · ·10011· · ·10101· · ·01010· · ·

↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O4,1 : 11001 · · · 00100 · · · 00101 · · · 11001 · · ·00100· · ·00101· · ·11001· · ·00100· · ·00101· · ·11001· · ·00100· · ·00101· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O1,1 : 01101 · · · 10010 · · · 01001 · · · 10111 · · · 10000· · ·10011· · ·10101· · ·01010· · ·10001· · ·01111· · ·01000· · ·01011· · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O6,2 : 00110 · · · 11111 · · · 11011 · · · 11110 · · ·00111· · ·20011· · ·00110· · ·11111· · ·11011· · ·11110· · ·00111· · ·02011· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O2,1 : 01000 · · · 01011 · · · 01101 · · · 10010 · · · 01001· · ·10111· · ·10000· · ·10011· · ·10101· · ·01010· · ·10001· · ·01111· · ·
O2,1 :10001 · · · 01111 · · · 01000 · · · 01011 · · · 01101· · ·10010· · ·01001· · ·10111· · ·10000· · ·10011· · ·10101· · ·01010· · ·

↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O5,1 : 00010 · · · 11010 · · · 00010 · · · 11010 · · ·00010· · ·11010· · ·00010· · ·11010· · ·00010· · ·11010· · ·00010· · ·11010· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O1,1 : 01001 · · · 10111 · · · 10000 · · · 10011 · · · 10101· · ·01010· · ·10001· · ·01111· · ·01000· · ·01011· · ·01101· · ·10010· · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O3,1 : 11102 · · · 11101 · · · 00001 · · · 11102 · · ·11101· · ·00001· · ·11102· · ·11101· · ·00001· · ·11102· · ·11101· · ·00001· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O7,2 : 10102 · · · 12112 · · · 01100 · · · 01112 · · · 12102· · ·10110· · ·01102· · ·21112· · ·10100· · ·10112· · ·21102· · ·01110· · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

O8,2 : 11112 · · · 02111 · · · 00011 · · · 02112 · · ·11111· · ·11011· · ·11112· · ·20111· · ·00011· · ·20112· · ·11111· · ·11011· · ·
↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

O1,1 : 10001 · · · 01111 · · · 01000 · · · 01011 · · · 01101· · ·10010· · ·01001· · ·10111· · ·10000· · ·10011· · ·10101· · ·01010· · ·
↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘

00000 · · · 00000 · · · 00000 · · · 00000 · · ·00000· · ·00000· · ·00000· · ·00000· · ·00000· · ·00000· · ·00000· · ·00000· · ·
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We can do it by a direct manipulations or by applying the toroidal mesh algorithm presented in [1,2]. The constructed Φ∆-
mesh translation quivers contain all Φ∆-orbits in R∆ and four Φ∆-orbits O5,2, O6,2, O7,2, and O8,2 (each of length c∆ = 12)
consisting of vectors v ∈ Zn such that q∆(v) = 2. Further, following the technique applied in [35, Case 4, p. 26] and [7],
we glue the three Φ∆-mesh translation quivers along the Φ∆-orbits defined by the Φ∆-mesh (∗) of width three and, con-
sequently, we obtain the Φ∆-mesh translation quiver Γ ( R∆, Φ∆), which is the Φ∆-mesh geometry of roots required in (d).
Its perpendicular section appears as follows

O1,1

O6,2 O4,1

O2,1 O5,1 O1,1 O3,1 O7,2 O8,2 O1,1

O5,2 O4,1

O1,1 .

It contains 88 = 40 + 4 × 12 vectors. This finishes the proof in the case when D∆ = D5. In remaining cases when D∆ ∈

{D6, E6}, the proof is analogous but more technical. We shall present it in a future paper. This finishes our outline of the
proof of Theorem 1.7 for n ≤ 6. The idea of the proof for n ≥ 7 is analogous, but leads to computer calculations of rather
high complexity. �

Proof of Theorem 1.9. Assume that ∆ ∈ UBigrn is positive, connected, and 2 ≤ n ≤ 6. Let D := D∆ be a unique
simply laced Dynkin diagram such that ∆∼Z D∆, as in Theorem 2.1. By Theorem 1.7(a), there exists j ≥ 1 such that
cox∆(t) = F (j)

D (t), where F (j)
D (t) is one of the polynomials of Table 1.8.

Note that coxD(t) = F (1)
D (t). If the polynomial cox∆(t) has the form cox∆(t) = F (1)

D (t) then specc∆ = speccD and
Theorem 1.7(b) yields ∆∼Z D = D∆, that is, (a) follows.

Assume that cox∆(t) = F (j)
D (t) and j ≥ 2. In view of Table 1.8, we have n ≥ 2 and D = D∆ ∈ {D4, D5, D6, E6}.

It is shown in Example 3.7 that cox
∆

(i)
D

(t) = F (i)
D (t), if ∆

(i)
D is one of the edge-bipartite graphs of Theorem 1.9(b). Hence

cox∆(t) = cox
∆

(i)
D

(t), specc∆ = specc
∆

(i)
D
, and Theorem 1.7(b) yields ∆≈Z ∆

(j)
D∆. This finishes the proof of Theorem 1.9. �

Outline of proof of Theorem 2.4. Let F(t) = FAn(t). By Theorem 3.4, the non-symmetric Grammatrix Ǧ∆ of∆ lies inMorF∆,
there exists a matrix A∆ ∈ MorFD∆ such that A∆ := C tr

· Ǧ∆ · C , for some C ∈ Gl(n, Z), and coxA∆
(t) = cox∆(t) = F(t). It

follows that ∆ = An (by Proposition 3.13(d)) and A∆, ǦAn ∈ MorFD∆ = MorFAn
. Then, by Proposition 3.13(c), the matrices

A∆, ǦAn areZ-congruent. It follows that thematrices Ǧ∆, ǦAn areZ-congruent, that is,∆≈Z D∆ = An and (b) follows. Hence
we conclude that the diagram (3.6) is commutative, with A∆ and ǦAn , interchanged. Consequently, the proof of (a) and (c)
reduces to the case when ∆ = An. For n = 5, the proof is given in Example 2.3; in the remaining cases it is analogous,
see [18–23]. �

4. Concluding remarks and problems

We study the class UBigrn of loop-free edge-bipartite (multi)graphs ∆, with n ≥ 2 vertices (i.e., signed graphs), by
means of:

(a) their Gram matrices Ǧ∆ andG∆ = Ǧ∆ + Ǧtr
∆ ∈ Mn(Z),

(b) the complex Coxeter spectrum specc∆ of the Coxeter matrix Cox∆ := −Ǧ∆ · Ǧ−tr∆ , and
(c) the right action ∗ : Mn(Z) × Gl(n, Z) −→ Mn(Z), (A, C) → A ∗ C := C tr

· A · C of the general Z-linear group
Gl(n, Z) := {A ∈ Mn(n, Z), det A ∈ {−1, 1}} on Mn(Z).
One of our aims is to classify the equivalence classes of connected loop-free positive edge-bipartite graphs ∆ (i.e., the
symmetric matrixG∆ is positive definite) with respect to one of the two Z-congruences∼Z and≈Z, where

(i) ∆∼Z ∆′ ⇐⇒ the symmetric Gram matricesG∆′ andG∆ lie in the same Gl(n, Z)-orbit, and
(ii) ∆≈Z ∆′ ⇐⇒ the non-symmetric Gram matrices Ǧ∆′ and Ǧ∆ lie in the same Gl(n, Z)-orbit.

We develop an algorithmic technique for the Coxeter spectral analysis of the class UBigrn. In particular, we show that
∆≈Z ∆′ implies ∆∼Z ∆′ and specc∆ = specc∆′ . If ∆ is connected and positive, we have ∆∼Z D∆, where D∆ is a simply
laced Dynkin diagram of one of the types An, Dn, E6, E7, E8. We study the Coxeter spectral analysis question, whether the
Coxeter spectrum specc∆ determines ∆ ∈ UBigrn uniquely, up to the congruence ≈Z. For n ≤ 6 and ∆ positive and
connected, an affirmative answer to the question is given and, up to the congruence ≈Z, a complete classification of such
edge-bipartite graphs is presented in Theorem 1.9.

Remark 4.1. It follows from the computational technique developed in this paper and in [1–3,28,32,35] that the solution
of the Coxeter spectral analysis problems stated in Section 1 and studied in [2,3,19], for the connected positive edge-
bipartite graphs inUBigrn, reduces to analogous computational problems for theGl(n, Z)D-orbits on the setsMorD ofmatrix
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morsifications of simply laced Dynkin diagrams D ∈ UBigrn and to an algorithmic description of mesh geometries of roots
in the sense of [35], see also [40]. It is shown in Section 3 that the reduction leads to an algorithmic computer search of
rather high complexity, see Remark 3.10. For instance, the computation time of the sets MorE6 and MorE7 equals 27 min
and 31 h and 24 min, respectively. We estimate that the computation time of MorD, with |D0| = n ≥ 8 grows at least as
|RD|

n, where RD = {v ∈ Zn
; v · GD · v

tr
= 1} is the (finite) set of roots of D. For example, for the computation of the setMorD9 we need about 36 days and nights. Unfortunately, at the moment we are not able to compute the set MorD, with

|D0| = n ≥ 11. To calculate the set MorD and its Gl(n, Z)D-orbits, for |D| = n ≥ 10, we need amodification of our algorithm
and more advanced computational tools that should be developed.

Recently, an efficient computation technique of the isotropy group Gl(n, Z)D and the Gl(n, Z)D-orbits in the sets MorD
has been developed by Ga̧siorek [21]. Results of a similar nature for finite posets and connected loop-free non-negative
edge-bipartite graphs of finite corank are presented in the two recent articles [24,25].

In computing Gl(n, Z)D-orbits in the set MorD, for a simply laced Dynkin diagram D with |D0| = n, and in computing
connected positive edge-bipartite graphs ∆ in UBigrn, with n ≥ 2 sufficiently small, their Coxeter polynomials cox∆(t),
the Coxeter numbers c∆, and to get more experimental data, we use our dedicated programs written in Maple and C++. The
problem is computationally hard, because it can be shown that it is NP-hard and also co-NP-hard, see [3]. Nevertheless, by
a brute-force approach, with a precomputation and suitable heuristic, we compute the positive connected edge-bipartite
graphs ∆ ∈ UBigrn and the Gl(n, Z)D∆-orbits in MorD∆, for n small.

Remark 4.2. Although we have rather efficient algorithms for the isotropy group Gl(n, Z)D and the Gl(n, Z)D-orbits in the
matrix morsification setsMorD, where D is a simply laced Dynkin diagram, we have no such algorithms in the case when D
is a Euclidean diagram.

Remark 4.3. Algorithms constructing mesh geometries of roots for connected positive edge-bipartite graphs ∆ in UBigrn
are described only for n ≤ 6. In the case n ≥ 7, we shall construct such algorithms andmesh geometries of rootsΓ ( R∆, Φ∆)
in future papers.

Remark 4.4. We recall from Theorem 2.4 that we have such an algorithm for ∆ of Dynkin type D∆ = An, where n ≤ 6;
fortunately, the technique we have applied there generalizes to n ≥ 7. For ∆ ∈ UBigr5 positive of Dynkin type D∆ = D5

and of Coxeter type F (2)
D5

(t) = t5 + t3 + t2 + 1, the algorithm describing a mesh geometry of roots Γ ( R∆, Φ∆) is implicitly
presented in the proof of Theorem 1.7. We outline it as follows.

Step 1 Compute the Coxeter matrix Cox∆, the Coxeter transformation Φ∆ : Z5
→ Z5, the list of roots R∆ ⊆ Z5. The set

of cardinality 40 can be listed by using algorithm [35, Algorithm 4.2].
Step 2 Split the set R∆ into the union of five Φ∆-orbits: a unique border orbit O4,1 = −O4,1 of length six (such that

z + Φ∆(u) ∈ R∆, for some z ∈ O4,1), a non-border orbit O3,1 = −O3,1 of length six, a unique orbit O5,1 = −O5,1 of length
four, and two orbits O1,1 and O2,1 = −O1,1 of length c∆ = 12.

Step 3 Find a pairw, v of vectors in the border orbit O4,1 of length six, a vectorw′ in the shortest orbitO5,1 of length four,
and a vector u in the longest orbit O1,1 such that w + w′ + v = u + Φ−1∆ (u), that is, the vectors u, Φ−1∆ (u), w,w′, v form
the Φ∆-mesh (3.15) in R∆ ⊆ Z5.

Step 4 Construct the threeΦ∆-mesh translation quivers inZ5 of the shape shown in the proof of Theorem1.7 in Section 3.
Step 5 Construct the Φ∆-mesh translation quiver Γ ( R∆, Φ∆) by glueing the three Φ∆-mesh translation quivers along

the common Φ∆-orbits with respect to the Φ∆-mesh (3.15).

Remark 4.5. Algorithms describing a mesh geometry of roots Γ ( R∆, Φ∆) for positive edge-bipartite graphs ∆ ∈ UBigr6
of the Dynkin types D∆ = D6 and D∆ = E6, and of Coxeter types F (2)

D6
(t), F (3)

D6
(t), F (2)

E6
(t), and F (3)

E6
(t) (see Table 1.8), have a

similar character and will be presented in a future publication.
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