
Journal of Computational and Applied Mathematics 263 (2014) 1–13

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A recursive algorithm for optimizing differentiation
Ali Mashreghi a,∗, Hadi Sadoghi Yazdi a,b
a Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
b Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University of Mashhad, Mashhad, Iran

a r t i c l e i n f o

Article history:
Received 21 November 2013

Keywords:
Differentiation
Recursive algorithm
Optimization
Degree of derivative
Order of accuracy

a b s t r a c t

In this paper a recursive algorithm will be introduced to improve the differentiation
method proposed by Hasan et al. (2012). Their algorithm is based on the undetermined
coefficient method and uses the Taylor series expansion and Vandermonde matrix inverse
to calculate weighting coefficients with a complexity of O(n4). Our method reduces time
complexity from O(n4) to O(n3). Moreover, we obtain a substantial optimality when the
required degree and the order of accuracy increase. Finally, the implementation of the
proposed method follows, and experimentations prove the validity of the algorithm and
compare previous and new methods in terms of execution time. Besides, the combination
of our optimization and parallel processing provides valuable results in real world
applications. Particularly, QRS detection in ECG signal processing has been considered, and
wehave shown that how features of ourmethod could be used in order to increase accuracy
and speed for this application.

© 2013 Elsevier B.V. All rights reserved.

Contents

1. Introduction... 2
2. Previous method ... 2

2.1. Notation and problem statement .. 2
2.2. Derivation of the previous method.. 3

3. Demonstration of the proposed algorithm.. 5
3.1. Time complexity analysis ... 7

3.1.1. Determining P and Q ... 7
3.1.2. Determining Lk,Mk and Gk .. 7
3.1.3. Updating the first column and calculating Bi ... 7

3.2. Implementation .. 7
4. Numerical experimentation and code validation ... 10
5. Applications... 10

5.1. Locating signal peaks .. 10
5.2. ECG signal processing ... 11

6. Conclusions.. 13
References.. 13

∗ Corresponding author. Tel.: +98 9361344489.
E-mail addresses: ali.mashreghi87@gmail.com (A. Mashreghi), h_sadoghi@um.ac.ir (H.S. Yazdi).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.11.022

http://dx.doi.org/10.1016/j.cam.2013.11.022
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.11.022&domain=pdf
mailto:ali.mashreghi87@gmail.com
mailto:h_sadoghi@um.ac.ir
http://dx.doi.org/10.1016/j.cam.2013.11.022

2 A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13

1. Introduction

Differentiation generally is referred to the operationsweuse to calculate the derivative of a function. Derivative expresses
the quality andquantity of change in a functionwith respect to its arguments. This property of a function becomes so valuable
while we focus on analyzing and extracting various features from a dataset. Thus, variant methods have been proposed to
design differentiator filters for a variety of purposes [1–8]. However, sometimes calculating derivatives is too expensive in
terms of speed and complexity. For this reason many algorithms have been developed to do this task faster and simpler.
Numerical differentiation is one of these methods which is extensively in use to approximate derivatives.

There are two main approaches for differentiating numerically [9]. The first approach attempts to calculate the
derivative through developing closed form formulas, such as techniques which approximate derivatives using the Taylor
series [9,1,2,7,10], while the second approach calculates the derivative using the function data. In particular, regarding the
methods that use the Taylor series to calculate the derivative at a specific point, the process generally is based on forming
and solving a system of linear equations using neighbor points around the desired point. Since such methods typically end
up with costly operations of calculating the inverse matrix, they are not usually applicable when the number of equations
increases. Furthermore, the order of accuracy is not similar for all points in the data sample because the number of the
neighbor points is different for the points that are close to the center compared to those that are farther.

Thus, Hasan et al. [9] introduced a method which resolves the previously mentioned problems by developing the
undetermined coefficients in terms of the Vandermondematrix inverse. Using elementary symmetric functions as themain
part of calculating undetermined coefficients, they took advantage of the closed form of the inverse of the Vandermonde
matrix. Consequently, the burden of calculation for obtaining the inverse matrix is noticeably reduced and derivatives of
higher degree can be calculated more easily. Moreover, they proposed a modification on the derivatives to unify the order
of accuracy for all points in the data sample. Above all, their method is applicable for any required order of accuracy and
degree of derivative when the distances between the points are equal.

Although thementioned algorithm is so handy and convenient, it does some unnecessary calculations and is not optimal
enough when we need to obtain derivatives faster or when the required order of accuracy and degree of derivative highly
increase. In a word, this paper aims to focus on avoiding unnecessary calculations and establish a recursive relation between
columns of each sigma matrix (the term is explained in Note 2.1) to make the desired optimization.

2. Previous method

In this section we aim to restate the proposed method in [9] and show which part of their method could be improved.
For simplicity, we use the same notations as [9].

2.1. Notation and problem statement

Consider n distinct real points x1 through xn where x1 < x2 < · · · < xn as shown in Fig. 1. The points are equally spaced
which means xi+1 − xi = h (for i = 1, . . . , n − 1) and h is a constant called the sampling period. It is easy to see that the
relation xi = xl + (i − l) · h holds. Given f (a differentiable and continuous function over the interval [x1, xn]), m (degree
of derivative), O (order of accuracy) and h (sampling period), we want to calculate ‘mth derivative of f with the order of
accuracy O for every xi (i = 1, 2, . . . , n)’. This value for a specific point i is denoted by fi(m,O). Furthermore the notation fi
is a substitution of f (xi). The term order of accuracy somehow determines accuracy in the computations. More specifically,
since the Taylor series expansion is infinite we have to ignore the remaining terms at some point. It is easy to see that using
the Taylor series fl could be obtained from the following formula:

fl =
f ′

i

1!
1x +

f ′′

i

2!
(1x)2 + · · · +

f (k−1)
i

k!
(1x)k−1

+ O((1x)k), where 1x = xl − xi.

Informally speaking, when we want to calculate f (m)
i (m < k), f (m)

i is moved to the left hand side of the equation and the
error term O((1x)k) is divided by O((1x)m). Thus, the overall error term for obtaining f (m)

i is of order O((1x)k−m) and ‘order
of accuracy is k − m’. Hence, if we need to have order of accuracy of O for the mth derivative we need to ignore the terms
with k > m + O. Therefore, the difference between f (m)

i and fi(m,O) is that f (m)
i denotes the exact value of mth derivative

while the notation fi(m,O) shows the approximated value. Obviously, the more the order of accuracy increases the more
the computed answer becomes precise.

In the process of calculation, determining the weighting coefficients is the most expensive part and takes O(n4)
operations. The term weighting coefficients is referred to the undetermined coefficients which need to be calculated by
solving linear equations. When calculating fi(m,O) for the point xi, the lth weighting coefficient is denoted by Ci,l(m,O).
At the end of Section 2.2 it will be shown that what values the weighting coefficients are depending on, and howwe can use
this dependency to speed up our computations.

A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13 3

Fig. 1. The equally spaced points x1 through xn with a constant sampling period of h.

2.2. Derivation of the previous method

Using Ci (m,O) as weighting coefficients, we can approximate fi(m,O) by the following equation in which n = m + O:

fi (m,O) =

n
l=1

Ci,l (m,O) · fl, i = 1, 2, . . . , n. (1)

We can calculate fl in Eq. (1) by the Taylor series around the reference point xi. The reference point is referred to the point
whose neighbors are used to calculate the weighting coefficients for it. Hence, fl becomes:

fl =

∞
k=0

(l − i)k

k!
hkf (k)

i . (2)

By expanding sigma and substituting it into Eq. (1) we have

fi (m,O) =

n
l=1

Ci,l (m,O)


fi +

(l − i)
1!

hf ′

i +
(l − i)2

2!
h2f ′′

i + · · · +
(l − i)n

n!
hnf (n)

i + · · ·


. (3)

Considering Ei (m,O) as the error of approximation when we ignore the terms greater than or equal to n, and distributing
sigma into the series, Eq. (3) can be written in the following form:

fi (m,O) = fi


n

l=1

Ci,l (m,O)


+ f ′

i
h
1!


n

l=1

Ci,l (m,O) · (l − i)



+ · · · + f (n−1)
i

h(n−1)

(n − 1)!


n

l=1

Ci,l (m,O) · (l − i)(n−1)


+ Ei (m,O) . (4)

For simplicity, Eq. (4) can be rewritten as follows:

fi (m,O) =

n
g=1


f (g−1)
i

h(g−1)

(g − 1)!

n
l=1


Ci,l (m,O) · (l − i)(g−1)

+ Ei (m,O) . (5)

Thus, by ignoring the error term, an approximation for fi (m,O) is:

fi (m,O) ≈

n
g=1


f (g−1)
i

h(g−1)

(g − 1)!

n
l=1


Ci,l (m,O) · (l − i)(g−1) . (6)

If we consider

bg = f (g−1)
i

h(g−1)

(g − 1)!

n
l=1


Ci,l (m,O) · (l − i)(g−1) , g = 1, 2, . . . , n (7)

then we have

bg
(g − 1)!
h(g−1)

=

n
l=1


Ci,l (m,O) · (l − i)(g−1) , g = 1, 2, . . . , n (8)

where

bg =


1 if g = m + 1
0 if g ≠ m + 1. (9)

Accordingly

n
l=1


Ci,l (m,O) · (l − i)(g−1)

=

m!

hm
if g = m + 1

0 if g ≠ m + 1.
(10)

4 A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13

Using a matrix representation, we get

(1 − i)0 (2 − i)0 · · · (l − i)0 · · · (n − i)0

(1 − i)1 (2 − i)1 · · · (l − i)1 · · · (n − i)1

(1 − i)2 (2 − i)2 · · · (l − i)2 · · · (n − i)2
...

...
...

...
...

...

(1 − i)g−1 (2 − i)g−1
· · · (l − i)g−1

· · · (n − i)g−1

...
...

...
...

...
...

(1 − i)n−1 (2 − i)n−1
· · · (l − i)n−1

· · · (n − i)n−1





Ci,1 (m,O)
Ci,2 (m,O)
Ci,3 (m,O)

...
Ci,g (m,O)

...
Ci,n (m,O)


=

m!

hm



b1
b2
b3
...
bg
...
bn


. (11)

If we denote first, second and third matrix by Ai (m,O) , Ci (m,O) and bi (m,O) respectively, then we have

Ai (m,O) Ci (m,O) =
m!

hm
bi (m,O) . (12)

Therefore

Ci (m,O) =
m!

hm
A−1
i (m,O)bi (m,O) . (13)

Ai(m,O) is the transpose of the Vandermonde matrix Vi(m,O) [9]. Consequently, we can write

Ci (m,O) =
m!

hm


V T
i (m,O)

−1
bi (m,O) =

m!

hm


V−1
i (m,O)

T
bi (m,O) . (14)

Regarding Eq. (14), V−1
i (m,O) can be expressed in a closed form by elementary symmetric functions as follows [9]:

V−1
i (m,O) = mi (m,O) =


ml,r


, ml,r = (−1)n−l σ

(n)
n−l+1,r

p=n
p=1,p≠r

(vr − vp)

(15)

where

σ
(n)
i,j =


r1=n
r1=1
r1≠j

r2=n
r2=r1+1

r2≠j

r3=n
r3=r2+1

r3≠j

· · ·

ri−1
ri−1=ri−2+1

ri−1≠j

h=i−1
h=1

vrh if i ≠ 1

1 if i = 1

(16)

and

vk = k − i, k = 1, 2, 3, . . . , n. (17)

Note 2.1. The term sigma matrix denoted by σ (n), which will be frequently used by authors, is referred to an n × n matrix
which contains σ

(n)
x,y as the value of row x and column y. Also, note that a specific sigma matrix is associated with a specific

vector vk in Eq. (17). Furthermore, we say that vk = k − i creates the ith sigma matrix.

Referring Eq. (14), we have


V−1
i (m,O)

T
= ωi (m,O) =


ωl,r


, ωl,r = (−1)n−r σ

(n)
n−r+1,l

p=n
p=1,p≠l


vl − vp

 . (18)

Substituting Eq. (18) into Eq. (14) we have

Ci (m,O) =
m!

hm
ωi (m,O) bi (m,O) =

m!

hm


ωl,m+1


(19)

and

Ci,l (m,O) =
m!

hm
ωl,m+1 =

m!

hm
(−1)n−m−1 σ

(n)
n−m,l

p=n
p=1,p≠l

(vl − vp)

. (20)

Moreover, we can prove that:
p=n

p=1,p≠l

(vl − vp) = (−1)n−l (l − 1)! (n − l)! (21)

A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13 5

Finally weighting coefficients can be expressed in a closed form as follows:

Ci,l (m,O) = (−1)l−m−1 m!

hm (l − 1)! (n − l)!
σ

(n)
n−m,l. (22)

As brieflymentioned before, determining theweighting coefficients is themost important part in calculating fi(m,O) and
needs the highest number of operations. Hence, we have focused on optimizing this part of calculations. Concerning Hasan
et al. [9], theweighting coefficients for n = m+Opoints can be calculated by Eq. (22). Furthermore themain part in obtaining
coefficients is computing sigma matrices. Indeed, their proposed method calculates every column of the sigma matrix
independently in O(n2). But, it is easy to find out that values that are used to form a column are significantly dependent
on the values of the other columns. Therefore, except the first column that requires to be calculated independently, our
proposed algorithm utilizes the mentioned dependency between columns to form each column in O(n). Consequently, a
single sigma matrix could be computed in O(n2) which leads us to the complexity of O(n3)instead of O(n4) to calculate all
of the coefficients. In the next section we have explained the relationship between columns of a sigma matrix and how to
use it in order to expedite the calculations.

3. Demonstration of the proposed algorithm

In this section we show how a recursive algorithm can help us to calculate the jth (j > 1) column of the ith sigmamatrix
using the first column that was calculated before. Similar to what was explained in Note 2.1 we consider that, the ith sigma
matrix uses a vector v(n) as follows to form its values:

v(n)
= [a1, a2, a3, . . . , an], aj = j − i. (23)

Note 3.1. The value name i which is used in ‘ith sigma matrix’ and ‘v(n)
= [a1, a2, a3, . . . , an], aj = j − i’ should not be

confused with σ
(n)
i,j that comes next. The ith sigma matrix is denoted by σ (n). We only have used the same name for entries

of sigma matrix for the simplicity of notation in the rest of this section. Also, from here on, when we state the jth column
we refer to a column in the sigma matrix other than the first one (j > 1). The jth column of σ (n) can be shown as follows:

σ
(n)
i,j(1≤i≤n) =



1
1≤i1≤n
i1≠j

ai1
1≤i1<i2≤n
i1≠j,i2≠j

ai1 · ai2
1≤i1<i2<i3≤n
i1≠j,i2≠j,i3≠j

ai1 · ai2 · ai3

...
1≤i1<i2<···<in≤n
i1≠j,i2≠j,...,in≠j

ai1 · ai2 · ai3 · . . . · ain


. (24)

It is straightforward to show that the value of aj does not appear in any product term for the jth column. Thus, if we denote
values which are used in the jth column of σ (n) with v

(n)
j , we have

v
(n)
j = [a1, a2, . . . , aj−1, aj+1, . . . , an]. (25)

In order to form σ (n), we need to calculate each column of σ (n) using its first column. The important point in calculating the
jth column is that there is no need to consider all values in v

(n)
j because many of the elements of v

(n)
j can be found in v

(n)
1 .

Therefore, we should only consider the elements that exist in v
(n)
j and do not exist in v

(n)
1 .

Note 3.2. Although the difference between the elements of v(n)
j and v

(n)
1 is always in one element, in the rest of this section

we generalize the related proofs for the proposedmethod to r elements. Hence, the reduced case of r = 1would be sufficient
to implement the results of algorithms albeit these general proofs have meaningful interpretation in order to follow in
further research.

Before continuing, we make the following definitions.

Definition 3.1. Set of elements that exist in v
(n)
1 and do not exist in v

(n)
j is defined as P = {p1, p2, . . . , pr}.

6 A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13

Definition 3.2. The sum of the product of elements for every subset P with the length k is denoted by Lk (k ≤ r) and is
defined as follows:

Lk =




1≤i1<i2<···<ik≤r

pi1 · pi2 · · · · · pik, 1 ≤ k ≤ r

1, k = 0.
(26)

Definition 3.3. Set of elements that exist in v
(n)
j and do not exist in v

(n)
1 is defined as Q = {q1, q2, . . . , qr}.

Definition 3.4. Similarly, the sumof the product of elements for every subset ofQ with the length k is denoted byMk (k ≤ r)
and is defined as follows:

Mk =




1≤i1<i2<···<ik≤r

qi1 · qi2 · · · · · qik, 1 ≤ k ≤ r

1, k = 0·
(27)

Definition 3.5. For the first column of σ (n), the sum of every product term in the ith row that does not contain any elements
of P is denoted by Bi. Furthermore, for the jth column, the sum of every product term in the ith row that does not contain
any elements of Q is again equal to Bi. For instance, if n = 5 and v

(n)
1 = [a2, a3, a4, a5] then the first column of σ (n) becomes:

σ
(5)
i,1(1≤i≤5) =


1

a2 + a3 + a4 + a5
(a2 × a3) + (a2 × a4) + (a2 × a5) + (a3 × a4) + (a3 × a5) + (a4 × a5)

(a2 × a3 × a4) + (a2 × a3 × a5) + (a2 × a4 × a5) + (a3 × a4 × a5)
a2 × a3 × a4 × a5

 . (28)

Therefore, if j = 2 then the only element participating in the first column that does not appear in the second column is a2,
so P = {a2}. Similarly Q = {a1} and we have:

B1
B2
B3
B4
B5

 =


1

a3 + a4 + a5
(a3 × a4) + (a3 × a5) + (a4 × a5)

a3 × a4 × a5
0

 . (29)

Definition 3.6. For the entries in the first column of σ (n), the sum of every product term that contains exactly k elements of
P is denoted by Si,1,k, where 0 ≤ k ≤ min(i − 1, r). In a similar manner, Si,j,k is defined using elements of Q . Note that the
values of Si,1,k and Si,j,k are not known unless we know the value of j and accordingly P and Q .

Considering the previous example, we have
S3,1,0
S3,1,1


=


(a3 × a4) + (a3 × a5) + (a4 × a5)
(a2 × a3) + (a2 × a4) + (a2 × a5)


. (30)

Moreover, in the cell σ (n)
i,1 we can assume that every product term has exactly zero elements of P or exactly two elements of

P or . . . exactly min(i − 1, r) elements of P . Therefore, the value of the cell can be presented in the following form:

σ
(n)
i,1 =

min(i−1,r)
k=0

Si,1,k. (31)

Since product terms of Bi−k have a length of i − k − 1, we have
Si,j,k = Bi−k × Mk. (32)

And
Si,1,k = Bi−k × Lk. (33)

For example, if j = 2 then Q is {a1}. From Eq. (29) and definition of Lk and Mk we get:
S4,2,1 = (a1 · a3 · a4) + (a1 · a3 · a5) + (a1 · a4 · a5) = (a3 · a4 + a3 · a5 + a4 · a5) × a1 = B3 × M1

S4,1,1 = (a2 · a3 · a4) + (a2 · a3 · a5) + (a2 · a4 · a5) = (a3 · a4 + a3 · a5 + a4 · a5) × a2 = B3 × L1.

From Eq. (31), in order to update the value of the cell σ (n)
i,1 , we only need to update the values of Si,1,k in which k ≥ 1 because

in the case of k = 0, no element of P will be involved. Using this, we can update the first column to get the jth column. The
updated value of Si,1,k is the sum of every product term that contains exactly k elements of Q and is equal to the value of
Si,j,k. Actually, Si,j,k only uses values of Q instead of P; therefore, it can be used in forming values for the jth column. Similar

A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13 7

to Eq. (31) the updated value of σ (n)
i,1 which is equal to σ

(n)
i,j can be expressed as follows:

σ
(n)
i,j =

min(i−1,r)
k=0

Si,j,k. (34)

In order to calculate the value of Si,j,k, we can write:
Si,j,k = Bi−k × Mk = Bi−k × Mk + Bi−k × Lk − Bi−k × Lk = (Bi−k × Lk) + (Mk − Lk) × Bi−k.

Referring Eq. (32), we can conclude that:
Si,j,k = Si,1,k + (Mk − Lk) × Bi−k. (35)

Since Si,j,0 = Si,1,0, we can start from k = 1 and define Gk = Mk − Lk, as a result the desired value of σ (n)
i,j can be obtained as

follows:

σ
(n)
i,j = σ

(n)
i,1 +

min(i−1,r)
k=1

Gk × Bi−k. (36)

Eq. (36) is themain formula in our implementedmethod in Section 3.2. Before starting to update a column, we pre-calculate
Gk and Mk where 1 ≤ k ≤ n − 1. Note that we also need to find the value of Bi to calculate the next cells. After updating a
cell, similarly Bi can be calculated as follows:

Bi = σ
(n)
i,j −

min(i−1,r)
k=1

Mk × Bi−k. (37)

Note 3.3. Our proposed algorithm aims to recursively calculate each column of a sigma matrix and just optimizes the
previous method for the finite difference approximation of derivatives [9] in terms of time complexity. Although we could
similarly obtain the first column of each sigmamatrix using the first column of the previousmatrix to reduce computational
effort, this objective has not been developed as it is irrelevant to the main idea of the article. Therefore, we attempt to
concentrate on calculating weighting coefficients in O(n3).

3.1. Time complexity analysis

As mentioned earlier, the analysis is done in a more general form for an arbitrary value of r (1 ≤ r ≤ n). In order to
update each column while forming a specific sigma matrix, there exist three main parts that can be analyzed as follows:

3.1.1. Determining P and Q
The elements of P and Q for a column can be found in linear time because we only need to scan through the vector v

(n)
1

and check whether the current element appears in v
(n)
j or not. Therefore, this part has a complexity of O(n).

3.1.2. Determining Lk,Mk and Gk
A naive algorithm needs to generate every subset of the r elements and calculate the sum of products, which has an

exponential complexity of O(2r). However, there exists a relation between the sum of products with length t and the sum of
productswith length t+1. Therefore, a recursive solution can pre-calculate these values for the jth columnwith a complexity
of O(r2). For instance, if we want to form the sum of products for a vector v = [v1, v2, v3,v4] we can say that:

sum of products with length 1 : X = v1 + v2 + v3 + v4

sum of products with length 2 : X ′
= v1 × (X − v1) + v2 × (X − (v1 + v2)) + v3 × (X − (v1 + v2 + v3)).

Therefore, knowing such relationship, for a vector with r elements, the sum of products with length t+1 could be computed
from the value for length t with O(r) number of operations. And for an optimized version as in Listing 2 we would need an
overall of O(r2) time and memory.

3.1.3. Updating the first column and calculating Bi

According to Eqs. (36) and (37), obtaining the value of σ (n)
i,j from σ

(n)
i,1 and calculating Bi for that cell has a complexity of

O(r), because the upper bound of sigma ismin (i − 1, r). Sincewe should perform this operation for every cell in the column,
it takes O(n × r). We can obtain the first column of σ (n) with an algorithm of O(n2) as mentioned in 3.1.2. Since we need to
update all n− 1 remaining columns to form σ (n), the overall complexity is O(n2

+ (n− 1) × (n+ r2 + n× r)). Knowing the
fact that r = 1, calculating the whole sigma matrix can be done in O(n2).

3.2. Implementation

In order to compare the proposed method with the former method, we bring the equivalent C++ code of the Matlab
code of [9] for calculating weighting coefficients. Note that in both algorithms the calculated coefficients are scaled by

8 A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13

λ = hm (n − 1)!/m! as utilized in [9], so h is not needed in either of algorithms. The reason for scaling was to make the
process of validation easier and more reliable in the next section. In Listing 1, the function Sig creates the sigma matrix for
every i from 1 to n and function Ceoff generates the weighting coefficients.

Listing 2 indicates our proposed algorithm. The function new_sig receives v(n) and returns σ (n); it uses cal_sums to
calculate the sum of products of every subset of v

(n)
1 with lengths from 0 to n − 1. As explained earlier we assume that

r is equal to 1. Therefore, we always have P = {aj} where j > 1 and Q = {a1}. Accordingly, we can obtain M and G with a
simple initialization and finally functionmy_coeff calculates weighting coefficients.

A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13 9

10 A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13

Table 1
PC configuration.

Processor Installed memory (RAM) System type

Intel Core i3—CPU 2.10 GHz 4.00 GB 64-bit operating system

Table 2
Calculated scaled coefficients form = 4 and O = 5, C ′

i,l = λ × Ci,l .

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

i = 1 22449 −147392 428092 −720384 769510 −534464 235452 −60032 6769
i = 2 6769 −38472 96292 −140504 132510 −83384 34132 −8232 889
i = 3 889 −1232 −6468 21616 −28490 20496 −8708 2128 −231
i = 4 −231 2968 −9548 12936 −7490 616 1092 −392 49
i = 5 49 −672 4732 −13664 19110 −13664 4732 −672 49
i = 6 49 −392 1092 616 −7490 12936 −9548 2968 −231
i = 7 −231 2128 −8708 20496 −28490 21616 −6468 −1232 889
i = 8 889 −8232 34132 −83384 132510 −140504 96292 −38472 6769
i = 9 6769 −60032 235452 −534464 769510 −720384 428092 −147392 22449

4. Numerical experimentation and code validation

In this sectionwe aim to prove the validity and optimality of the proposedmethod. All of experimentations are donewith
Microsoft Visual C++ 2010 express, under release mode. The configuration of the PC is also shown in Table 1. To check the
validity of the implemented code we use m = 4 and O = 5. Table 2 shows the results of the proposed algorithm that are
exactly the same as calculated in [9].

In the next step, the concentration is on the optimality of the algorithm. Note that the zero values in Table 3 show that
the execution time has been less than a millisecond. For relatively small values of m and O such as rows 1–3, our method
does not work faster than the previous method. The reason is that the proposed method uses some costly operations to
reduce time complexity rather than simple calculations of the previous method. Therefore, large values are needed to show
that our method is better. But the growth of values in the sigma matrix and weighting coefficients is of the factorial order.
Although large numbers and their operations can be implemented using arrays to store values, they cannot fit into currently
available primitive data types (such as integers and long integers). For this reason, in this part we ignore the validity of the
algorithm for the large values of n, and factorials larger than 12! are considered 1, to simultaneously prevent them from
being overflowed during arithmetic operations and also avoid division by zero error. In conclusion, we only evaluate both
algorithms in terms of execution time. Note that the algorithm is still valid for n ≤ 12.

5. Applications

In this section we want to point out some of the major advantages of our method (other than mere better time complex-
ity) and state a related specific application in the real world. In the previous sections we indicated that our method is faster
than the previous one. But, here wewant to show that even for small values of n ourmethod is preferable. In the oldmethod
the complexity for calculating a sigma matrix was cubic not just because it used three successive loops. A more important
point is that in that algorithm in addition to add operations, the number ofmultiplication operations was also of cubic order.
In a more real approach, a multiplication costs quite more than an addition, so in this sense our method is better. Hence,
if we only optimize our implementation for the case r = 1 and avoid calling cal_sums subroutine the proposed algorithm
always works faster and has less computational effort.

Another point is that this filter can be used indirectly to improve accuracy. Compared to the old method, the quickness
of the new one allows us to obtain higher order of accuracy for derivates. Suppose that we want to calculate the derivative
of degree m and order of accuracy O, so here we have n = m + O. Since the new method is faster, instead of O we can use
a remarkably higher order of accuracy O′


O′ > O


, and now size of input is n′

= m + O′ which is strictly larger than n and
of course more operations are required to complete the calculations. Hence, we can adjust the value of O′ in a way that the
number of operations for n in the old method is equal to the number of operations for n′ in the newmethod. Consequently,
with the same amount of operations, we can obtain a higher order of accuracy.

Having the two mentioned points in mind, the proposed method of differentiating could be used in order to obtain
derivatives with a higher order of accuracy without imposing much computational effort. In the next two sections we
show that how other features of our algorithm make it an excellent choice for differentiating when we simultaneously need
accuracy and speed while working with DSPs in the real applications.

5.1. Locating signal peaks

In this part we want to use a short example (borrowed from [11]) to explain how signal derivatives can be used for
locating peaks which are hard to realize due to strong influence of noise on the signal. This part is a prerequisite to better

A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13 11

Table 3
Comparison of previous and new methods in terms of execution time.

Row# m O n = m+O Previous method (ms) New method (ms)

1 5 5 10 0 1
2 8 9 17 0 1
3 10 10 20 1 1
4 9 18 27 4 1
5 6 22 28 5 2
6 14 15 29 7 2
7 25 25 50 39 7
8 47 7 54 50 8
9 37 32 69 132 15

10 39 31 70 136 16
11 16 66 82 261 25
12 31 52 83 271 26
13 16 67 83 268 26
14 77 7 84 279 27
15 44 45 89 352 31
16 55 41 96 474 39
17 24 74 98 522 42
18 35 64 99 574 44
19 50 50 100 561 44
20 65 44 109 786 57
21 61 53 114 936 64
22 8 114 122 1227 78
23 73 52 125 1397 88
24 50 79 129 1527 93
25 6 144 150 2769 143
26 64 116 180 5751 265
27 100 100 200 8865 344

Fig. 2. Original signal, the peak at x = 500 is barely visible.

describe the application in the next section. Consider a signal as shown in Fig. 2 where a peak has been buried at x = 500
as a result of strong background signal. Here the signal which is a peak-type has been smoothed in order to increase the
signal-to-noise ratio. After computing the 4th derivative of the signal we get Fig. 3. If we scale Fig. 3 we get a signal in
which the location of the peak is noticeably obvious (Fig. 4). Hence, using high order derivatives of a noisy signal we can
extract the desired features more easily.

5.2. ECG signal processing

Nowadays electrocardiogram (ECG) is extensively in use in order to diagnose heart diseases. In fact, the ECG signal
contains a lot of valuable information which play a great role in primarymedical decisions. However, due to various sources
of noise such as those caused by electromyogram because of themotion of themuscles, power line interferences, ormotions
of instruments and even patients, it is not easy to obtain an ECG with high quality [12]. To indicate the ECG signal usually a
wave of the form PQRST is used as shown in Fig. 5. The QRS part of the ECG signal is the most visually apparent part in the
middle and is of significant importance because of the information it provides about right and left ventricle depolarization.

12 A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13

Fig. 3. 4th derivative of the original signal.

Fig. 4. 4th derivative of the original signal after scaling.

Therefore, the task of detecting QRS quickly and accurately is of great importance in ECG instruments. One of the needs in
locating QRS complex precisely is the slope of the Rwavewhich could be calculated using derivative algorithms. Apparently,
the nature of ECG implies real time signal processing to keep track of information and changes in the signal. This is why QRS
detectors (e.g. Pan–Tompkins Algorithm [13]) have a real time approach.

Recently, parallel processing techniques and multiprocessor DSPs have significantly accelerated computations by taking
advantage of parallel algorithms. Having that in mind, we aim to show another interesting characteristic of our algorithm
which makes it effective in such approaches. After what was explained in Section 3, it is easy to notice that unlike the old
method which needs all previously calculated values, our method only depends on the first column in order to compute a
sigma matrix. Hence, after determining the first column, we can divide the task of computing remaining columns among
processors and obtain a significant speed. In a word, our method is applicable in parallel computing because it forms the
solution of a large problem by solving smaller independent problems. Particularly, if we are using k processors (or have
simulated the work of k processors), forming each sigma matrix takes O(n2/k) instead of O(n3). Thus, we can provide the
coefficients needed for calculating derivatives a lot faster. Thus, in an application like ECG signal processing which needs
both fast real time computations and accuracy, the combination of our method and parallel processing provides satisfactory
results.

For another advantage,methodswhichuse Taylor series [7,14] aremore efficient in differentiating a noisy signal. Actually,
differentiator filters which are based on finite difference method are very sensitive to noise and fail to estimate high order
derivatives with sufficient accuracy. Moreover, if we are interested in obtaining highest possible accuracy and possess
powerful DSPs we cannot be limited to primitive data types, but can take advantage of massive numbers where operations
are done using string processing, such as BigInteger in JAVA. As a result, the size of input can freely increase and reveal
the true power of the algorithm. As shown in the execution-time comparison table, when n is near 70 our method is about
10 times faster. However, one could argue that an algorithm which reveals its true speed at such a large n is not practical

A. Mashreghi, H.S. Yazdi / Journal of Computational and Applied Mathematics 263 (2014) 1–13 13

Fig. 5. QRS complex in the ECG signal.

enough, because the number of applications which need derivatives of degree near 70 or higher is apparently limited. But,
the same argument is not acceptable for the order of accuracy, due to the fact that we would always like higher order of
accuracy even if the degree of derivative is not large. Obviously, the proposed optimization becomes valuable in such cases
and allows us to take advantage of the algorithm when precision is the most crucial factor in our application.

Finally, it would be helpful to mention that some alternatives like pre-calculating are not as effective as they seem. It
might seem that as long as the values of the inverse of Vandermonde matrices are known pre-calculating these values and
using themwhen needed is a good option because the only remaining unknown parameter is h (sampling period). But such
pre-calculation requires O(n4) time and O(n3) memory, instead of O(n3) and O(n2). Obviously enough, to use this approach
we should be able to determine an upper bound for n in our applications. And if such upper bound is large we would have
a significant burden of calculation. On the other hand, if the estimated upper bound is never achieved we would have a
significant waste of memory.

6. Conclusions

All considered, in this paper we provided a recursive algorithm to improve the process of calculating weighting
coefficients as the main part of calculating derivatives in the work of Hasan et al. [9]. The proposed method was completely
implemented and its validitywas confirmed through proofs and experimentations. The complexity analysis showed that the
proposed algorithm calculates the coefficients with the complexity of O(n3) or O(n3/k) when we use k processors. Hence,
the previous method can easily be substituted in the cases in which more optimality and high precision are needed.

References

[1] I.R. Khan, R. Ohba, Digital differentiators based on taylor series, IEICE Trans. Fundam. E82-A (12) (1999).
[2] I.R. Khan, R. Ohba, New design of full band differentiators based on Taylor series, IEE Proc. Vis. Image Signal Process. 146 (4) (1999).
[3] O. Vainio, M. Renfors, T. Saramalu, Recursive implementation of FIR differentiators with optimum noise attenuation, IEEE Trans. Instrum. Meas. 46 (5)

(1997).
[4] M.A. Al-Alaoui, Linear phase low-pass IIR digital differentiators, IEEE Trans. Signal Process. 55 (2) (2007).
[5] M.A. Al-Alaoui, Novel approach to designing digital differentiators, Electron. Lett. 28 (15) (1992).
[6] I.W. Selesnick, C.S. Burrus, Exchange algorithms for the design of linear phase FIR filters and differentiators having flat monotonic passbands and

equiripple stopbands, IEEE Trans. Circuits Syst. II 43 (9) (1996).
[7] J.A. de la O Serna, M.A. Platas-Garza, Maximally flat differentiators through WLS Taylor decomposition, Digit. Signal Process. 21 (2011) 183–194.
[8] V.V. Sondur, et al., Design of a fifth-order FIR digital differentiator using modified weighted least-squares technique, Digit. Signal Process. 20 (2010)

249–262.
[9] H.Z. Hasan, A.A. Mohamad, G.E. Atteia, An algorithm for the finite difference approximation of derivatives with arbitrary degree and order of accuracy,

J. Comput. Appl. Math. 236 (2012) 2622–2631.
[10] I.R. Khan, R. Ohba, Closed-form expressions for the finite diference approximations of First and higher derivatives based on Taylor series, J. Comput.

Appl. Math. 107 (1999) 179–193.
[11] C. Thomas, O’HaverHomepage, University ofMaryland, Date of access: 16May2013. http://terpconnect.umd.edu/~toh/spectrum/Differentiation.html.
[12] Udai Indu, P.R. Lekshmi, K Mathews Sherin, Maria Daie Tinu, T.S. Manu, ECG signal processing using DSK TMS320C6713, IOSR J. Eng. 2 (10) (2012)

Oct. edition, 02950005.
[13] J. Pan, W.J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng. (3) (1985) 230–236.
[14] Ronald L. Allen, Duncan Mills, Signal Analysis: Time, Frequency, Scale, and Structure, Wiley–IEEE Press, 2004.

http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref1
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref2
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref3
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref4
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref5
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref6
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref7
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref8
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref9
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref10
http://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref12
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref13
http://refhub.elsevier.com/S0377-0427(13)00654-7/sbref14

	A recursive algorithm for optimizing differentiation
	Introduction
	Previous method
	Notation and problem statement
	Derivation of the previous method

	Demonstration of the proposed algorithm
	Time complexity analysis
	Determining P and Q
	Determining Lk, Mk and Gk
	Updating the first column and calculating Bi

	Implementation

	Numerical experimentation and code validation
	Applications
	Locating signal peaks
	ECG signal processing

	Conclusions
	References

