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Abstract

This paper studies constructing polynomial Bézier surface that interpolates a
Bézier curvilinear quadrilateral as boundary geodesics. The construction con-
sists of two parts. First, from the given corner data(i.e., position, tangent and
curvature at the corner of each curve), four quintic Bézier curvilinear quadrilat-
eral with minimum strain energy is constructed to satisfy the constraints of the
crossing geodesics on a surface. Second, a polynomial Bézier surface of degree
(7, 7) is constructed to interpolate the quadrilateral as boundary geodesics of
the constructed surface. We identify the precise degrees of freedom in terms of
the control points. And the constructed surface that adheres to the NURBS
standard and employs geometric shape handles can be readily incorporated into
commercial CAD systems. The method is illustrated by several computational
examples.

Key words: Bézier surface, interpolation, geodesic quadrilateral, optimized
design

1. Introduction

The geodesic of the arbitrary two points on a surface is a locally length-
minimizing curve [1]. Due to its intrinsic geometric feature, geodesic plays
an important role in a diversity of applications, such as image processing and
analysis [2, 3, 4], industrial designing and manufacturing [5, 6, 7], etc.

Surface construction via one or several given curves interpolation is a classic
topic in the CAD & CAGD fields. In recent years, surface construction from one
or several geodesic curves has attracted the attention from many researchers.
And both independent and crossing geodesic curves have been considered. In
the case of independent curves, several methods have been proposed for surface
interpolating these curves as isoparametric geodesics [7, 8, 9, 10, 11, 12]. In the

∗corresponding author
Email addresses: yanghuogen@126.com (Huogen Yang )
Tel/Fax:+86-0797-8312040 (Huogen Yang)

Preprint submitted to Elsevier June 14, 2014



case of crossing curves, Hagen [13] developed a triangular interpolation scheme
which results in a triangular surface with geodesic boundary curves. Farouki
et al. identified the constraint conditions of the crossing geodesics on a surface
[14], and from the given corner data, they also proposed to construct quadri-
lateral and triangular patches interpolating a geodesic quadrilateral [15] and
triangle[16] by the Coons method, respectively. However, due to the restrictions
of the crossing geodesic constraints and the Coons interpolation scheme, the de-
grees of the geodesic curves and the interpolation patch all are very high. For
example with polynomial Bézier geodesic curves, the degree 7 was considered in
[15], and each variable of the Coons interpolation surface patch is of degree 13.
In modern CAD systems, high degree of the curve/surface may arouse inconve-
nience for curve/surface editing, and the probability of success of data exchange
will be reduced between different systems. Thus, for the practical application,
the immediate question is whether there are curve and surface with lower degree
to satisfied the constraints of the geodesic quadrilateral interpolation.

Inspired by this, here we focus on the construction of polynomial Bézier
surface with lower degree to interpolate Bézier curves as geodesic quadrilateral,
and the constructed surface meets the requirements of the commercial CAD sys-
tems, such as the NURBS standard and the geometric shape handles[10], etc. To
achieve this goal, we split the construction process into two parts. First, from
the given corner data(position, tangent and curvature at the corner of each
curve), we construct a polynomial Bézier curvilinear quadrilateral with mini-
mum strain energy to satisfy the constraints required for the crossing geodesics
on a surface. Then, a Bézier patch, whose control points are determined by two
steps, is constructed to interpolate these curves as geodesic quadrilateral.

The paper is organized as follows. After introducing some notations and
reviewing the constraint conditions for the crossing geodesics on a smooth sur-
face in section 2. Section 3 identifies the constraint conditions for a quintic
Bézier curvilinear quadrilateral to be the geodesic quadrilateral of a surface,
and proposes a optimized geometric construction for quintic Bézier curvilinear
quadrilateral which can be four boundary geodesics of a Bézier patch. Then in
section 4, we describe in detail the construction of a Bézier patch to interpolate
these curves as boundary geodesics. Finally, we draw our conclusions in Section
5.

2. Preliminaries

2.1. Notations
In the following discussion, all curves are free of inflection point, all surfaces

are considered to be regular and oriented.
The inner product of two vectors u,v is denoted by < u,v >. For lin-

early independent vectors u,v and n such that n ⊥ u and n ⊥ v, we de-
note by (u,v)n the oriented angle between u and v in the sense of n, namely,
sin(u,v)n = det( u

‖u‖ ,
v
‖v‖ ,

n
‖n‖ ), cos(u,v)n =< u

‖u‖ ,
v
‖v‖ >.
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For a space curve r(t), we denote by e(t),n(t) and b(t) the tangent, principal
normal and binormal vectors, by k(t) and τ(t) the curvature and torsion of the
curve at the point r(t) , respectively. Namely,

e(t) =
r′(t)
‖r′(t)‖ , b(t) =

r′(t)× r′′(t)
‖r′(t)× r′′(t)‖ , n(t) = b(t)× e(t),

k(t) =
‖r′(t)× r′′(t)‖

‖r′(t)‖3
, τ(t) =

det(r′(t), r′′(t), r′′′(t))
‖r′(t)× r′′(t)‖2

.

(1)

2.2. Constraints for geodesic boundaries crossing on a smooth surface
Consider, as illustrated in Fig.1, four regular curves r1(u), r2(v), r3(u), r4(v)

with u, v ∈ [0, 1], such that r1(0) = r2(0) = P00, r1(1) = r4(0) = P10, r2(1) =
r3(0) = P01, r3(1) = r4(1) = P11, Denote by ni(j), ki(j) and τi(j)(i = 1, · · · , 4,
j = 0, 1) the principal normal vectors, curvature and torsion at the two end-
points of the curves ri. Let A00 = (r′1(0), r′2(0))N(P00)

, A01 = (r′3(0), r′2(1))N(P01)
,

A10 = (r′1(1), r′4(0))N(P10)
, A11 = (r′3(1), r′4(1))N(P11)

, N(Plj) are the unit nor-
mal vector of the interpolating surface at the corner Plj(l = 0, 1).

Figure 1: Patch boundaries and the vectors at the corners.

For the above four curves, Farouki et al. identified the conditions for them
to constitute geodesic boundaries of a surface as follows.

Proposition 1. (See [14]) If the four curves satisfy the following conditions:
(C1) the osculating constraints;
(C2) the global normal orientation constraint;
(C3) geodesic crossing constraints at corners Plj.

there exist a regular oriented surface R(u, v) interpolating these four curves in
such a way that these curves are geodesics of the surface. Conversely, if any of
the conditions(C1)-(C3) is not satisfied, such an interpolating surface can not
be constructed.

For subsequent use, the three constraints of Proposition 1 listed as follows(see
[14] for more details).
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(C1) Osculating constraints: the principal normals of the boundary curves
that meet at each corner must agree modulo sign.

P00 : σ1(0)n1(0) = σ2(0)n2(0), P01 : σ2(1)n2(1) = σ3(0)n3(0),

P10 : σ1(1)n1(1) = σ4(0)n4(0), P11 : σ3(1)n3(1) = σ4(1)n4(1).
(2)

where σi(j) ∈ {−1,+1}, i = 1, · · · , 4, j = 0, 1.
(C2) Global normal orientation constraint: Along the boundary curves, a

continuous unit normal vector N of the interpolation surface must exist, such
that N = ±n(n is the principal normal vector along the boundary curves).

(C3) Corner geodesic crossing constraints: At each corner, the curvature and
torsion must satisfy

P00 : [σ1(0)k1(0)− σ2(0)k2(0)] cos A00 + [τ1(0) + τ2(0)] sin A00 = 0,

P01 : [σ3(0)k3(0)− σ2(1)k2(1)] cos A01 + [τ3(0) + τ2(1)] sin A01 = 0,

P11 : [σ3(1)k3(1)− σ4(1)k4(1)] cos A11 + [τ3(1) + τ4(1)] sin A11 = 0,

P10 : [σ1(1)k1(1)− σ4(0)k4(0)] cos A10 + [τ1(1) + τ4(0)] sin A10 = 0.

(3)

3. Quintic Bézier curvilinear geodesic quadrilateral

In terms of the given corner data, in this section, we consider the constraints
and construction for a quadrilateral, composed of four quintic polynomial Bézier
curves with minimum strain energy, as boundary geodesics of a patch. Suppos-
ing the four curves defined as

ri(u) =
5∑

j=0

P i
jBj,5(u)(i = 1, 3) and ri(v) =

5∑

j=0

P i
jBj,5(v)(i = 2, 4). (4)

with P 1
0 = P 2

0 = P00, P
2
5 = P 3

0 = P01, P
3
5 = P 4

5 = P11, P
1
5 = P 4

0 = P10. And the
strain energy of the four curves is defined as follows(see [17]).

∫ 1

0

(‖r′′1 (u)‖2 + ‖r′′3 (u)‖2)du +
∫ 1

0

(‖r′′2 (v)‖2 + ‖r′′4 (v)‖2)dv. (5)

3.1. Constraints for quintic Bézier curvilinear geodesic quadrilateral
(1) Osculating constraints
Consider the Osculating constraints at the corner P00. Because the principal

normal vector n1(0) and n2(0) are parallel with the unit normal vector N(P00) =
r′
1(0)×r′

2(0)
‖r′

1(0)×r′
2(0)‖

of the interpolation surface at the corner P00, the osculating plane

Π01 of r1(u) at the point P00 can be determined by r′1(0) (parallel to
−−−→
P 1

0 P 1
1 )

and r′1(0)× r′2(0) (parallel to
−−−→
P 1

0 P 1
1 ×

−−−→
P 2

0 P 2
1 ). Note that r′1(0)× r′′1 (0), namely,−−−→

P 1
0 P 1

1 ×
−−−→
P 1

1 P 1
2 is orthogonal to Π01 , so the control point P 1

2 must be located
in the osculating plane Π01. Similarly, the control point P 2

2 is located in the
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osculating plane Π11 determined by r′2(0) and r′1(0)× r′2(0) at the corner P00.
Then for all corners, we have
Remark 1. Osculating constraints imply that the control points P i

2 and P i
3 are

located in the osculating plane of the curve ri at the two end-points, respectively.
And the osculating plane is determined by the tangent vector of the curve ri

and the normal vector of the interpolation surface at the end-point.
Furthermore, for the given corner data, we have

Theorem 1. If the corner points, tangent and curvature at the corner of each
curve are given, the control points P i

2 and P i
3 are located in the following two

straight lines L0i and L1i, respectively.

L0i :
x− xQi

0

X0i
=

y − yQi
0

Y0i
=

z − zQi
0

Z0i
,

L1i :
x− xQi

1

X1i
=

y − yQi
1

Y1i
=

z − zQi
1

Z1i
.

(6)

where−−−→
P i

0P
i
1 = (X0i, Y0i, Z0i),

−−−→
P i

4P
i
5 = (X1i, Y1i, Z1i),

Qi
0 = P i

0 + σi(0) 5
4ki(0)‖

−−−→
P i

0P
i
1‖2N(P i

0) = (xQi
0
, yQi

0
, zQi

0
),

Qi
1 = P i

5 + σi(1) 5
4ki(1)‖

−−−→
P i

4P
i
5‖2N(P i

5) = (xQi
1
, yQi

1
, zQi

1
).

Proof. We shall give the proof only for the control point P 1
2 of the curve r1(u).

The proof for the other point P i
2 or P i

3 is similar.
Denote by d the distance from the point P 1

2 to the straight line P 1
0 P 1

1 . Using
the curvature expression in (1), by direct calculation, we have

k1(0) =
4
5
‖
−−−→
P 1

0 P 1
1 ×

−−−→
P 1

0 P 1
2 ‖

‖
−−−→
P 1

0 P 1
1 ‖3

=
4
5

d

‖
−−−→
P 1

0 P 1
1 ‖2

.

Then the distance d can be expressed as

d =
5
4
k1(0)‖

−−−→
P 1

0 P 1
1 ‖2. (7)

Expression (7) indicates that d is a fixed value when the corner data are given.
Namely, the control point P 1

2 is always located in a straight line L which parallels
to the straight line P 1

0 P 1
1 , and the distance between the two straight lines is d(see

Fig.2).
Let

Q1
0 = P 1

0 + σ1(0)dN(P 1
0 ). (8)

From (7) and (8), we can find the point Q1
0 is located in the osculating plane

Π01, the points Q1
0 and P 1

2 are located at the same side of the straight line
P 1

0 P 1
1 , and the distance from the point Q1

0 to the straight line P 1
0 P 1

1 is d. So
the straight line L also passes through the point Q1

0 = (xQ1
0
, yQ1

0
, zQ1

0
). Thus

the equation of the straight line L can be expressed as

x− xQ1
0

X01
=

y − yQ1
0

Y01
=

z − zQ1
0

Z01
.
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Figure 2: The choice of the control point P 1
2 .

This is the equation of straight line L01 of equations (6).

(2) Global normal orientation constraint
Due to the interpolating surface orientation and the curve ri without inflec-

tion point, both the unit normal N of the surface and the principal normal n
of each curve are globally continuous. Then the global normal orientation con-
straint shows such a fact: For N = n or N = −n, only one of the two holds along
each boundary curve. Therefore, the sudden reversal of the principal normal
can only occur at four corners, and the number of reversals is even. Namely,

∏

i,j

σi(j) = 1, (i = 1, · · · , 4, j = 0, 1). (9)

(3) Corner geodesic crossing constraints

Let P i
2 = (xP i

2
, yP i

2
, zP i

2
), P i

3 = (xP i
3
, yP i

3
, zP i

3
),
−−−→
P i

0P
i
1 ×

−−−→
P i

0Q
i
0 = (x0i, y0i, z0i)

and
−−−→
P i

5Q
i
1 ×

−−−→
P i

4P
i
5 = (x1i, y1i, z1i), We have

Theorem 2. Corner geodesic crossing constraints (3) is equivalent to




a01xP 1
3

+ a02xP 2
3

= 125
48 [σ2(0)k2(0)− σ1(0)k1(0)] cot A00 + b01 + b02,

a03xP 3
3

+ a12xP 2
2

= 125
48 [σ2(1)k2(1)− σ3(0)k3(0)] cot A01 + b03 + b12,

a13xP 3
2

+ a14xP 4
2

= 125
48 [σ4(1)k4(1)− σ3(1)k3(1)] cot A11 + b13 + b14,

a11xP 1
2

+ a04xP 4
3

= 125
48 [σ4(0)k4(0)− σ1(1)k1(1)] cot A10 + b11 + b04.

(10)

Where

a0i = 1

k2
i (0)‖

−−−→
P i

0P i
1‖6

(x0i + y0i
Y1i

X1i
+ z0i

Z1i

X1i
),

a1i = 1

k2
i (1)‖

−−−→
P i

4P i
5‖6

(x1i + y1i
Y0i

X0i
+ z1i

Z0i

X0i
),

b0i = 1

k2
i (0)‖

−−−→
P i

0P i
1‖6

[x0ixP i
0

+ y0i( Y1i

X1i
xQi

1
− yQi

1
+ yP i

0
) + z0i( Z1i

X1i
xQi

1
− zQi

1
+ zP i

0
)],

b1i = 1

k2
i (1)‖

−−−→
P i

4P i
5‖6

[x1ixP i
5

+ y1i( Y0i

X0i
xQi

0
− yQi

0
+ yP i

5
) + z1i( Z0i

X0i
xQi

0
− zQi

0
+ zP i

5
)].
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Proof. Notice that,

−−−→
P i

0P
i
1 ×

−−−→
P i

0P
i
2 =

−−−→
P i

0P
i
1 ×

−−−→
P i

0Q
i
0, ‖

−−−→
P i

0P
i
1 ×

−−−→
P i

0P
i
2‖2 =

25
16

k2
i (0)|

−−−→
P i

0P
i
1‖6,

−−−→
P i

4P
i
5 ×

−−−→
P i

3P
i
5 =

−−−→
P i

5Q
i
1 ×

−−−→
P i

4P
i
5, ‖

−−−→
P i

4P
i
5 ×

−−−→
P i

3P
i
5‖2 =

25
16

k2
i (1)|

−−−→
P i

4P
i
5‖6.

Substituting these expressions into the torsion expression in (1), we have

τi(0) =
48 det(

−−−→
P i

0P
i
1,
−−−→
P i

0Q
i
0,
−−−→
P i

0P
i
3)

125k2
i (0)|

−−−→
P i

0P
i
1‖6

, τi(1) =
48 det(

−−−→
P i

4P
i
5,
−−−→
P i

5Q
i
1,
−−−→
P i

2P
i
5)

125k2
i (1)|

−−−→
P i

4P
i
5‖6

. (11)

From (6), the torsions τi(0) and τi(1) are expressed by xP i
3

and xP i
2
. Then

substituting (11) into constraint (3), by direct calculation, equation (10) is ob-
tained.

According to Theorem 1, the control points P i
2 and P i

3 can be determined by
their x-coordinate xP i

2
and xP i

3
(i = 1, 2, 3, 4). Considering the four curves with

minimum strain energy and the constraint (10) on xP i
2

and xP i
3
, then, we can

determine xP i
2

and xP i
3

by minimizing formula (5) with the constraint (10).

3.2. Construction of quintic Bézier curvilinear geodesic quadrilateral
According to the analysis of section 3.1, we now propose a optimized geomet-

ric construction for a quadrilateral, composed of four quintic Bézier curves with
the constraints of the surface geodesic quadrilateral. The construction consists
of the following six steps.

(1) From the corner data, the control points P i
0, P

i
1 and P i

4, P
i
5 can be deter-

mined.
(2) An orientation unit normal vector N(Plj) of the interpolation surface is

assigned at each corner, defining the orientation of the surface.
(3) A sequence of signs σi(0) and σi(1) is chosen, compatible with the global

normal orientation constraint (9).
(4) According to equations (6), the straight line L0i and L1i are determined.
(5) Determining xP i

2
and xP i

3
by minimizing formula (5) with the constraint

(10), thus the corner geodesic crossing constraints (3) are satisfied.
(6) From equations (6), yP i

2
, zP i

2
, yP i

3
and zP i

3
are obtained, and the control

points P i
2 and P i

3 are determined.
Fig.3 shows two examples of the quadrilateral with control polygon, con-

structed in the above manner.

4. Four-sided geodesic Bézier interpolation

we now construct a Bézier patch that interpolates the above constructed
curves as geodesic quadrilateral. For simplification, the parametric variables u
and v all are denoted by t in this section.
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(a)

(b)

Figure 3: The constructed quintic Bézier curvilinear quadrilateral. (a)Continuous principal
normal along the boundary. (b)Four reversals of principal normal occur at the four corners.

4.1. Compatibility of interpolation conditions
Along the geodesic boundaries ri(t), the transverse tangent vector Di(t) of

the interpolation patch is coplanar with the vector r′i(t) and r′i(t) × r′′i (t), so
there exist scalar functions αi(t) and βi(t) such that

Di(t) = αi(t)r′i(t) + βi(t)r′i(t)× r′′i (t), t ∈ [0, 1]. (12)

Due to vanishing leading, the actual degree of the cross product r′i(t) ×
r′′i (t) is of 6. Taking the corner compatibility of interpolation condition (12)
at the corner and the degree of Di(t) into consideration, we choose αi(t) =∑3

j=0 ai
jBj,3(t) and βi(t) =

∑1
j=0 bi

jBj,1(t). They are Bézier functions of degree
3 and 1 with the coefficients ai

j and bi
j , respectively.

The interpolation condition (12) must satisfy the compatibility conditions at
each corner, which constrains the choice of the coefficients ai

j and bi
j . Consider,

for example, the curve r1(t) at the corner P 1
0 and P 1

5 .

(1) Compatibility of tangent vector

As the transverse tangent vector D1(t) must interpolate the tangent vector of
the curve r2(t) and r4(t) at the corner P 1

0 and P 1
5 , respectively. Let i = 1, t = 0

in (12), we have

a1
0

−−−→
P 1

0 P 1
1 + 20b1

0

−−−→
P 1

0 P 1
1 ×

−−−→
P 1

0 P 1
2 =

−−−→
P 2

0 P 2
1 . (13)

Because r′1(0), r′2(0) and r′1(0) × r′′1 (0) are coplanar, equation (13) admits so-
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lutions as

a1
0 =

<
−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
1 >

‖
−−−→
P 1

0 P 1
1 ‖2

, b1
0 =

det(
−−−→
P 1

0 P 1
1 ,
−−−→
P 1

0 P 1
2 ,
−−−→
P 2

0 P 2
1 )

20‖
−−−→
P 1

0 P 1
1 ×

−−−→
P 1

0 P 1
2 ‖2

. (14)

Let i = 1, t = 1 in (12), in the same way, a1
3 and b1

1 are determined as follows.

a1
3 =

<
−−−→
P 1

4 P 1
5 ,
−−−→
P 4

0 P 4
1 >

‖
−−−→
P 1

4 P 1
5 ‖2

, b1
1 =

det(
−−−→
P 1

3 P 1
5 ,
−−−→
P 1

4 P 1
5 ,
−−−→
P 4

0 P 4
1 )

20‖
−−−→
P 1

3 P 1
5 ×

−−−→
P 1

4 P 1
5 ‖2

.

Similarly solutions for i = 2, 3, 4 can be obtained, thus the first and last coeffi-
cients of αi(t) and all the coefficients of βi(t) are determined.

(2) Compatibility of twist vector

Denote by R(u, v) the interpolation surface. Then, D1(u) = Rv(u, 0), D2(v) =
Ru(0, v). At the corner P 1

0 , differentiate D1(u) and D2(v) , and set u = 0 and
v = 0, we have

D′
1(0) = Ru,v(0, 0) = D′

2(0). (15)

To compare D′
1(0) and D′

2(0), we consider their projections on the three
linearly-independent vectors r′1(0), r′2(0) and unit normal N(P 1

0 ). Notice that

N(P 1
0 ) = σ1(0)

(r′1(0)× r′′1 (0))× r′1(0)
‖(r′1(0)× r′′1 (0))× r′1(0)‖ = σ2(0)

(r′2(0)× r′′2 (0))× r′2(0)
‖(r′2(0)× r′′2 (0))× r′2(0)‖ ,

σ1(0) =
‖r′1(0)× r′2(0)‖‖r′1(0)× r′′1 (0)‖
‖r′1(0)‖det(r′1(0), r′2(0), r′′1 (0))

, σ2(0) =
‖r′1(0)× r′2(0)‖‖r′2(0)× r′′2 (0)‖
‖r′2(0)‖det(r′2(0), r′′2 (0), r′1(0))

.

Utilizing the curvature and torsion expressions in (1), (14) together with the
identity (u× v)×w =< u,w > v− < v,w > u, by calculation, we have

• Projection on N(P 1
0 )

< D′
1(0),N(P 1

0 ) >= ‖r′1(0)‖‖r′2(0)‖[σ1(0)k1(0) cos A00 + τ1(0) sin A00],
< D′

2(0),N(P 1
0 ) >= ‖r′1(0)‖‖r′2(0)‖[σ2(0)k2(0) cos A00 − τ2(0) sin A00].

As the corner geodesic crossing constraint is satisfied, < D′
1(0),N(P 1

0 ) >=<
D′

2(0),N(P 1
0 ) > holds naturally.

• Projection on r′1(0)

< D′
1(0), r′1(0) >= 75(‖

−−−→
P 1

0 P 1
1 ‖2a1

1 + c),

< D′
2(0), r′1(0) >= 75(<

−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
1 > a2

1 + d).

Where c = 4a1
0

3 <
−−−→
P 1

0 P 1
1 ,
−−−→
P 1

0 P 1
2 > − 11a1

0
3 ‖

−−−→
P 1

0 P 1
1 ‖2,

d = 4a2
0

3 <
−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
2 > − 11a2

0
3 <

−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
1 > +[20(b

2
1−b20)
3 − 60b2

0]·
det(

−−−→
P 2

0 P 2
1 ,
−−−→
P 2

0 P 2
2 ,
−−−→
P 1

0 P 1
1 ) + 20b2

0 det(
−−−→
P 2

0 P 2
1 ,
−−−→
P 2

0 P 2
3 ,
−−−→
P 1

0 P 1
1 ).
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• Projection on r′2(0)

< D′
1(0), r′2(0) >= 75(<

−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
1 > a1

1 + e),

< D′
2(0), r′2(0) >= 75(‖

−−−→
P 2

0 P 2
1 ‖2a2

1 + f).

Where e can be obtained with the superscript 1 and 2 of d replaced by 2 and 1,
f can be obtained with the superscript 1 of c replaced by 2.

Thus, D′
1(0) = D′

2(0) holds if and only if the following linear system of
equations admit solutions

{
‖
−−−→
P 1

0 P 1
1 ‖2a1

1− <
−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
1 > a2

1 = d− c,

<
−−−→
P 1

0 P 1
1 ,
−−−→
P 2

0 P 2
1 > a1

1 − ‖
−−−→
P 2

0 P 2
1 ‖2a2

1 = f − e.
(16)

In general,
−−−→
P 1

0 P 1
1 and

−−−→
P 2

0 P 2
1 are linearly-independent, so the solutions of equa-

tion (16) are unique. Similar equations will come up at the other three corners,
and the coefficients ai

1 and ai
2(i = 1, 2, 3, 4) can be obtained from these equa-

tions.

4.2. Bézier expression of the interpolation patch
In order to express the interpolation surface as Bézier form, firstly, the trans-

verse tangent vector function Di(t) should be expressed as Bézier form.
Let ∆P i

j1
= 5(P i

j1+1−P i
j1

)(j1 = 0, 1, · · · , 4), ∆2P i
j2

= 4(∆P i
j2+1−∆P i

j2
)(j2 =

0, 1, 2, 3). Notice that r′i(t)× r′′i (t) is degree 6 Bézier curve, that is,

r′i(t)× r′′i (t) =
7∑

j3=0

H
i

j3Bj3,7(t) =
6∑

j4=0

Hi
j4Bj4,6(t). (17)

where

H
i

j3 =
1(
7
j3

)
j1+j2=j3∑

0≤j1≤4

∑

0≤j2≤3

(
4
j1

)(
3
j2

)
∆P i

j1 ×∆2P i
j2 ,

Hi
j4 =

7
7− j4

(H
i

j4 −
j4
7

Hi
j4−1), Hi

−1 = 0.

From (17)and (12), the transverse tangent vector Di(t) can be expressed as
following Bézier form.

Di(t) =
7∑

k=0

(F i
k + Gi

k)Bk,7(t), (i = 1, 2, 3, 4). (18)

Where

F i
k =

1(
7
k

)
j+j1=k∑

0≤j≤3

∑

0≤j1≤4

(
3
j

)(
4
j1

)
ai

j ×∆P i
j1 ,

Gi
k =

kbi
1

7
Hi

k−1 + (1− k

7
)bi

0H
i
k, Hi

7 = 0.

10



Because the transverse tangent vector Di(t) is of degree 7, we can define a
interpolation Bézier patch with degree (7, 7) as

R(u, v) =
7∑

i=0

7∑

j=0

DijBi,7(u)Bj,7(v). (19)

Using the degree elevation formula of Bézier curve, we rewrite ri(t) as

ri(t) =
7∑

k=0

di
kBk,7(t).

where di
k = (1− k

7 )d
i

k + k
7d

i

k−1, d
i

−1 = d
i

7 = 0,

d
i

j = (1− j
6 )Pi

j + j
6P

i
j−1(j = 0, 1, · · · , 6), Pi

−1 = Pi
6 = 0.

It is obvious that
{

Di0 = d1
i , Di,7 = d3

i , (i = 0, 1, · · · , 7),
D0j = d2

j , D7,j = d4
j , (j = 0, 1, · · · , 7).

(20)

By calculating directly the transverse tangent vector of R(u, v), and using
(18) and (20), we have





Di1 = d1
i + 1

7 (F 1
i + G1

i ),
D1j = d2

j + 1
7 (F 2

j + G2
j ), (i = 1, · · · , 6),

Di6 = d3
i − 1

7 (F 3
i + G3

i ), (j = 1, · · · , 6).
D6j = d4

j − 1
7 (F 4

j + G4
j ),

(21)

Notice that, the twist points of R(u, v) are calculated twice in (21), but they
are compatible when relation (15) holds.

We can now state the following result.

Theorem 3. For the quintic Bézier curvilinear quadrilateral constructed by
the method of section 3.2, if the control points of boundary curves and next to
boundary curves of the surface (19) satisfy Formulas (20) and (21), the surface
(19) interpolates the quadrilateral as boundary geodesics quadrilateral.

Theorem 3 indicates that, along each boundary curve, there are two lines
of control points related with the geodesic interpolation condition. One line of
control points is inherited from the boundary geodesic, the other line of control
points is adjacent to those of the boundary curve. The remaining inner control
points are free. In order to obtain a fair interpolation surface, we choose the
free control points by minimizing the following thin plate spline energy.

min
Dij

[
∫ 1

0

∫ 1

0

(‖Ruu(u, v)‖2 + 2‖Ruv(u, v)‖2 + ‖Rvv(u, v)‖2)dudv].

Let ∂E
∂Dij

= 0(i, j = 2, . . . , 5), we have
∑

0≤k≤7,k 6=i,

∑

0≤l≤7,l 6=j

DklMi,j,k,l + DijMi,j,i,j = 0. (22)

11



where

Mi,j,k,l =
∫ 1

0

∫ 1

0




B′′
i,7(u)Bj,7(v)B′′

k,7(u)Bl,7(v)
+2B′

i,7(u)B′
j,7(v)B′

k,7(u)B′
l,7(v)

+Bi,7(u)B′′
j,7(v)Bk,7(u)B′′

l,7(v)


 dudv.

The free control points Dij(i, j = 2, . . . , 5) can be obtained by solving the linear
equation (22).

Based on the above analysis, for a Bézier curvilinear quadrilateral constructed
by the method in section 3.2, the Bézier patch which interpolates these curves
as geodesic quadrilateral can be constructed by the following steps.

(1) According to the compatibility of the tangent and twist vector at the cor-
ners in Section 4.1, αi(t) and βi(t) are determined.

(2) From formula (18), we can calculate the control points of the transverse
tangent vector function Di(t) .

(3) The control points of the interpolation patch, which are related with the
geodesic interpolation condition, are calculated by formulas (20) and (21).

(4) The remaining control points of the interpolation patch are obtained by
solving linear equation (22).

Fig.4 and Fig.5 show two Bézier surfaces with degree (7, 7) interpolating the
constructed quadrilaterals(Fig.3(a),(b)) as geodesic quadrilateral, respectively.

(a) (b)

Figure 4: (a)The Control points related with geodesic interpolation condition. (b)interpolation
surface.

(a) (b)

Figure 5: (a)The Control points related with geodesic interpolation condition. (b)interpolation
surface.

5. Conclusion

In this paper, we identify the constraint conditions for quintic polynomial
Bézier curvilinear quadrilateral to constitute the boundary geodesics of a sur-
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face, and propose a optimized geometric method to construct a quintic Bézier
curvilinear quadrilateral satisfying these constraint conditions. For the con-
structed quadrilateral, a tensor-product Bézier surface of degree (7, 7) can be
constructed to interpolate these curves as geodesic quadrilateral. The scheme
incurs the free control points, which can be used to smooth the interpolation
surface. The interpolation surface patch adheres to the Bézier form and em-
ploys geometric shape handles, such as control points, which is compatible with
commercial CAD systems.
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Highlights
· A optimized geometric construction method for Bézier geodesic quadrilateral.

· A practical construction scheme for surface interpolating geodesic quadrilateral.

· We identify the precise degrees of freedom in terms of control points.

· The constructed surface and geodesics with low degree.


