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1. Introduction

Inverse problems (IPs) usually lead to mathematical models that are ill-posed in the sense of Hadamard. Many of them
do not have a solution in the strict classical sense, or if there is a solution, it might not be unique or might not depend
continuously on the data. To prove global (in time) existence and uniqueness of a solution turn out to be a serious task.
Another important goal in IPs is their solvability and description of a constructive algorithm for finding a solution. The
standard algorithms for IPs start with suitable parametrization and they involve continuous dependence of a parametrized
solution on the parameter. A cost functional capturing the error between parametrized and exact solutions at a given
measurement place is minimized in appropriate function spaces. The common disadvantage of this approach is lack of
convexity of the cost functional, which can be remediated by an appropriate regularization – cf. e.g. [1–3] – based on adding
a suitable term to the functional in order to guarantee its convexity, ensuring the existence of a unique solution to the
minimization problem by means of the theory of monotone operators [4,5]. This later problem can be solved numerically
by adequate approximation techniques, such as the steepest descend, Ritz or Newton or Levenberg–Marquardt method, see
e.g. [6,7].

We are interested in determining the unknown couple (u, h) obeying the following semilinear parabolic problemut(x, t) − 1u(x, t) = h(t)f (x) + α(u(x, t)) + β(x, t) in Ω × (0, T ),
∇u(x, t) · ν = 0 on Γ × (0, T ),
u(x, 0) = u0(x) for x ∈ Ω,

(1)

✩ The research was supported by the IAP P7/02-project of the Belgian Science Policy.
E-mail address:marian.slodicka@ugent.be.
URL: http://www.cage.ugent.be/∼ms.

http://dx.doi.org/10.1016/j.cam.2014.10.004
0377-0427/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2014.10.004
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:marian.slodicka@ugent.be
http://www.cage.ugent.be/~ms
http://www.cage.ugent.be/~ms
http://www.cage.ugent.be/~ms
http://www.cage.ugent.be/~ms
http://www.cage.ugent.be/~ms
http://www.cage.ugent.be/~ms
http://dx.doi.org/10.1016/j.cam.2014.10.004


2 M. Slodička / Journal of Computational and Applied Mathematics ( ) –

whereΩ ⊂ Rd, d ≥ 1 is a bounded domain with a sufficiently smooth boundary Γ . The symbol ν denotes the outer normal
vector associated with Γ . The data functions u0, f , α, β are given and T > 0. The unknown purely time-dependent source
term h(t) will be recovered from the following (non-invasive) measurement on the boundary

m(t) =


Γ

u(x, t)dx, t ∈ [0, T ]. (2)

Recovery of an unknown source belongs to hot topics in inverse problems. If the source solely depends on the space
variable, one needs an additional space measurement (e.g. solution at the final time), cf. [8–17]. For purely time-dependent
source a supplementary time-dependent measurement is needed, cf. [18–20]. This means that both kinds of inverse source
problems (ISPs) need totally different additional data. The integral overdetermination is frequently used in various IPs for
evolutionary problems, cf. [8,21,22] and the references therein. The integral is usually taken over thewhole domain (or over a
sub-domain). To get such ameasurement is not always obvious.We consider the integration just over the boundaryΓ in (2).

The goal of this paper is to address the well-posedness of the ISP, to study the regularity of a solution and to describe
a constructive way for finding it. The added value of this paper relies on reformulating the ISP into an appropriate direct
formulation. This means that we are looking on the ISP as on a system with two unknowns (u, h). We eliminate h from
(1) by (2). The proposed numerical scheme involves the semi-discretization in time by Rothe’s method cf. [23]. We prove
the existence of approximations at each time step of the time partitioning and we establish some stability results. The
convergence of iterates towards the exact solution is obtained by arguments of functional analysis. Finally, we discuss
uniqueness of the ISP.
Notations. Denote by (·, ·) the standard inner product of L2(Ω) and ∥·∥ its induced norm. When working at the boundary
Γ we use a similar notation, namely (·, ·)Γ , L2(Γ ) and ∥·∥Γ . By C ([0, T ], X) we denote the set of abstract functions

w : [0, T ] → X equipped with the usual norm maxt∈[0,T ] ∥·∥X and Lp ((0, T ), X) is furnished with the norm
 T

0 ∥·∥
p
X dt

 1
p

with p > 1, cf. [24]. The symbol X∗ stands for the dual space to X . As is usual in papers of this sort, C, ε and Cε will denote
generic positive constants depending only on a priori known quantities, where ε is small and Cε = C


ε−1


is large.

Take any function ϕ ∈ H1(Ω), and derive from (1) after integration over Ω and involving the Green theorem that

(∂tu, ϕ) + (∇u, ∇ϕ) = h (f , ϕ) + (α(u), ϕ) + (β, ϕ) . (P)

Integrating (1) over Γ and taking into account the measurement (2) we have

m′
−


Γ

1u = h


Γ

f +


Γ

α(u) +


Γ

β. (MP)

The relations (P) and (MP) represent the variational formulation of (1) and (2).

2. Time discretization

In Rothe’s method [23], a time-dependent problem is approximated by a sequence of elliptic tasks which have to be
solved successively with increasing time step. Rothe’s method can be also used for determination of the unknown time
dependent source h. For ease of explanation we consider an equidistant time-partitioning of the time frame [0, T ] with a
step τ = T/n, for any n ∈ N. We use the notation ti = iτ and for any function z we write

zi = z(ti), δzi =
zi − zi−1

τ
.

Consider a system with unknowns (ui, hi) for i = 1, . . . , n. At time ti we infer from (P) by the backward Euler scheme

(δui, ϕ) + (∇ui, ∇ϕ) = hi (f , ϕ) + (α(ui−1), ϕ) + (βi, ϕ) . (DPi)

Considering ui−1 in the right-hand side makes (DPi) linear in ui. From (MP) we obtain

m′

i −


Γ

1ui−1 = hi


Γ

f +


Γ

α(ui−1) +


Γ

βi. (DMPi)

The decoupling of ui and hi has been achieved by considering ui−1 in (DMPi). Note that for a given i ∈ {1, . . . , n} we solve
first equation (DMPi) and then (DPi). Further we increase i to i + 1.

Let us introduce the following space of test functions

V = {ϕ : Ω → R; ∥ϕ∥ + ∥∇ϕ∥ + ∥1ϕ∥ + ∥∇1ϕ∥ < ∞} ,

which is suitable for our purposes. We will seek uwithin this space. Let us note that we have to work in sufficiently regular
function space in order to keep h depending on


Γ

1u under control, cf. (MP).

Lemma 2.1. Let m′
∈ C([0, T ]), β ∈ C


[0, T ],H1(Ω)


, f ∈ H1(Ω),


Γ
f ≠ 0, α is global Lipschitz continuous. Assume that

u0 ∈ V . Then for each i ∈ {1, . . . , n} there exists a unique couple (ui, hi) ∈ V × R solving (DPi) and (DMPi).
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Proof. From (DMPi) we see that

hi =
−m′

i +


Γ
1ui−1 +


Γ

α(ui−1) +


Γ
βi

Γ
f

.

If ui−1 ∈ V then hi ∈ R by the trace theorem and Lipschitz continuity of α.
The relation (DPi) for ϕ ∈ H1(Ω) can we rewritten as follows

1
τ

(ui, ϕ) + (∇ui, ∇ϕ) =
1
τ

(ui−1, ϕ) + hi (f , ϕ) + (α(ui−1), ϕ) + (βi, ϕ) .

The left-hand side represents a continuous, elliptic and bilinear form in H1(Ω) × H1(Ω) and the right-hand side is a linear
bounded functional on H1(Ω). The Lax–Milgram lemma ensures existence and uniqueness of ui ∈ H1(Ω). Inspecting the
relation (DPi) we may write for any ϕ ∈ H1(Ω) that

(−1ui, ϕ) = hi (f , ϕ) + (α(ui−1), ϕ) + (βi, ϕ) − (δui, ϕ) .

The term −1ui has to be understood in the sense of duality, as a functional on H1(Ω). The right-hand side can be estimated
by Ci(τ ) ∥ϕ∥. Thus there exists an extension of −1ui to L2(Ω) according to Hahn–Banach theorem, cf. [25, p. 173]. This
extension will have the same norm as the functional on H1(Ω) and

−1ui = hif + α(ui−1) + βi − δui ∈ L2(Ω).

Applying the gradient operator to this relation we see that

− ∇1ui = hi∇f + ∇α(ui−1) + ∇βi − δ∇ui ∈ L2(Ω) (3)

taking into account the assumptions of this lemma, which concludes the proof. �

Lemma 2.2. Let the assumptions of Lemma 2.1 be fulfilled. Then there exists a positive constant C such that

max
1≤j≤n

uj
2 +

n
i=1

∥∇ui∥
2 τ +

n
i=1

∥ui − ui−1∥
2

≤ C


1 +

n
i=1

h2
i τ


.

Proof. Set ϕ = uiτ in (DPi), sum it up for i = 1, . . . , j to get
j

i=1

(δui, ui) τ +

j
i=1

∥∇ui∥
2 τ =

j
i=1

hi (f , ui) τ +

j
i=1

(α(ui−1), ui) τ +

j
i=1

(βi, ui) τ .

The summation by parts formula says that
j

i=1

(δui, ui)τ =

j
i=1

(ui − ui−1, ui) =
1
2

uj
2 − ∥u0∥

2
+

j
i=1

∥ui − ui−1∥
2


.

Making use of the Cauchy and Young inequalities we deduce in a standard way that

uj
2 +

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui∥
2 τ ≤ C


1 +

j
i=1

h2
i τ +

j
i=1

∥ui∥
2 τ


(4)

as α is Lipschitz continuous. We conclude the proof by Grönwall’s argument, cf. [26]. �

Lemma 2.3. Let the assumptions of Lemma 2.1 be fulfilled. Then there exists a positive constant C such that

max
1≤j≤n

∇uj
2 +

n
i=1

∥δui∥
2 τ +

n
i=1

∥∇ui − ∇ui−1∥
2

≤ C


1 +

n
i=1

h2
i τ


.

Proof. Putting ϕ = δuiτ into (DPi), summing it up for i = 1, . . . , j we obtain
j

i=1

(∇ui, δ∇ui) τ +

j
i=1

∥δui∥
2 τ =

j
i=1

hi (f , δui) τ +

j
i=1

(α(ui−1), δui) τ +

j
i=1

(βi, δui) τ .

The Abel summation gives
j

i=1

(∇ui, ∇δui)τ =

j
i=1

(∇ui, ∇ui − ∇ui−1) =
1
2

∇uj
2 − ∥∇u0∥

2
+

j
i=1

∥∇ui − ∇ui−1∥
2


.
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Making use of the Cauchy and Young inequalities we deduce in a standard way that∇uj
2 +

j
i=1

∥∇ui − ∇ui−1∥
2
+

j
i=1

∥δui∥
2 τ ≤ Cε


1 +

j
i=1

h2
i τ +

j
i=1

∥ui∥
2 τ


+ ε

j
i=1

∥δui∥
2 τ

≤ Cε


1 +

j
i=1

h2
i τ


+ ε

j
i=1

∥δui∥
2 τ (5)

using Lemma 2.2. Setting a sufficiently small ε > 0 we complete the proof. �

Lemma 2.4. Let the assumptions of Lemma 2.1 be fulfilled. Then there exists a positive constant C such that

max
1≤j≤n

1uj
2 +

n
i=1

∥∇1ui∥
2 τ +

n
i=1

∥1ui − 1ui−1∥
2

≤ C


1 +

n
i=1

h2
i τ


.

Proof. We start from (3). We multiply this by −∇1uiτ , integrate over Ω and sum the result up for i = 1, . . . , j to find

−

j
i=1

(δ∇ui, ∇1ui) τ +

j
i=1

∥∇1ui∥
2 τ = −

j
i=1

hi (∇f , ∇1ui) τ −

j
i=1

(∇α(ui−1), ∇1ui) τ −

j
i=1

(∇βi, ∇1ui) τ .

Integration by parts formula together with Abel’s summation yields

−

j
i=1

(δ∇ui, ∇1ui) τ =

j
i=1

(δ1ui, 1ui) τ =
1
2

1uj
2 − ∥1u0∥

2
+

j
i=1

∥1ui − 1ui−1∥
2


.

Making use of the Cauchy and Young inequalities we deduce in a standard way that1uj
2 +

j
i=1

∥1ui − 1ui−1∥
2
+

j
i=1

∥∇1ui∥
2 τ ≤ Cε


1 +

j
i=1

h2
i τ +

j
i=1

∥∇ui∥
2 τ


+ ε

j
i=1

∥∇1ui∥
2 τ

≤ Cε


1 +

j
i=1

h2
i τ


+ ε

j
i=1

∥∇1ui∥
2 τ (6)

using Lemma 2.2. Fixing a sufficiently small ε > 0 we close the proof. �

Theorem 2.1 (Stability of Approximations). Let the assumptions of Lemma 2.1 be fulfilled. Then there exists a positive constant
C such that

max
1≤j≤n

uj
2 + max

1≤j≤n

∇uj
2 + max

1≤j≤n

1uj
2 +

n
i=1

∥δui∥
2 τ +

n
i=1

∥∇1ui∥
2 τ ≤ C,

n
i=1

∥ui − ui−1∥
2
+

n
i=1

∥∇ui − ∇ui−1∥
2
+

n
i=1

∥1ui − 1ui−1∥
2

≤ C

and
j

i=1

h2
i τ ≤ C .

Proof. Putting the relations (4)–(6) together, and fixing a suitable ε > 0 we haveuj
2 +

∇uj
2 +

1uj
2 +

j
i=1

∥δui∥
2 τ +

j
i=1

∥∇1ui∥
2
+

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui − ∇ui−1∥
2

+

j
i=1

∥1ui − 1ui−1∥
2

≤ C


1 +

j
i=1

h2
i τ +

j
i=1

∥ui∥
2 τ


.

In virtue of (DMPi) we deduce that

|hi| ≤

−m′

i +


Γ
∆ui−1 +


Γ

α(ui−1) +


Γ
βi

Γ
f

 ≤ C
m′

i

+ ∥1ui−1∥Γ + ∥α(ui−1)∥Γ + ∥βi∥Γ


≤ C


1 + ∥1ui−1∥Γ + ∥ui−1∥Γ


,
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which implies by the Nečas inequality [27]

∥z∥2
Γ ≤ ε ∥∇z∥2

+ Cε ∥z∥2 , ∀z ∈ H1(Ω), 0 < ε < ε0 (7)

that
j

i=1

h2
i τ ≤ C


1 +

j
i=1

∥1ui−1∥
2
Γ τ +

j
i=1

∥ui−1∥
2
Γ τ



≤ Cε


1 +

j
i=1


∥1ui−1∥

2
+ ∥∇ui−1∥

2
+ ∥ui−1∥

2 τ+ ε

j
i=1

∥∇1ui−1∥
2 τ . (8)

Putting things together and setting a small ε > 0 we getuj
2 +

∇uj
2 +

1uj
2 +

j
i=1

∥δui∥
2 τ +

j
i=1

∥∇1ui∥
2
+

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui − ∇ui−1∥
2

+

j
i=1

∥1ui − 1ui−1∥
2

≤ C


1 +

j
i=1


∥ui∥

2
+ ∥∇ui∥

2
+ ∥1ui∥

2 τ .

An application of Grönwall’s lemma gives the estimates for ui. Relation (8) implies the bound for hi in L2(0, T ). �

3. Well-posedness

Now, let us introduce the following piecewise linear function in time

un : [0, T ] → L2(Ω) : t →


u0 t = 0
ui−1 + (t − ti−1)δui t ∈ (ti−1, ti]

, 0 ≤ i ≤ n,

and a step function

un : [0, T ] → L2(Ω) : t →


u0 t = 0
ui t ∈ (ti−1, ti]

, 0 ≤ i ≤ n.

Similarly we define hn, βn, mn and m′
n. These prolongations are also called Rothe’s (piecewise linear and continuous, or

piecewise constant) functions. Now, we can rewrite (DPi) and (DMPi) on the whole time frame as

(∂tun(t), ϕ) + (∇un(t), ∇ϕ) = hn(t) (f , ϕ) + (α(un(t − τ)), ϕ) +

βn(t), ϕ


(DP)

and

m′
n(t) −


Γ

1un(t − τ) = hn(t)


Γ

f +


Γ

α(un(t − τ)) +


Γ

βn(t). (DMP)

Now, we are in a position to prove the existence of a weak solution to (P) and (MP).

Theorem 3.1 (Existence of a Solution). Let the assumptions of Lemma 2.1 be fulfilled. Then there exists a solution (u, h) to
the (P), (MP) obeying u ∈ C


[0, T ], L2(Ω)


∩ L∞


(0, T ),H1(Ω)


with ∂tu, 1u ∈ L2


(0, T ), L2(Ω)


, ∇1u ∈ L2((0, T ),

L2(Ω)), h ∈ L2(0, T ).

Proof. Theorem 2.1 says that
uj
 +

∇uj
 ≤ C and

n
i=1 ∥δui∥

2 τ ≤ C , which means that for all n > 0 it holds
∥un(t)∥H1(Ω) ≤ C for all t ∈ [0, T ] and

 T
0 ∥∂tun∥

2 dξ ≤ C . Using [23, Lemma 1.3.13] there exists u ∈ C

[0, T ], L2(Ω)


∩

L∞

(0, T ),H1(Ω)


which is time-differentiable a.e. in [0, T ] and a subsequence of (un)n∈N (denoted by the same symbol

again) such that
un → u, in C


[0, T ], L2(Ω)


(a)

un(t) ⇀ u(t), in H1(Ω), ∀t ∈ [0, T ] (b)
un(t) ⇀ u(t), in H1(Ω), ∀t ∈ [0, T ] (c)
∂tun ⇀ ∂tu, in L2


(0, T ), L2(Ω)


(d).

(9)

Moreover u : [0, T ] → L2(Ω) is Hölder continuous, i.e.
u(t) − u(t ′)

 ≤ C
√

|t − t ′|, which follows from

un(t) − un(t ′)
 =


 t ′

t
∂tundξ

 ≤ C


|t − t ′|

 T

0
∥∂tun∥

2 dξ ≤ C


|t − t ′| (10)
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when passing to the limit for n → ∞. Similarly we deduce

∥un(t) − un(t)∥ ≤ C
√

τ

 t+τ

t
∥∂tun(s)∥2 ds ≤ C

√
τ

and

∥un(t) − un(t − τ)∥ = τ ∥∂tun∥ =

 t

t−τ

∥∂tun∥

 ≤ C
√

τ .

We can easily see that

lim
n→∞

α(un(t − τ)) = lim
n→∞

α(un(t)) = lim
n→∞

α(un(t)) = α(u(t)) in C

[0, T ], L2(Ω)


(11)

as α is Lipschitz continuous and un → u in C

[0, T ], L2(Ω)


. Obviously limn→∞ βn(t) = β(t) in C


[0, T ], L2(Ω)


. The

reflexivity of L2(0, T ) and the bound
n

i=1 h
2
i τ ≤ C gives hn ⇀ h in L2


(0, T ), L2(Ω)


. In the light of these considerations

we can integrate (DP) in time, pass to the limit for τ → 0 and differentiate with respect to the time variable to arrive at (P).
Now, we would like to pass to the limit in (DMP). First we need some preparation work. Using Nečas’s inequality (7), the

fact that ∥un∥H1(Ω) ≤ C (Theorem 2.1) and u ∈ L∞

(0, T ),H1(Ω)


we obtain

∥α(un(t − τ)) − α(u(t))∥2
Γ ≤ ε ∥∇(α(un(t − τ)) − α(u(t)))∥2

+ Cε ∥α(un(t − τ)) − α(u(t))∥2

≤ ε + Cε ∥α(un(t − τ)) − α(u(t))∥2

as α is Lipschitz continuous. Passing to the limit and applying (11) we have

lim
n→+∞

∥α(un(t − τ)) − α(u(t))∥2
Γ ≤ ε H⇒ α(un(t − τ)) → α(u(t)), in C


[0, T ], L2(Γ )


. (12)

Theorem 3.1 helps us to get T

0
∥1un(t) − 1un(t − τ)∥2

=

n
i=1

∥1ui − 1ui−1∥
2 τ = O (τ )

and analogously T

0
∥1un(t) − 1un(t)∥2

≤ C
 T

0
∥1un(t) − 1un(t − τ)∥2

= O (τ ) .

Using (9)(b) we see that for ϕ ∈ H1(Ω)

(1un(t), ϕ) = − (∇un(t), ∇ϕ) → − (∇u(t), ∇ϕ) = (1u(t), ϕ) .

According to
n

i=1 ∥∇1ui∥
2 τ ≤ C we see that ∇1un ⇀ z in L2((0, T ), L2(Ω)). Taking any ϕ ∈


C∞

0 (Ω)
N we deduce that T

0
(∇1un, ϕ) = −

 T

0
(1un, ∇ · ϕ) → −

 T

0
(1u, ∇ · ϕ) =

 T

0
(∇1u, ϕ) ,

from which we deduce that z = ∇1u.
Let us consider the following temporary Neumann problem Φ − 1Φ = F in Ω along with ∇Φ · ν = 1 on Γ . If

F ∈

H1(Ω)

∗ then by Lax–Milgram lemma we have Φ ∈ H1(Ω). If F ∈ H1(Ω) we conclude that 1Φ ∈ H1(Ω) by
the Hahn–Banach theorem. We see that t

0
(∆un, 1)Γ =

 t

0
(∆un, ∇Φ · ν)Γ =

 t

0
(∆un, ∆Φ) +

 t

0
(∇∆un, ∇Φ) = −

 t

0
(∇un, ∇∆Φ) +

 t

0
(∇∆un, ∇Φ)

↓ t

0
(∆u, 1)Γ =

 t

0
(∆u, ∇Φ · ν)Γ =

 t

0
(∆u, ∆Φ) +

 t

0
(∇∆u, ∇Φ) = −

 t

0
(∇u, ∇∆Φ) +

 t

0
(∇∆u, ∇Φ) .

Now, we integrate (DMP) in time. Using m′
∈ C([0, T ]), β ∈ C


[0, T ],H1(Ω)


and the considerations above we may pass

the limit for n → ∞. Finally we differentiate the result with respect to the time and we arrive at (MP). �

Theorem 3.2 (Uniqueness of a Solution). There exists at most one solution to (P), (MP) obeying u0 ∈ V , u ∈ C

[0, T ], L2(Ω)


∩

L∞

(0, T ),H1(Ω)


with ∂tu, 1u ∈ L2


(0, T ), L2(Ω)


, ∇1u ∈ L2((0, T ), L2(Ω)), h ∈ L2(0, T ) if one of the following

assumptions is valid:

(i) α is linear
(ii) α ∈ C2 is nonlinear and |∇u| ≤ C a.e. in Ω × (0, T ).
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Proof. Let us have two solutions (u1, h1) and (u2, h2). Set u := u1 − u2 and h := h1 − h2. Subtracting the corresponding
variational formulations (P) for particular solutions from each other and putting ϕ = uwe readily obtain

∥u(t)∥2
+

 t

0
∥∇u∥2 ds ≤ C

 t

0
h2ds t ∈ [0, T ] (13)

similarly as in Lemma 2.2. Analogously as in Lemma 2.3 we deduce that

∥∇u(t)∥2
+

 t

0
∥∂tu∥2 ds ≤ C

 t

0
h2ds t ∈ [0, T ]. (14)

If α is linear, then matching Lemma 2.4 we find that

∥1u(t)∥2
+

 t

0
∥∇1u∥2 ds ≤ C

 t

0
h2ds t ∈ [0, T ]. (15)

If α is nonlinear, then we can follow Lemma 2.4, but the following term must be estimated in a different way

|∇α(u1) − ∇α(u2)| =
α′(u1)∇u1 − α′(u2)∇u2


=
α′(u1)(∇u1 − ∇u2) + [α′(u1) − α′(u2)]∇u2


≤ C (|u| + |∇u|)

using α ∈ C2 and |∇u| ≤ C a.e. in Ω × (0, T ). Also in this case we reveal (15). By (7) we get
Γ

1u
2 ≤ C ∥1u∥2

Γ ≤ ε ∥∇1u∥2
+ Cε ∥1u∥2 ,

and 
Γ

α(u1) − α(u2)

2 ≤ C ∥u∥2
Γ ≤ C


∥u∥2

+ ∥∇u∥2 .
Subtracting the corresponding variational formulations (MP) for particular solutions from each other we easily see that t

0
h2ds ≤ ε

 t

0
∥∇1u∥2 ds + Cε

 t

0


∥u∥2

+ ∥∇u∥2
+ ∥1u∥2 ds. (16)

Relations (13)–(16) imply for a fixed small ε > 0

∥u(t)∥2
+ ∥∇u(t)∥2

+ ∥1u(t)∥2
+

 t

0
∥∇1u∥2 ds ≤ C

 t

0


∥u∥2

+ ∥∇u∥2
+ ∥1u∥2 ds.

Grönwall’s argument ensures that u = 0. �

Conclusion

An ISP for a semilinear parabolic equation with a solely time-dependent unknown source is considered. The existence
and uniqueness of a weak solution for the ISP are proved. The missing source term is recovered from an integral-type
measurement over the boundary. A numerical algorithm based on Rothe’s method is established and the convergence of
approximations towards the exact solution is demonstrated.

We would like to point out that this technique can also be easily extended to a non-homogeneous Neumann BC,
f = f (x, t) and to a measurement (2) taken just over a measurable part of the boundary.
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