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Some results on upper bounds for the variance of

functions of the residual life random variables

F. Goodarzi, M. Amini∗ and G. R. Mohtashami Borzadaran

Department of Statistics, Ordered and Spatial Data Center of Excellence

Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

As a measure of maximum dispersion from the mean, upper bounds on variance have appli-
cations in all areas of theoretical and applied mathematical sciences. In this paper, we obtain an
upper bound for the variance of a function of the residual life random variable Xt. Since one of the
most important types of system structures is the parallel structure, we give an upper bound for the
variance of a function of this system consisting of n identical and independent components, under
the condition that, at time t, n− r + 1, r = 1, . . . , n of its components are still working. Here we
characterize the Pareto distribution through Cauchy’s functional equation for mean residual life.
It is shown that the underlying distribution function F can be recovered from the proposed mean
and variance residual life function of the system for r = 1. Moreover, we see that the variance
residual lifetime of the components of the system is not necessarily a decreasing function of r and
increasing of n for r = 1, unlike their mean residual lifetime. As an application, the variance of
XF−1(p0) for all p0 ∈ [0, 1) is investigated and also a real data analysis is presented.

Keywords: Characterization, Mean residual life function, Variance residual life function, Parallel sys-

tems, Variance bound.

Mathematical Subject Classification: Primary 60E15; Secondary 62N05.

1 Introduction

The mean residual life (MRL) function has been widely used in reliability. For example, it is used

to design burn-in programs, plan spare provision, and formulate warranty policies. Let X be a non-

negative random variable having absolutely continuous distribution function F (t) and survival function

F (t) = 1− F (t) and probability density function f(t). Then the hazard rate function of X is defined

as r(t) = −
d

dt
logF (t) =

f(t)

F (t)
.

An useful reliability measure of X is mean residual life, which is defined as expectation of the

residual life random variable Xt = (X − t | X > t), given by

m(t) =
1

F (t)

∫ ∞

t
F (x)dx. (1)
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The hazard rate and MRL functions are related by

r(t) =
1 +m′(t)
m(t)

. (2)

It is well known that r(t) determines the distribution function uniquely and hence m(t) also charac-

terizes the distribution. In addition F (t) and r(t) are connected by

F (t) = exp

{
−

∫ t

0
r(x)dx

}
. (3)

The survival function of X − t given that X > t, is

F t(x) = P{X − t > x | X > t} =
F (t+ x)

F (t)
, (4)

and thus the probability density function of Xt, is given by

ft(x) =

{
f(t+x)

F (t)
0 < x < ∞,

0 otherwise.
(5)

Hall and Wellner (1981) and Bhattacharjee (1982) have characterized the class of mean residual

life functions. It has been shown by Gupta (1975, 1981) that MRL function determines the distri-

bution uniquely. In particular, it is well known that a constant MRL characterizes the exponential

distribution, as it was shown by Nanda (2010). For a comprehensive review, see Guess and Proschan

(1988).

When discussing the variance of the residual lifetime Xt, it will be assumed that E(X2) < ∞. The

variance residual life (VRL) function is defined as

σ2
F (t) = Var(X − t|X > t) =

2

F (t)

∫ ∞

t

∫ ∞

x
F (y) dy dx−m2(t). (6)

F is said to have increasing failure rate, IFR if F t(x) is decreasing in t. If F is absolutely continuous

with density f , then F is in the IFR class if r(t) is increasing in t.

Karlin (1982) has studied the monotonic behaviour of σ2
F (t) when the density is log-convex (log-

concave). Defining the residual coefficient as γF (t) = σF (t)/m(t), Gupta (1987) has characterized the

monotonic behaviour of σ2
F (t) in terms of γF (t).

We refer to Gupta and Kirmani (1998), Gupta et al. (1987) and Gupta (2006) for more details

about the MRL and the VRL functions. We also refer to Navarro and Ruiz (2004) for the discussion

on characterization of probability distributions based on the relationship between hazard rate and

conditional moments

In the study of reliability of technical systems and subsystems, parallel systems play an important

role. A parallel system Sn, consisting of n components, is a system which functions if and only if at

least one of its n components functions. Let Xi, i = 1, 2, . . . , n be the time up to the failure of ith

component, such that X1, X2, . . . , Xn are independent, identically distributed (i.i.d.) random variables

with continuous distribution function F and probability density function f . Let Xi:n (i = 1, 2, . . . , n)

be the lifetime of the component having ith smallest lifetime among n independent and identical
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components. Then Xk:n represents the lifetime of an (n− k + 1)-out-of-n system. It should be noted

that, a (n − k + 1)-out-of-n system is a system consisting of n components (usually the same) and

functions if and only if at least n−k+1 out of n components are operating (k ≤ n). Here we consider

a parallel system (a system which fails when the component with lifetime Xn:n fails). Suppose that

the system fails at or before time t.

In a parallel system, the survival probability of the system corresponding to a mission of duration

of x is S(x) = P{Xn:n > x} and the life function is S(x) = 1− S(x).

The conditional probability of survival of system in the interval (t, t+x), with no failed component

at time t (the probability of the system having non failure elements at time t function at time t+ x)

is

S(x | t) = P{Xn:n > t+ x | X1:n > t}.

The conditional probability of the system’s failing in the interval (t, t+x], with no failing components

at time t is

S(x | t) = P{Xn:n ≤ t+ x | X1:n > t} =

[
1−

F (t+ x)

F (t)

]n
if F (t) > 0, (7)

and therefore the density probability function of Ψ1
n(X; t) = (Xn:n − t|X1:n > t) is

f1
n(x | t) =





n
[
1− F (t+x)

F (t)

]n−1
f(t+x)

F (t)
0 < x < ∞,

0 otherwise.
(8)

The conditional expectation of residual life length of the system Sn having parallel structure

m1
(n)(t) = E(Xn:n − t|X1:n > t),

given X1:n > t (all elements of Sn function at time t) is called the mean residual life function of parallel

system.

Lastly, let us consider Ψr
n(X; t) = (Xn:n − t|Xr:n > t) defined in Asadi and Bairamov (2005)

with the conditional probability of system’s failing in the interval (t, t+ x], under the condition that,

n− r + 1, r = 1, 2, . . . , n, components of the system are still working. Explicitly it is given by

P{Xn:n < x+ t|Xr:n > t} =

∑r−1
i=0

(n
i

)
F i(t)[F (t)− F (t+ x)]

n−i

∑r−1
i=0

(n
i

)
F i(t)F

n−i
(t)

, (9)

and the probability density function of Ψr
n(X; t) is as follows:

f r
n(x|t) =





1∑r−1
i=0 (

n
i)φi(t)

∑r−1
i=0 (n− i)

(n
i

)
φi(t)

[
1− F (t+x)

F (t)

]n−i−1
f(t+x)

F (t)
x > 0,

0 otherwise,
(10)

where φ(t) =
F (t)

F (t)
.
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Asadi and Bairamov (2005) showed that

mr
(n)(t) = E(Xn:n − t|Xr:n > t)

=

∑r−1
i=0

(n
i

)
φi(t)

∑n−i
j=1(−1)j+1

(n−i
j

)
mj(t)

∑r−1
i=0

(n
i

)
φi(t)

r = 1, 2, . . . n, (11)

where mj(t) =

∫∞
t F

j
(x)dx

F
j
(t)

. They showed that if the components of the system have an increasing

failure rate then mr
(n)(t) is a decreasing function of t. It was also shown that mr

(n)(t) for fixed n is a

decreasing function of r, r = 1, . . . , n and moreover, m1
n(t) is an increasing function of n.

The following remark is also their observation.

Remark 1 To define the MRL mr
(n)(t) and obtain (11), one does not actually need to restrict the

support of F on (0,∞). In general, mr
(n)(t) can be defined for the distribution functions with left

extremity −∞ ≤ a and right extremity b ≤ ∞, respectively.

As a measure of maximum dispersion from the mean, upper bounds on variance have applications in

all areas of theoretical and applied mathematical sciences. Since the pricing and valuation of actuarial

and financial risks often depends on variance, appropriate bounds are of considerable practical interest

(Hürlimann 2012). Furthermore, in some situations we need to show that the variance is finite. In

this paper, we obtain upper bounds for the variance of a function of random variables discussed in

the literature. Upper bounds for the variance of a function g(X) of a normal random variable X in

terms of derivative g′ are known as the inequality of Chernoff (see Chernoff 1981). Upper and lower

variance bounds of g(X) for an arbitrary random variable X were considered in Cacoullos (1982),

Cacoullos and Papathanasiou (1985) and Prakasa Rao and Sreehari (1997). Both upper and lower

variance bounds may be obtained by Cauchy-Schwarz inequality. Now, in order to find the desired

bounds, we use the following lemma.

Lemma 1 (Cacoullos and Papathanasiou 1985) Let X be a continuous random variable with density
f(x) and E(X) = µ. Let g and g′ be real-valued functions on R such that g is an indefinite integral of
g′ and V ar[g(X)] < ∞. Then

Var[g(X)] ≤

∫ ∞

−∞
[g′(x)]2

{∫ x

−∞
(µ− t)f(t)dt

}
dx =

∫ ∞

−∞
[g′(x)]2

{∫ ∞

x
(t− µ)f(t)dt

}
dx, (12)

where equality holds if and only if g is linear.

The rest of the paper is organized as follows. In Section 2, we derive an upper bound for the

variance of a function of the residual life random variable. Also the Pareto distribution characterized

through the additive functional equation of mean residual life function m. In continued, we give an

upper bound for the variance of a function of random variable Ψr
n(X; t), for n identical and independent

components. We show that the underlying distribution function F can be recovered from the proposed

mean and variance of Ψ1
n(X; t) and Ψ1

n−1(X; t). It is also shown that the variance residual lifetime
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of the components of the system is not necessarily a decreasing function of r and increasing of n for

r = 1. Application in a study is very important. Most of researchers are interested in finding the use

of their work in practical issues, for example Chau and Wu (2010), Taormina and Chau (2015), Wang

et al. (2015), Wu et al. (2009) and etc. So, the behaviour of the variance of XF−1(p0) for all p0 ∈ (0, 1)

and analysis of real data are provided in section 3.

2 Main Results

In this section, we obtain upper bounds for the variance of a function of random variables Xt and

Ψr
n(X; t), r = 1, . . . , n. In the following proposition, we find the bound for Xt.

Proposition 1 Let X be a non-negative random variable with density function f(x) and survival
function F (x) = 1− F (x). If g is an absolutely continuous function with derivative g ′ then

Var[g(Xt)] ≤ E

[
1

r(Xt + t)

(
m(Xt + t)−m(t) +Xt

)
g′2(Xt)

]
, (13)

where equality holds if and only if g is a linear function.

Proof: Using Lemma 1, and since E[Xt] = m(t), we can write that

∫ ∞

x
(y −m(t))

f(t+ y)

F (t)
dy =

1

F (t)

{∫ ∞

x
yf(t+ y)dy −m(t)

∫ ∞

x
f(t+ y)dy

}

=
1

F (t)

{∫ ∞

x+t
(y − t)f(y)dy −m(t)

∫ ∞

x+t
f(y)dy

}

=
F (t+ x)

F (t)

{
m(t+ x)−m(t) + x

}
,

and thereby

Var[g(Xt)] ≤

∫ ∞

0
g′2(x)

F (t+ x)

F (t)

{
m(t+ x)−m(t) + x

}
dx

=

∫ ∞

0
g′2(x)

1

r(t+ x)

{
m(t+ x)−m(t) + x

}f(x+ t)

F (t)
dx,

and this completes the proof.

The equality is obvious in view of Lemma 1.

Remark 2 In Proposition 1, if X is a non-negative random variable and

(a) F is IFR then

Var[g(Xt)] ≤ E

[
X

r(X)
g′2(X)

]
. (14)
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Especially, if g(x) = xk where k > 0 is an integer, since
∫∞
0 x2k−1F (x)dx = 1

2kE(X2k) then

Var(Xt
k) ≤

k

2
E(X2k).

The upper bound of (13) is equal to (14) if and only if X have exponential distribution.

(b) g(x) = − log ft(x), then

Var[− log ft(Xt)] ≤ E

[
η2 (t+Xt)

r (t+Xt)

(
m(t+Xt)−m(t) +Xt

)]
, (15)

where η(x) = − f ′(x)
f(x) is eta function and log denotes the natural logarithm.

It should be noted that according to, the variance entropy (varentropy) of a random variable X is

defined as

Var(− log f(X)) =

∫

R

f(x)(log f(x))2dx−

(∫

R

f(x) log f(x)dx

)2

,

so we call Var[− log ft(Xt)] as variance residual entropy.

Wang (2014) proved that given a random vector X in Rn with log-concave density f ,

Var(− log f(X)) ≤ n,

which is a particular case of inequality (15), on the space R+.

Notice that, the right hand side of equation (13) motivate us to characterize a distribution for

which m(Xt + t) = m(Xt) +m(t) and therefore the upper bound becomes somewhat easier.

Proposition 2 Let F a continuous distribution function with left extremity a > 0 then F is Pareto
distribution with a positive scale parameter and shape parameter larger than 1 if and only if m(t+s) =

m(t) +m(s).

Proof: If F have Pareto distribution with the scale and shape parameters, we can show that m(t) = ct

with c > 0 constant. Thus the result is obtained.

For the proof of the sufficient condition, since, m(t) = ct is the only solution of functional equation

m(t+ s) = m(t) +m(s), on using (2) and (3):

F (x) = exp

{
−

∫ x

a

c+ 1

ct
dt

}

=
(a
x

)(c+1)/c
.

Now, since c > 0 with considering k =
c+ 1

c
, we have Pareto distribution with density function

f(x) =
kak

xk+1
, x > a, for a > 0 and k > 1.

At present, we attain an upper bound for the variance of a function of Ψ1
n(X; t). We first give a

lemma that will be used in the proof of Theorem 1.
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Lemma 2 Let m1
(n)(t) be the mean residual life function of the parallel system Sn, consisting of n

identical and mutually independent components with continuous life distribution function F and density
function f . Then the following identity holds
∫ ∞

0
x

{
F (t+ x)

F (t)

}n−1
f(t+ x)

F (t)
dx =

1

n

n∑

j=1

(−1)j+1

(
n

j

)
m1

(j)(t). (16)

Proof: The proof is easily obtained by induction on n and hence omitted.

Theorem 1 If Ψ1
n(X; t) show that, the system having non failure elements at time t, function at time

t+ x and g is an absolutely continuous function with derivative g ′ then

V ar[g(Ψ1
n(X; t))] ≤

∫ ∞

0
g′2(x)

[
n∑

i=1

(
n

i

)(
m1

(i)(t+ x)−m1
(n)(t) + x

){F (t+ x)

F (t)

}i

×

{
1−

F (t+ x)

F (t)

}n−i
]
dx, (17)

where equality holds if and only if g is linear.

Proof: Using (12), we have

∫ ∞

x
(y −m1

(n)(t))n

{
1−

F (t+ y)

F (t)

}n−1
f(t+ y)

F (t)
dy

= n

∫ ∞

0
(u+ x−m1

(n)(t))

{
1−

F (t+ x+ u)

F (t)

}n−1
f(t+ x+ u)

F (t)
du

= n

∫ ∞

0
u

{
1−

F (t+ x+ u)

F (t)

}n−1
f(t+ x+ u)

F (t)
du

+ (x−m1
(n)(t))

(
1−

{
1−

F (t+ x)

F (t)

}n
)
, (18)

now by Lemma 2 we get
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n

∫ ∞

0
u

{
1−

F (t+ x+ u)

F (t)

}n−1
f(t+ x+ u)

F (t)
du

= n

∫ ∞

0
u

n−1∑

i=0

(−1)i
(
n− 1

i

){
F (t+ x+ u)

F (t)

}i
f(t+ x+ u)

F (t)
du

= n

n−1∑

i=0

(−1)i
(
n− 1

i

){
F (t+ x)

F (t)

}i+1 ∫ ∞

0
u

{
F (t+ x+ u)

F (t+ x)

}i
f(t+ x+ u)

F (t+ x)
du

=

n−1∑

i=0

(−1)i+1

(
n

i+ 1

){
F (t+ x)

F (t)

}i+1 i+1∑

j=1

(−1)j
(
i+ 1

j

)
m1

(j)(t+ x)

=

n∑

j=1

(−1)jm1
(j)(t+ x)

n∑

i=j

(−1)i
(
n

i

)(
i

j

){
F (t+ x)

F (t)

}i

= nm1
(1)(t+ x)

F (t+ x)

F (t)

n−1∑

i=0

(−1)i
(
n− 1

i

){
F (t+ x)

F (t)

}i

+

(
n

2

)
m1

(2)(t+ x)

{
F (t+ x)

F (t)

}2 n∑

i=2

(−1)i
(
n− 2

i− 2

){
F (t+ x)

F (t)

}i−2

+ · · ·+

{
F (t+ x)

F (t)

}n

m1
(n)(t+ x)

=

n∑

i=1

(
n

i

)
m1

(i)(t+ x)

{
F (t+ x)

F (t)

}i{
1−

F (t+ x)

F (t)

}n−i

, (19)

and further using (12) and substituting the right hand side (19) in (18), we have

Var[g(Ψ1
n(X; t))] ≤

∫ ∞

0
g′2(x)

[
n∑

i=1

(
n

i

)
m1

(i)(t+ x)

{
F (t+ x)

F (t)

}i{
1−

F (t+ x)

F (t)

}n−i

+ (x−m1
(n)(t))

(
1−

{
1−

F (t+ x)

F (t)

}n
)]

, (20)

and therefore simplicity (17) is obtained.

By Lemma 1, the equality holds if and only if g is a linear function.

Example 1 Let F be the exponential distribution function F (x) = 1 − exp(−λx) x ≥ 0, λ > 0.

Then using the well known representation

Xn:n
d
=

X1

n
+

X2

n− 1
+ · · ·+Xn, (21)

8



(where
d
= denotes the equality in distribution), Bairamov et. al (2002) have shown that for the

exponential distribution

m1
(n)(t) = E(Xn:n − t | X1:n > t) = E(Xn:n) =

1

λ

( 1
n
+

1

n− 1
+ · · · +

1

2
+ 1
)
.

Therefore, using (20), an upper bound for Var[g(Ψ1
n(X, t))] is given as follows

∫ ∞

0
g′2(x)

{(
x−m1

(n)(t)
)(

1− (1− e−λx)
n
)
+

n∑

i=1

(
n

i

)
m1

(i)(t+ x)e−iλx(1− e−λx)
n−i

}
dx

=

∫ ∞

0
g′2(x)

{(
x−m1

(n)(t)
) n∑

i=1

(−1)i+1

(
n

i

)
e−iλx

+
n∑

i=1

(
n

i

)
1

λ

(
1 +

1

2
+ · · ·+

1

i

)
e−iλx(1− e−λx)

n−i

}
dx

=

n∑

i=1

(−1)i+1

(
n

i

)∫ ∞

0
g′2(x)(x−m1

(n)(t))e
−iλxdx

+

n∑

i=1

(
n

i

)
1

λ

(
1 +

1

2
+ · · ·+

1

i

) ∫ ∞

0
g′2(x)e−iλx(1− e−λx)

n−i
dx. (22)

If g(x) = x, then

Var[Ψ1
n(X; t)] =

n∑

i=1

(−1)i+1

(
n

i

)
1

(iλ)2
−

1

λ2

(
1 +

1

2
+ · · ·+

1

n

) n∑

i=1

(−1)i+1

(
n

i

)
1

i

+
1

λ2

n∑

i=1

(
n

i

)(
1 +

1

2
+ · · ·+

1

i

)Γ(i)Γ(n− i+ 1)

Γ(n+ 1)
, (23)

now, as is shown in (Gradshteyn and Ryzhik 2007), since

n∑

i=1

(−1)i+1

(
n

i

)
1

i
=

n∑

m=1

1

m
,

we have

Var[Ψ1
n(X; t)] =

1

λ2

{
n∑

i=1

(−1)i+1

(
n

i

)
1

i2
−
(
1 +

1

2
+ · · · +

1

n

)2
+

n∑

i=1

(
1 +

1

2
+ · · ·+

1

i

)1
i

}
.

On the other hand, since

E[Ψ1
n(X; t)]2 = 2

∫ ∞

0

n∑

i=1

(
n

i

)
m1

(i)(t+ x)

{
F (t+ x)

F (t)

}i{
1−

F (t+ x)

F (t)

}n−i

dx

= 2

∫ ∞

0
x
(
1−

{
1−

F (t+ x)

F (t)

}n )
dx, (24)
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we have the following identity

n∑

i=1

(−1)i+1

(
n

i

)
1

i2
=

n∑

i=1

(
1 +

1

2
+ · · ·+

1

i

)1
i
,

thus

V ar[Ψ1
n(X; t)] =

1

λ2

{
2

n∑

i=1

(
1 +

1

2
+ · · ·+

1

i

)1
i
−
(
1 +

1

2
+ · · · +

1

n

)2
}
.

Example 2 For x ≥ a > 0 and k > 0, let X have the Pareto distribution, with density function and

distribution function f(x) =
kak

xk+1
and F (x) = 1 − (a/x)k respectively. It can be readily shown that

S(x | t) =
[
1−

( t

t+ x

)k]n
and consequently for k > 1

m1
(n)(t) =

∫ ∞

0

(
1−

[
1−

( t

t+ x

)k]n)
dx

=

∫ ∞

0

n∑

i=1

(−1)i+1

(
n

i

)( t

t+ x

)ik
dx

=

n∑

i=1

(−1)i+1

(
n

i

)
t

ik − 1
= cn,kt, (25)

here cn,k is a constant depending on n and k. So the upper bound for Var[g(Ψ1
n(X, t))] given by

Var[g(Ψ1
n(X; t))] ≤

∫ ∞

0
g′2(x)

{
n∑

i=1

(
n

i

)
ci,k(t+ x)

( t

t+ x

)ik[
1−

( t

t+ x

)k]n−i

+(x− cn,kt)
(
1−

[
1−

( t

t+ x

)k]n)}
dx

=

∫ ∞

0
g′2(x)





n∑

i=1

ci,k

(
n

i

)
tik

(t+ x)ik−1

n−i∑

j=0

(−1)j
(
n− i

j

)( t

t+ x

)jk

+ (x− cn,kt)
n∑

i=1

(−1)i+1

(
n

i

)( t

t+ x

)ik
}
dx, (26)

in this case, we must choose the value of k such that the above integral is convergent. For example,

if g(x) = x, then for k > 2 this integral converges.

Example 3 Let F be the Rayleigh distribution function F (x) = 1− e−x2/2, x > 0. It is well known

that the distribution is IFR and do not have an explicit expression for

m1
n(t) =

∫ ∞

t

{
1−

(
1− e−(x2−t2)/2

)n}
dx, (27)

10



Figure 1: The variance of Ψ1
n(X; t) of a parallel system with n independent Rayleigh components for n=1, . . . , 5.

and

Var[Ψ1
n(X; t)] = 2

∫ ∞

t
(x− t)

{
1−

(
1− e−(x2−t2)/2

)n}
dx− (m1

n(t))
2. (28)

Figure 1 shows Var[Ψ1
n(X; t)] for n = 1, 2, 3, 4, 5. Unlike m1

n(t), it shows that Var[Ψ
1
n(X; t)] is not an

increasing function of n for any t > 0.

The next theorem characterize the distribution by the knowledge of Var[Ψ1
n(X; t)] and m1

(n)(t) for

two consecutive integers n.

Theorem 2 Let the components of the system have a common absolutely continuous strictly increasing
distribution function F , then

F (x) = exp




−
1

n

∫ x

0

d

dt
Var[Ψ1

n(X; t)]

Var[Ψ1
n(X; t)] −Var[Ψ1

n−1(X; t)]− (m1
(n)(t)−m1

(n−1)(t))
2
dt





, (29)

with m1
(0)(t) = Var[Ψ1

0(X; t)] = 0 for n = 1.

Proof: From Theorem 1 Bairamov et. al (2002), we have

d

dt
m1

(n)(t) = nr(t)
(
m1

(n)(t)−m1
(n−1)(t)

)
− 1. (30)

On the other hand

E[Ψ1
n−1(X; t)]2 = 2

∫ ∞

0
x

{
1−

(
1−

F (t+ x)

F (t)

)n}
dx

= 2

∫ ∞

t
x {1− (1− θt(x))

n}dx− 2t

∫ ∞

t
{1− (1− θt(x))

n}dx, (31)

where θt(x) =
F (x)

F (t)
.

11



Figure 2: The variance of Ψ1
n(X; t) of a parallel system with n independent Beta components for n = 1, . . . , 5.

Differentiating (31) with respect to t leads to

d

dt
E[Ψ1

n−1(X; t)]2 = −2t+ 2

∫ ∞

t
x
d

dt
{1− (1− θt(x))

n}dx

−2

∫ ∞

t
{1− (1− θt(x))

n}dx− 2t
d

dt

∫ ∞

t
{1− (1− θt(x))

n}dx

= −2t+ 2nr(t)

∫ ∞

t
x(1− θt(x))

n−1θt(x)dx− 2m1
(n)(t)

−2t
{
nr(t)

(
m1

(n)(t)−m1
(n−1)(t)

)
− 1
}

= nr(t)
{
E[Ψ1

n(X; t)]2 −E[Ψ1
n−1(X; t)]2

}
− 2m1

(n)(t). (32)

Then, using (30) and (32), one can obtain

d

dt
Var[Ψ1

n(X; t)] = nr(t)
{
Var[Ψ1

n(X; t)]−Var[Ψ1
n−1(X; t)] − (m1

(n)(t)−m1
(n−1)(t))

2
}
. (33)

After some derivation from (33), we have

d

dt
(lnF (t)) = −

1

n

d

dt
Var[Ψ1

n(X; t)]
{
Var[Ψ1

n(X; t)] −Var[Ψ1
n−1(X; t)] − (m1

(n)(t)−m1
(n−1)(t))

2
} . (34)

Finally, integrating (34) over [0, x] the proof is complete.

Remark 3 In view of (33), if Var[Ψ1
n(X; t)] is decreasing in n, then Var[Ψ1

n(X; t)] is a decreasing

function in t. For example, if X1, . . ., Xn are i.i.d random variables with density function f(x) =

2(1− x), 0 < x < 1, then Var[Ψ1
n(X; t)] is decreasing in n. Figure 2 depicts this fact.

Theorem 3 If Ψr
n(X; t) shows that, the system having n−r+1 surviving component at time t function

12



Figure 3: The variance of Ψr
n(X; t) of a parallel system with n = 5 independent exponential components with parameter

1.

at time t+ x and g is an absolutely continuous function with derivative g ′ then

V ar[g(Ψr
n(X; t))] ≤

∫ ∞

0
g′2(x)

1∑r−1
i=0

(n
i

)
φi(t)





r−1∑

i=0

(
n

i

)
φi(t)

n−i∑

j=1

(
n− i

j

)
m1

(j)(t+ x)

×

{
F (t+ x)

F (t)

}j {
1−

F (t+ x)

F (t)

}n−j−i

+ (x−mr
(n)(t))

r−1∑

i=0

(
n

i

)
φi(t)

[
1−

{
1−

F (t+ x)

F (t)

}n−i
]}

dx. (35)

The equality holds if and only if g is a linear function of Ψr
n(X; t).

Proof: In order to prove inequality (35), we resort to an argument similar to the proof of Theorem 1

and Equation (10), and hence one can obtain the given equality in the following:

∫ ∞

x
(y −mr

(n)(t))
1∑r−1

i=0

(n
i

)
φi(t)

r−1∑

i=0

(n− i)

(
n

i

)
φi(t)

{
1−

F (t+ y)

F (t)

}n−i−1
f(t+ y)

F (t)
dy

=
1∑r−1

i=0

(
n
i

)
φi(t)





r−1∑

i=0

(
n

i

)
φi(t)

n−i∑

j=1

(
n− i

j

)
m1

(j)(t+ x)

{
F (t+ x)

F (t)

}j {
1−

F (t+ x)

F (t)

}n−j−i

+(x−mr
(n)(t))

r−1∑

i=0

(
n

i

)
φi(t)

[
1−

{
1−

F (t+ x)

F (t)

}n−i
]}

, (36)

and consequently the desired result is obtained. By Lemma 1, the equality holds if and only if g is

linear.

Example 4 As in Example 1, let X1, . . . , Xn denote the independent random variables having ex-

ponential distribution with λ = 1. We can show that the upper bound for the variance of g(Ψr
n(X; t))

13



Figure 4: The variance of Ψr
n(X; t) of a parallel system with n = 5 independent Beta components with parameters

(2, 1).

is given by

Var[g(Ψr
n(X; t))] ≤

1∑r−1
i=0

(
n
i

)
(et − 1)i





r−1∑

i=0

(
n

i

)
(et − 1)i

n−i∑

j=1

(
n− i

j

)(
1 +

1

2
+ · · ·+

1

j

)

×

∫ ∞

0
g′2(x)e−jx(1− e−x)n−j−i dx

+

r−1∑

i=0

(
n

i

)
(et − 1)i

∫ ∞

0
g′2(x)(x−mr

(n)(t))
[
1− {1 − e−x}n−i

]
dx

}
,

where, by using (11), mr
(n)(t) has the following form:

mr
(n)(t) =

∑r−1
i=0

(n
i

)
(et − 1)

i∑n−i
j=1

1
j∑r−1

i=0

(n
i

)
(et − 1)i

.

Example 5 Suppose that X1, . . . , Xn are i.i.d. random variables with density function f(x) = 2x,

0 < x < 1. Then, the upper bound for the variance of Ψr
n(X, t), r = 1, 2, . . . , n, is given by

Var[g(Ψr
n(X; t))] ≤

∫ 1

t

g′2(x)
∑r−1

i=0

(
n
i

)(
t2

1−t2

)i





r−1∑

i=0

(
n

i

)( t2

1− t2

)i n−i∑

j=1

(
n− i

j

)
m1

(j)(y)
(1− y2

1− t2

)j

×
(y2 − t2

1− t2

)n−j−i
+
(
y − t−mr

(n)(t)
) r−1∑

i=0

(
n

i

)( t2

1− t2

)i [
1−

(y2 − t2

1− t2

)n−i
]}

dy,

where

mr
(n)(t) =

∑r−1
i=0

(n
i

)(
t2

1−t2

)i∑n−i
j=1(−1)j+1

(n−i
j

){ ∫ 1
t (1− y2)jdy/(1 − t2)j

}

∑r−1
i=0

(n
i

)
( t2

1−t2
)
i

.
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In Figure 3 and 4, Var[Ψr
n(X, t)] is a decreasing function of t and unlike mr

(n)(t), for fixed n, it is not

a decreasing function of r, r = 1, 2, . . . , n. It should be noted that distributions given in examples 4

and 5 are IFR and as Gupta (2006) indicates, since mr
(n)(t) is a decreasing function of t , we can guess

the behaviour of Var[Ψr
n(X, t)] with respect to t.

3 An application

The concept of variability is a basic one in statistics, probability, and many other related areas.

The simplest way of comparing the variability of two distributions is by comparison of the standard

deviations; however the comparison of numerical measures is not always informative. In the past

two decades, several more refined transforms and stochastic orders, which measure and compare

variabilities of random variables based on their entire distribution functions, have been introduced.

Shaked and Shanthikumar (1998) presented discussion on excess wealth transform, as a measure of

spread. It was also independently proposed and studied by Fernández-Ponce et al. (1998) and they

called it as right spread transform. More specifically, for a random variable X the quantile function or

the inverse distribution function, is defined by F −1(p) = inf{x : F (x) ≥ p} for p ∈ (0, 1) and F−1(0)

and F−1(1) are defined as the left and right extremes of the support, respectively. Note that the

excess wealth function (or right spread function) is defined as

W (p;F ) = E[(X − F−1(p))+]

=

∫ ∞

F−1(p)
F (x)dx =

∫ 1

p
(F−1(q)− F−1(p))dq, (37)

where (Z)+ = max{Z, 0}. Also, the right spread function of random variable X can be called by

the notation S+
X(p). The excess wealth function can be considered as a measure of spread to the

right of every quantile F−1(x). This function is also related to its mean residual life function by the

relationship

E[(X − F−1(p))+] = (1− p)m(F−1(p)).

Fernández-Ponce et al. (1998) showed that for a continuous random variable X with distribution

function F which is strictly increasing on its support, then

V ar[X] =

∫ 1

0

[
W (p;F )

1− p

]2

dp.

Furthermore Kochar and Xu (2013) proved for any p0 ∈ [0, 1),

V ar[X|X > F−1(p0)] =
1

1− p0

∫ 1

p0

[
W (p;F )

1− p

]2

dp. (38)

The following examples show the behaviour of V ar[X|X > F −1(p0)].
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Figure 5: The variance of XF−1(p0) of Pareto distribution for a = 2 and different values of k.

Example 6 Let X be a random variable with uniform distribution on (α, β). The excess wealth

function is given by

W (p;F ) =
(β − α)(1 − p)

2

2

,

on using (37) and

V ar[X|X > F−1(p0)] =
(β − α)2(1− p0)

2

12
,

by using (38).

Example 7 Let X have Pareto distribution given in Example 2, then by using (37) and (38), we

have respectively

W (p;F ) =
a(1− p)−

1
k
+1

k − 1
, for k > 1,

and

V ar[X|X > F−1(p0)] =
ka2

(k − 2)(k − 1)2(1− p0)2/k
, for k > 2.

Trivially d
dp0

(V ar[X|X > F−1(p0)) =
2a2(1−p0)1−2/k

(k−2)(k−1)2 and thus for fixed values of a and k, conditional

variance is increasing in p0 ∈ [0, 1). Also, since for fixed values of a and p0,

d

dk
(V ar[X|X > F−1(p0)]) =

(k − 2)(k − 1) ln(1− p0) + k(1 + k − k2)

(k − 1)3(k − 2)2k
< 0, for k > 2,

therefore the variance of XF−1(p0) with respect to k is decreasing.

In Figure 5 conditional variance curve is shown with different values of k and a = 2. It is evident

that, if the value of k is increased then the variance is decreased.

Now, to illustrate with real data sets, it is necessary to introduce the non-parametric estimator of

excess wealth function. A nonparametric estimator for E[(X − F −1(p))+] given a random sample

X1, X2, . . . , Xn, was obtained by Kochar and Xu (2013). They showed the empirical version of this

transform for i = 1, . . . , n− 1 as follows

Wi = W (
i

n
;Fn) =

n∑

j=i+1

n− j + 1

n
(Xj:n −Xj−1:n),
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Figure 6: Empirical conditional variance for the laboratory environment (continuous line) and the germ free environment

(dashed line).

where Fn is the empirical distribution function. It is observed that

W0 = X, Wi+1 = Wi −
n− i

n
(Xi+1:n −Xi:n), 0 ≤ i ≤ n− 1. (39)

The real data set arose in a study of survival times in the presence of pollutants (see Hoel 1972, Page

483). The data set consists of two groups of survival times of RFM strain male mice. We consider

the data set corresponding to the thymic lymphoma death. The first group lived in a conventional

laboratory environment while the second group was in a germ free environment. The reported data

are the time to death in days.

Belzunce et al. (2016), by drawing the plot of nonparametric estimators of the excess wealth,

showed that the survival times in the germ free environment are more dispersed than that of the

laboratory environment. Here we draw the plot of nonparametric estimators of conditional variance

for two groups. As we can see in Figure 6, for all p0 ∈ (0, 1) variance of XF−1(p0) for the survival times

in the germ free environment larger or equal than that in the laboratory environment and thus the

number of days until death for the group of RFM strain male mice lived in a germ free environment

has a greater dispersion.

4 Conclusion

In this article, we obtained an upper bound for a function of the residual life random variable Xt

and Ψr
n(X; t) in parallel systems for n identical and independent components. Moreover, we studied

properties VRL in parallel systems and characterized the distribution by the knowledge of mean and

variance Ψ1
n(X; t) for two consecutive integers n. We also obtained an application of our achievements

via real data in the practical example with our interpretation of the results. An interesting extension

of the concept of VRL at the system level for more complex systems, can be considered for the case

where the system has a (n − k + 1)-out-of-n structure, k = 1, 2, . . . , n (see Asadi and Bayramoglu

2006) as well as the MOSE type (n− k + 1)-out-of-n: G system (see Bayramoglu and Ozkut 2016).
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