Accepted Manuscript

An Ostrowski-type method with memory using a novel
self-accelerating parameter

Xiaofeng Wang
PII: S0377-0427(17)30191-7
DOI: http://dx.doi.org/10.1016/j.cam.2017.04.021

Reference: CAM 11100

To appear in: Journal of Computational and Applied
Mathematics

Received date: 19 October 2016
Revised date: 20 February 2017

Please cite this article as: X. Wang, An Ostrowski-type method with memory using a novel
self-accelerating parameter, Journal of Computational and Applied Mathematics (2017),
http://dx.doi.org/10.1016/j.cam.2017.04.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cam.2017.04.021

*Manuscript
Click here to view linked References

An Ostrowski-type method with memory using a novel self-accelerating parameter

Xiaofeng Wang**
#School of Mathematics and Physics, Bohai University, Jinzhou 121000 Liaoning, China

Abstract

In this paper, an Ostrowski-type method with memory is proposed for solving nonlinear
equations. To this end, we first present an optimal fourth-order Ostrowski-type method without
memory. Based on this method without memory, an Ostrowski-type method with memory is given
by using a simple self-accelerating parameter. The new self-accelerating parameter is constructed by
a novel way and has the properties of simple structure and easy calculation, which do not increase
the computational cost of the iterative method. The convergence order of the new iterative method
is increased from 4 to2++/5 ~ 4.2361, (5+\/1_3)/2 ~4.30278 and 2++/6 ~4.4495, respectively.
Numerical experiments are made to show the performance of the new method, which support the
theoretical results. From the comparison with some known methods, it is observed that the new
method occupies less computing time.

MSC: 65H05 65B99
Keywords: Ostrowski’s method; Iterative method with memory; Self-accelerating parameter;
Root-finding;

1. Introduction

In this paper, we consider iterative method to find a simple root of a nonlinear equation
f(x)=0, where f:lcR—>R foran open interval | is a scalar function. There are different
methods for solving the root a of a nonlinear equation f(x) =0, the most well known of these
methods is the classical Newton’s method [1]: X, ., =x,— f(x,)/ f'(x,). If the sequence {X,};
generated by Newton’s method converges to a simple root a of nonlinear equation, then the
sequence satisfies the following expression

X .,—a .. &
lim—L — =lim—t =c,, (1)
n—ow (Xn _a)2 n—w er?

where c,=f"(a)/(2f'(a)) is the asymptotic error constant, e ,=X,,—a and e =Xx,—a.

Equation (1) means that Newton’s method converges quadratically.

To improve the convergence order and computational efficiency of the Newton’s method, many

efficient multipoint iterative methods have been proposed in recent years, see [2-26] and references
therein. Among them, the multipoint method with memory is a special kind of multipoint iterative
method, which can further improve the computational efficiency of the multipoint method without
memory without any additional functional evaluations. At present, there are mainly two ways for
constructing the multipoint methods with memory, one is the inverse interpolation method, and the
other is self-accelerating method. There are some representative iterative methods for inverse
interpolation method. For example, Neta [2] first derived a fast three-step method of order 10.815.
Using the same strategy, Petkovi¢ et al. [3] proposed a two-step method of order 4.5612 and
Gustavo [4] defined three derivative-free iterative methods with arbitrary high order convergence.
For the self-accelerating method, the first iterative method is presented by Traub [5] in 1964, which
is a derivative-free method using a self-accelerating parameter constructed by Newton interpolation.
Motivated by Traub’s idea, a two-step derivative-free iterative method is proposed by Petkovi¢ et al.
[6], which uses a self-accelerating parameter calculated by secant approach. Furthermore, Dzuni¢ et
al. [7-8] gave some derivative-free methods based on a self-accelerating parameter, the
self-accelerating parameter is calculated by Newton interpolation polynomial. Lotfi et al. [9]
derived an effective way to convert the classical King’s method [10] to a new derivative-free
iterative method without memory and obtain a derivative-free iterative method with memory. We
[11-13] proposed some Newton-type multipoint iterative methods with memory, in which the
self-accelerating parameter is calculated by Hermite interpolation polynomial. For the
self-accelerating method, the self-accelerating parameters are calculated by using information from
the current and previous iterations, which do not increase the computational cost of the iterative
method.

By increasing the number of self-accelerating parameters in the multipoint iterative method with
memory, the convergence order of the multipoint iterative method can be improved greatly. Using
two self-accelerating parameters, Cordero et al. [14] and Dzuni¢ et al. [15, 16] obtained some
efficient derivative-free methods and we [17] also proposed some Newton-type multipoint iterative
methods with memory. Using three self-accelerating parameters, Soleymani et al. [18], Lotfi et al.
[19] and Wang et al. [20] presented some efficient derivative-free iterative methods, respectively.
Using n+1self-accelerating parameters, we [21] derived a general derivative-free iterative method
with the maximal convergence order (2”*1—1+ M)/Z Dzuni¢ method [8,16] and Lotfi

method [19] can be seen as the special cases of our method [21]. Other multipoint iterative methods

with self-accelerating parameter are discussed in [22, 23].

By studying the above mentioned methods, we concluded that the self-accelerating methods can
be expanded from the fixed-parameter multipoint methods without memory. Choosing suitable
variable parameter to substitute the fixed-parameter of the multipoint methods without memory, we
can improve the convergence order of the iterative method without memory and obtain the iterative
method with memory. The variable parameter is called self-accelerating parameter. At present, most
of the self-accelerating parameters are constructed by the interpolation polynomial. The
self-accelerating parameter of the derivative-free multipoint iterative method is calculated by
Newton interpolation polynomial. The self-accelerating parameter of the Newton-type multipoint
iterative method is calculated by Hermite interpolation polynomial. For the self-accelerating
parameter, the higher degree of interpolation polynomial may generate higher convergence order of
the multipoint iterative method with memory and more complex computation of the
self-accelerating parameter. Complex self-accelerating parameter will increase the computing time
of the multipoint iterative method. So, a simple structure self-accelerating parameter is more
suitable for practical application.

The main purpose of this paper is to give a new Ostrowski-type method with memory and some
novel self-accelerating parameters with simple structure. This paper is organized as follows. In
Section 2, based on Ostrowski’s method [24], we derive Ostrowski-type method without memory
for solving nonlinear equations and prove that the new method has the optimal local convergence
order four. Some novel self-accelerating parameters with simple structure are given in Section 3.
Based on the new iterative method without memory, a new Ostrowski-type method with memory is
obtained by using the new self-accelerating parameter. The self-accelerating parameters are
calculated by a new method without any additional functional evaluations. The maximal
convergence order of the new Ostrowski-type methods with memory is 4.4495. Since acceleration
of convergence is obtained without additional function evaluations, the new Ostrowski-type method
with memory has higher computational efficiency. Numerical examples are given in Section 4 to

confirm theoretical results. Section 5 is a short conclusion.

2. A new Ostrowski-type method without memory

The well known Ostrowski’s method [24] can be written as

f(%,)

Yo =X, —

F'(x,)
")
f (%) Fyn)

f(x)=2F(y,) f'(x,)’

Xa=Yn—

which has the optimal convergence order 4. The second step of method (2) is equivalent to

f(¥a) _
2f [Xn’ yn]_ f,(xn)

Xy = Yo —

Based on the method (2), we construct the following iterative method

st
T f(x,)
Yo =1, _ﬂ’(zn _Xn)zl (3)
Xpp = Yo — f(yn) J
2f[x,,y,1- f'(x,)

where A R is a parameter. For the method (3), we have the following convergence analysis.

Theorem 1. Let ael be a simple zero of a sufficiently differentiable function f: lcR—>R
for an open interval | . Then the iterative method defined by (3) is of fourth-order convergence and

it satisfies the following error equation
€= (CZ - A’)(CZZ —C;— Czi)e: + O(er?) (4)

Proof . Let e =x —a, ¢, =@/n)f™(@)/f'(@), n=23,---. Using the Taylor expansion and
taking into account f (a) =0, we have
f(x,)= f'(@)[e, +c,e’ +cel+c,e: +c.el+0(ed)], (5)
f'(x,) = f'(a)[L+2c,e, +3ce’ +4c,ed +5c.er +0(ed)]. (6)
From (3), (5) and (6), we get
e,,=2z,—a=x-a-f(x)/f'(x)
=C,€’ + (=2C5 +2¢,)ed + (4¢S — 7c,c, + 3¢,)er +O(eY).)
Using (3) and (7), we have
e, =Y,—a=z,—a-A(z,—x,)’
= (c, — A)e% +2(-2¢ + ¢, + C,A)€’ + (4¢) — 7c,C, + 3¢, —5Ci A + 4c,A)er +O(ed). (8)
By a similar argument to that of (5), we have

f(y,) = f'(@)[(c, -)6 +2(—Cc: +¢c, +C,A)e’ + (5C; + 3¢, — 7C2 A+ 4c, A +C,(=7¢, + A%))er + O(ed)]. 9

From (5), (8) and (9), we obtain

fIx,,y,]= f'@)1L+ce, +(c;+c,—c,A)el +(=2¢; +3c,¢, +C, + 2c; A —C,A)e’ + O(er)). (10)
Together with (5) and (8)-(10), we obtain the error equation

€1 = Xy —a =Y, —a— f(y,)2F[x,, v, 1= T'(x,)"
= (c, — A)(c? —c, — Ac,)er +O(ed). (11)

The proof is completed.
The developed method requires only three functional evaluations per step and reaches the optimal
order of convergence four, which agrees with the conjecture of Kung-Traub [25].
Remark 1. From theorem 1, we know that the sequences {x }, {y,} and {z,} generated by
the iterative method (3) converge to the simple root a of f(x), provided that f(x) is a

sufficiently differentiable function. From equations (7), (8) and (11), we obtain

lmw =c,, (12)

mﬁzcz—z, (13)
and n

lim (’)‘(ﬂnﬂ_ ;‘;‘4 = lim eggl = (¢, — A)(C? — ¢, - AG,). (14)

3. A new Ostrowski-type method with memory and some novel self-accelerating parameters

In this section, we will improve the convergence order of the method (3) by using a simple
self-accelerating parameter A, to substitute the parameter A in (3). Assume that the parameter

A, satisfies lim A =c,=1f"(a)/(2f'(a)) , then the asymptotic convergence constant to be zero

in (4). In general, the self-accelerating parameter A, can be calculated by Hermite interpolation
polynomial. For example, using Hermite interpolation polynomial H,(x)= f(x,)+ f[x, x,J(Xx—X,)
+f[x.,x, Y.]J(x-x)* to approximate the function f(x), we can construct the self-accelerating
parameter 4, = HJ(x,)/(2f'(x,)). Using the different degrees of Hermite interpolation polynomials,
we can obtain different self-accelerating parameters. But, we do not use interpolation method to
construct the self-accelerating parameter in this paper. Here, we will give a novel method to

construct the self-accelerating parameter.

From the equation (12), we can see that the asymptotic error constant of the fist step of the new

method (3) isc, . Thus, the following expression

z,—a
Py "

can be the self-accelerating parameter. Since the root a in (15) is unknown, we use information
from the current and previous iterations to approximate the equation (15) and obtain some new
self-accelerating parameters.

Using z,,—X, and z,,—X, , to substitute z,—a and x,—a in (15), respectively, we

n

obtain the following scheme

Scheme 1:

A1 = L4 — X, (16)

" (Zn—l - Xn—1)2

From (16), we get

Z,,—a _ X,—a
_ g -a)-(x-a) (% -a)° (X, -a)° (17)
" [(Zn—l_a)_(xn_l_a)]2 (Zn—l_a_l)Z '
X,y—4a

According to (12) and (14), we have

LS LN (18)
X ,—a
and

X —a
—n - 0 , 19
(Xn—l - a)2 ()

provided that n — .,

Thus, we obtain

z,,—a X, —a
2 2
: .7, —X . (x,,—a X, ,—a . 7,,-a
|Im/”tn=|lmL”2:|lm("‘l V' (0= iy e = =C,. (20)
o e (Zn—l - Xn—l) i (M _1)2 o (Xn—l - a)
X, —@a

From (20), we know that Scheme 1 can be as the self-accelerating parameter.

Using z,,—x, and (z_,—X, _)(Y,,—X_) to substitute z,—a and (x,—a)*> in (15),

n

respectively, we obtain the following scheme

Scheme 2: A, = Zn1— X, (21)

" (Zn—l - Xn—l)(yn—l - Xn—l) .

By a similar argument to that of (16), we have

z,,—-a X,—a

_ a2 IPRY:
lim 2, = lim Zs %y —lim e m8) () (22)
n—ow n—w (anl _ anl)(ynfl — Xn—l) n—ow (Z,,—a _1)(Yoy —@a _1)
n1—a Xpp—a
From (13), we get
% 50 (n—>) (23)
n-1
According to (18), (19), (22) and (23), we obtain
lim A, = lim Zna — % im—21—% ¢ (24)

=lim 5
n—w n— (Zn—l - Xn_l)(yn_l - Xn—l) e (Xn—l - a)

From (24), we know that Scheme 2 can be as the self-accelerating parameter.
Using combination method, we construct Schemes 3 and 4.

Scheme 3: 4, = L { (= 20) 42 (2= Xn)}, (25)
(Xn—l o Zn—l) (Zn—l o Xn—l) (Xn B yn—l)

By a similar argument to that of (15), we have

1 { (Xn _anl) +2 (Zn _Xn)}

limA, =lim
(Zn—l - Xn—l) (Xn - yn—l)

n—o n—o (Xn—l — Zn—l)

:Ilm{ (Zn—l_xn) + 2(Zn_xn) }1

= (Zn—l - Xn—l)2 (Xn—l - Zn—l)(xn - yn—l)

— lim (Zn—l_xn)2+|im 2 (Zn_xn) ’
n—e (Zn—l - Xn—l) n—e (Xn—l 4 Zn—l)(xn - yn—1)

=c, +lim 2(2, —x,) , (26)
n—e (Xn—l - Zn—l)(xn - yn—l)
Z,—a B X,—a
_ XY XY
lim 2 (2, = %,) _olim X =) (%, —8)
n—e® (anl - anl)(xn 4 ynfl) n—e (l_ Zn—l B a)(Xn —a _ yn—l B a‘)
Xpp—a X,—a X.,,—a
Z, —a . X,—a _ X,—a
_ _ 2 _ 2
n—oo (l_ n-1)(n _ yn—l

Xpp—a X,—a X.,,—a

Using (26) and (27), we obtain

limA, = lim 1){(Xn—znl)ﬂ(zn—xn)}:cz. (28)

o o (X (Zn—l - Xn—l) (Xn - yn—l)
Scheme 4:
/1n — 1 { 6(2 — Xn) + S(Xn — Zn—l) _ 4(Xn — Zn—l) }_ 2(Xn — Zn—l)(yn—l ; Xn—l) . (29)
(N1 _1) (X yn—l) (Zn—l - Xn—l) (yn—l - Xn—l) S(Xn - Xn—l)

Using the similar arguments to that of (16), (21) and (25), we have

1 { 6(Zn — Xn) + S(Xn - Zn—l) _ 4(Xn — Zn—l) }_ 2(Xn — Zn—l)(yn—l — Xn—l)
Z, 1) (Xn - yn—l) (Zn—l - Xn—l) (yn—l - Xn—l) 3(Xn - Xn—l)3

=G, (30)

limA, =lim
n—o n—o 3(Xn -

In order to save space, we omit the detail calculating course of (30).

Remark 2. Now, we obtain the following one-parameter Ostrowski-type iterative method with

memory
Z =X ——f(x”),
n n f’(Xn)
Y. =12, _ﬂ’n(zn _Xn)z’ (31)
I (A
. " 21:[Xn’yn]_ f!(xn)

The self-accelerating parameter A, is calculated by using one of the formulas (16), (21), (25) and
(29).
The concept of the R-order of convergence [1] and the following assertion (see [26, p.287]) will be

applied to estimate the convergence order of the Ostrowski-type method with memory (31).

Theorem 2. If the errors of approximations e; =x;—a obtained in an iterative root-finding

method IM satisfy

€ ~ H(ek D™ k>k({e),
then the R-order of convergence of 1M, denoted with O,(IM,a), satisfies the inequality O,(IM,a)>s

n .
where s is the unique positive solution of the equation s"* —Zmis”" =0.
i=0

Theorem 3. Let the varying parameters A, in the iterative method (31) be calculated by (16) or
(21), respectively. If an initial approximation x, is sufficiently close to a simple root a of f(x),
then the R-order of convergence of the iterative methods (31) with memory is at least
2+/5~4.2361.

Proof. Let the sequence {xn} be generated by an iterative method (IM) converges to the root a
of f(x) withthe R-order O,(IM,a)>r, we write
en+1 - Dn,rer:’ en = Xn —a, (32)

where D, tends to the asymptotic error constant D, of (IM) when n—coc. So,

e,..~D,, (D,) =D, D, e (33)

n,r—n-1,r>n-1*

It is similar to the derivation of (33). We assume that the iterative sequence {yn} has the
R-order p , then
en,y - Dn,penp - Dn,p(Dn—l,rer:—l)p = Dn,pan—l,rer?il' (34)
Using (8) and (11), we obtain the corresponding error relations for the methods with memory
(31)
en,y = yn —a~ (CZ _ﬂ’n)erf' (35)
€1 = Xpn—a7~ (C2 - /?’n)(CZ2 —C— /Incz)erf' (36)

Here, the higher order terms in (35)-(36) are omitted.
Scheme 1, A, is calculated by (16):
Substituting 4 by A4, and n by n-1 in(7)and (11), we get
Z,,—% =(z,,-a)-(x,—a)=¢,,,—¢€,
=82, +(-2¢5 +2¢,)ed, +(3c] + 3¢, +2¢2 A, , —C, A, —C,(6c, + A2,))er, +O(ed), (37)
Z, ., —%,=(,,-a)-(x,,—a)=¢,,,—€.
=—e ,+C,e° +(=2¢c7 +2c,)ed, +(4c] —Tc,c, +3c,)er, +O(e). (38)

Using (37) and (38), we have

Zn—l B Xn — en*l,Z
(Zn—l - Xn—l)2 (en—l,z - en—l)2
_cel +(=2c2 +2¢c)ed, + (3¢5 +3c, +2C5 A, 4 +C A, +Cy(6C, + A2,))en, +O(EY)

(€ = Cry = (=205 +2¢,)e,, — (4c; — 7,5+ 3¢,)€, + O(€7))*

n

¢, +(=2¢2 +2¢)e,, + (3¢ +3c, +2¢5 A, 4 +C A, 4 +C,(6C, + A7 ,))el, +O(e)
(1_ Co€h1 — (_2C22 + 2C3)e§—1 - (4(:23 - 7(:203 + 3C4)e:—1 + O(e:))z
¢, +(=2c2+2¢,)e,, + (3¢ +3c, +2¢5 4, +C A, 4 +C,(6C, + A7), +O(e))
1-2c,e, , +(5¢; —4c,)e’ , +(18c,c, —12¢] —6¢,)ed, +O(e?)
~[c, +(=2¢Z +2¢,)e, , +(3cs +3c, +2C2A, , +C, A, +C,(6C, +A2,))el, +O(ed)]
x{L+[2c,e, , — (5c; —4c,)er , +O(el)]+[2ce, , — (5c; —4c,)er , +O (e}
~C,+2¢e, , —(2¢; —2c,c, —3c, —34,.,C5 +3c,4,)6l , +O(el), (39)

C,— A, ~—2Ce, ;. (40)

According to (36) and (40), we get

2 4 2 roN\4
en+1 - _2C3en—l(C2 - C3 _Z’ncz)en - 2C3en—1(Dn—1,ren—1)
24 4r+1
~2cID;, et (41)

By comparing exponents of e, appearing in the relations (33) and (41), we get the following

equations

4r +1=r2 (42)

Positive solution of the equation (42) is given by r=2 ++/5 ~4.2361. Therefore, the R-order of
the method with memory (31), when A is calculated by (16), is at least 4.2361.

Scheme 2, A, is calculated by (21):

Substituting 4 by A4, and n by n-1 in(8), we obtain

Vo1 — X1 =€ 1y — €1 =€ 1 +(C,— A 4)er, +2(=2C; +C+CA L)er

+(4c) —T7c,c, +3c, —5¢2A , +4c A el +0(e’). (43)
Using (37), (38) and (43), we get
Z,,—X, €1, — €,

(2o =%)01 = %0) s — 8)ty —,)

n

B ¢, +(=2¢5 +2¢,)e, , + (3¢ +3c, +2C2A, , +C, A, +C, (6, + A7 ,))e’, +O(ed)
(1_ Czen—l - (_205 + 2C3)er?—1 + O(e:))(l_ (Cz S ﬂ’n—l)en—l - 2(_022 + C3 + Czﬂn—l)eﬁ—l + 0(95))

=C, —(C, 4,4 — 2C5)e, ; — (2C; — 2C,C, — 3¢, — 3C3 4, , + 3,4, ,)er , +O(er), (44)
C,— j“n - (Czﬂn—1 - 2Cs)en—r (45)

From (40) and (45), we can see that scheme 1 and scheme 2 have the same error level. Therefore,
we conclude that the R-order of the methods with memory (31), when A4, is calculated by (21), is
at least 4.2361.

The proof is completed.

Theorem 4. Let the varying parameters A in the iterative method (31) be calculated by (25) and
(29), respectively. If an initial approximation x, is sufficiently close to a simple root a of f(x),
then the R-order of convergence of the iterative methods (31) with memory is at least
(5 + J1_3) /2~4.30278 and 2++/6 ~4.4495, respectively.

Proof. Scheme 3, A, is calculated by (25):

According to (7), (8) and (21), we have

X, —2,=6,—6€,, =6, —Ce —(—2¢; +2¢,)e’ — (4c; —7¢,C, +3c,)es + O(e?)

= (CZ -)“n—l)(czz - C3 - Czﬂn—l)e:—l - 2(203 + C; - (4C§ +C, + CSAn—l)ﬂ’n—l

10

—C,(c, +5¢,A,) —C5(—4c, +242,))e>, +O(e,), (46)
X0 = Vo1 =€ —€q, =€ —(C,— A, 4)er, +2(—2C; +C;+C,A,)6
—(4c] - 7c,c, +3c, —5Ci A, , +4c,A et +0(e>,)
=—(c,—A,,)e’, —2(c,—cZ+C, A, ,)ed +(=3c +3cA, ,
-3(c, + ¢4,) +¢,(6c, + A2,))er, +O(e,), (47)

Using (39) and (46)-(47), we have
1 {(xn—zn_l>+2(zn—xn>}

(Xn—l o Zn—l) (Zn—l o Xn—l) (Xn B yn—l)

1 { (en _en—l,z) + 2 (en,z _en)}

n

- (en—l - en—l,z) (en—l,z - en—l) (en - en—l,y)
=C, +26,(C, — 4,)8, 4 + (—4C; +8C,c,— ¢, +4C; A, = 5C,A, , —C, A7,)er , +O(er), (48)
C,— Z’n - _2C2 (CZ - ﬂ’n—l)en—l' (49)

Takingthe h, =c,—4

n

in (49), we get

hn - _2C2hn—1en—l ~ _2C2 (_Zczhn—zen—z)en—l ~ (_2C2)2hn—2en—zen—l
~ (_Zcz)k hn—ken—len—z LA
~(=2¢,)"h [o € (50)

Assume that the error of the iterative sequence {xk} can be expressed as follows
e, ~Dey, 1<k <n, (51)

where e,=x,—a and e =X, —a.
From (11), (50) and (51), we get
& =X —a~(C,— /’l’k—l)(czz —C3— ﬂ’k—lcz)elf—l
~ (_Zcz)kilho (C22 —C— /’i'k—lcz)elj—lr[ljjek—j—l
~(=2¢,)“*thy(C5 —c, — 4, _,C,) D) jesiert it e ': D;. (52)
Comparing the exponents of the error e, in pairs of relations ((51), (52)) for 2 <k <nand ((11),

(51)) for k =1, we obtain the system of equations

11

r=l+r+r+---+r_,+4r _,,

n

ro=1+r+--+1_,+4r , 3<k<n-1,

53
r,=1+4r, 3)
=4
From the (53), we have
r=5_,-3r,. (54)
Dividing (54) by r, ,, we get
h _5_ghz (55)
r-n—l r-n—l
Letting lim(r, /r_,)=Ilim(r_,/r_,)=R, we have
R-5-31 (56)
R H
and
R?-5R+3=0. (57)

The positive solution of the equation (57) is givenby R = (5+ Jl_B) /2. Therefore, the convergence
order of the method (31) with memory is R = (5+ Jl_B) /2 ~4.30278.

Scheme 4, A, is calculated by (29):
From (36), we obtain
Xn =X =€, -6, =—€,+ (CZ y ﬂ“nfl)(czz —C— ﬂ’n—lcz)e:—l + O(er?—l)' (58)

According to (37), (38), (43), (46), (47) and (58), we have
1 { 6(Zn — Xn) + S(Xn N Zn—l) _ 4(Xn — Zn—l) }_ 2(Xn — Zn—l)(yn—l — Xn—l)

" 3(Xn—1 - Zn—l) (Xn - yn—l) (Zn—l - Xn—l) (yn—l - Xn—l) 3(Xn - Xn—l)3
2
=%—F%%£H4%H+kﬁHmL+O@L) (59)
2
Co =y = (6= 265 4 6y + B, (60)

Using (36) and (60), we get

v
3 2 \a2 (p2 4
A (C4 N 202 + C32“n—1 + §CZﬂn—l)en—1(CZ —C— ﬂncz)en

n+1

- (C4 - 20; + CB/In—l + %(:2]“r121)e§1(Dn1,rer:1)4

~(c,—2c}+c A, + % c,A2,)D5, elr? (61)

n-1,rn-1

12

By comparing exponents of e, , appearing in equations (33) and (61), we get the following
equation
Ar+2=r° (62)
Positive solution of the equation (62) is given by r = 2 +/6 ~ 4.4495. Therefore, the R-order of
the methods with memory (31), when A, is calculated by (29), is at least 4.4495.

The proof is completed.
4. Numerical results

The new methods (3) and (31) are employed to solve nonlinear equations f,(x)(i =1,2,3)and
compared with Ostrowski’s method (OM, (2)), Petkovi¢-Dzuni¢-Neta’s method (PDN, (63)),
Petkovic¢-1li¢-Dzuni¢’s method (PID, (64)) and Wang-Zhang’s methods (WZ1, (65) and (WZ2, (66)).
The iterative methods used in the numerical experiment are as follows:

Petkovi¢-Dzuni¢-Neta’s method (PDN, see [3])

] IR ICO RPN S —
Va= NG NG =% =550 40 f(t)—f(xo{f(t)—f(Xn) ”XJ}'

yn = N (Xn) + f (Xn)2¢(yn—l)’ (63)

Xn+l =N (Xn) + f (Xn)2¢(yn):

Petkovi¢-1li¢-Dzunié¢’s method with memory (PID, see [6])

_y 1)
yn_xn f[Xn,Zn]1
(64)
vy 10 [1+ f(%a) , f(yn)}'
f[Xn’zn] f(xn) f(zn)
Where Zn = Xn _7/n f (Xn) and 7/n = (Xn - Xn—l)/(f(xn) - f(Xn—l))'
Wang-Zhang’s method (WZ1, see [9])
yn — Xn _ f (Xn) ’ ﬂ“n - _ f[Xn’ yn—l’ Xn—l] ’
A, T 06)+ £(x,) F(x,)
2 (65)
oy) [mf(yn){f(yn)”
22,8 (x)+ F o)L T (x) LF(x)

13

Wang-Zhang’s method (WZ2, see [17])
B f(x,) y = H,(x,)
f'(xn)_ynf(xn)’ " 2f’(xn) ’
2
f(y,) f(y,)
— _ n 1 n .
= 2f[xn,yn]—f'(xn>L+ﬂ“(f(xn)n
where H,"(x.)=2[x, X, Y, 1+ @ FIX X, Yo X 1= 2 F X0 Yoo X0 X, DX, =Y,) and H,"(x,)

=6f [Xn’ X1 Ynoa Xn—l] +6f [Xn’ Xns Yoo X1 Xn—l](zxn — X yn—l)'

B H[;!!(Xn)
61'(x,)’

Yo =X, B, =

(66)

The absolute errors |x, —a| in the first four iterations are given in Tables 1-3, where a is the
exact root computed with 1200 significant digits. The parameters 4 =0.1, 4,=0.1 and y,=0.1
are used in the first iteration. The computational order of convergence p is defined by [27]:

~ In(|xn+l _Xn|/|Xn B Xn—1|) .
Ir](|Xn - Xn—1| / |Xn—1 - Xn72|)

(67)

Following test functions are used:

f,(x) = xe¥ —sin?(x) +3c0s(x) +5, a~-1.2076478271309189, x,=-1.3
f,(X) = X°+ x* + 4x2 — 15, a ~1.3474280989683050, X, =1.6,
f,(x) =arcsin(x? —1) —0.5x+1, a~0.59481096839836918, X, =1.

Table 1 Numerical results for f;(x) by the methods with and without memory

Methods po—al |lx-al |bg-al ||x,—al P

oM 0.35032¢-4 0.57502e-18 0.41734e-73 0.11580e-293 | 4.0000000
3) 0.36743e-4 0.74187e-18 0.12328e-72 0.94016e-292 | 4.0000000
PID 0.47398e-4 0.30448e-17 0.20742e-73 0.28696e-311 | 4.2348771
WZ1 0.51371e-3 0.47887e-13 0.10861e-55 0.26710e-236 | 4.2352409
(31),(16) 0.52829e-4 0.90363e-17 0.77056e-72 0.11150e-304 | 4.2281273
(31),(22) 0.52829¢e-4 0.90363e-17 0.77056e-72 0.11150e-304 | 4.2281273
(31),(25) 0.52829¢-4 0.11356e-16 0.27652e-71 0.33168e-306 | 4.3015188
(31),(29) 0.52829¢e-4 0.77707e-18 0.14271e-79 0.32057e-354 | 4.4487581

14

Table 2

Numerical results for f,(x) by the methods with and without memory

Methods %, —al b, —al | [x,—al x, —al P

oM 0.15615¢-2 | 0.31086e-11 | 0.48918e-46 | 0.29995e-185 | 4.0000000
3) 0.15226e-2 | 0.27243e-11 | 0.27965e-46 | 0.31051e-186 | 4.0000000
PID 0.34012e-1 | 0.56555e-6 | 0.47462e-26 | 0.36556e-111 | 4.2395330
wz1 0.80255¢-2 | 0.10174e-8 | 0.35663¢-38 | 0.66482e-163 | 4.2345381
(31),(16) 0.11891e-2 | 0.54502e-12 | 0.84967e-52 | 0.22950e-220 | 4.2346273
(31),(21) 0.11891e-2 | 0.48085e-12 | 0.55357e-53 | 0.40945e-226 | 4.2290146
(31),(25) 0.11891e-2 | 0.12774e-11 | 0.22808e-50 | 0.63052e-217 | 4.2984748
(31),(29) 0.11891e-2 | 0.17703e-12 | 0.17730e-56 | 0.25267e-252 | 4.4511139

Table 3 Numerical results for f,(x) by the methods with and without memory

Methods po—al |be-al |lx-al ||x—al P

OM 0.32137e-2 0.49177e-11 0.27132e-46 0.25139%e-187 | 4.0000000
3) 0.32174e-2 0.48262e-11 0.24591e-46 0.16574e-187 | 4.0000000
PID 0.28807e-2 0.17703e-12 0.14180e-55 0.35820e-238 | 4.2369602
WZz1 0.48052e-2 0.32661e-10 0.33069e-45 0.23474e-193 | 4.2334759
(31),(16) 0.31760e-2 0.14779e-10 0.18138e-46 0.19226e-198 | 4.2319727
(31),(21) 0.31760e-2 0.13767e-10 0.88209e-47 0.85788e-200 | 4.2276333
(31),(25) 0.31760e-2 0.31404e-11 0.44428e-50 0.29725e-217 | 4.3031516
(31),(29) 0.31760e-2 0.13010e-11 0.14489e-53 0.43173e-240 | 4.4460397

On the other hand, in Tables 4-5 the mean CPU time (in seconds), after 50 performances of the
programs, appears. The stopping criterion are |x,, — X, |<107?® and |x., — X |<107®in Tables 4
and 5, respectively.

Table 4 Mean CPU time for the stopping criterion | x,,, — X, |<107®

f PDN PID wz1 WZz2 | (31),(16) | (31),(21) | (31),(25) | (31),(29)
f, 17759 | 17038 | 15996 |3.3034 |1.4083 |1.4155 |1.4735 | 1.6907
f, 09731 |1.0062 |1.2545 |2.8123 |1.1335 |009154 |0.9949 | 1.1303
f, 12417 |1.0682 |1.3628 |25802 |1.1587 [0.9328 |1.0395 | 1.1506

15

Table 5 Mean CPU time for the stopping criterion| x,,, — X, |<107°%

f PDN PID wz1 WZz2 | (31),(16) | (31),(21) | (31),(25) | (31),(29)
f, 1.9949 | 17799 |2.0486 |3.5611 |1.4136 |1.4717 |1.5375 |1.7281
f, 1.1640 |1.1874 | 12845 |2.6317 |1.0386 |1.0969 |1.1462 | 1.3568
f, 1.0473 | 10667 |12573 |24152 |1.0146 |1.0189 |1.1157 | 1.3079

From the Tables 1-3, we can see that methods PID, WZ1, ((31),(16)) and ((31),(21)) have the
similar convergence behaves, since these methods have the same convergence order. Tables 4-5
show that compared with other methods, our methods ((31),(16)) and ((31),(21)) use less computing
time. It is noteworthy that methods WZ2 and PDN have higher convergence order, but they cost
more computing time. Method WZ2 costs maximum computing time. The main reason is that the

accelerating parameter of method WZ2 is too complex.

5. Conclusions

In this paper, we propose a novel method to construct the self-accelerating parameter of
Ostrowski-type method. The new self-accelerating parameter has the properties of simple structure
and easy calculation, which do not increase the computational cost of the iterative method. The new
Ostrowski-type methods with and without memory are compared in performance with the existing
methods by numerical examples. The numerical examples confirm the theoretical results and
show that the new methods have better performance. We can conclude that complicated accelerating
parameter can improve the convergence order and calculation precision of iterative methods, which
also increase the computing time. Therefore, simple accelerating parameter is important for the

iterative method with memory, which is the main research work of this paper.

Acknowledgments

The project supported by the National Natural Science Foundation of China (Nos. 11547005 and
61572082), Doctor Startup Foundation of Liaoning Province of China (No. 201501196) and the

Educational Commission Foundation of Liaoning Province of China (No. L2015012).

16

References

[1] J. M. Ortega, W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press,
New York, 1970.

[2] B. Neta, A New Family of Higher Order Methods for Solving Equations, Int. J. Comput. Math. 14 (1983),
191-195.

[3] M. S. Petkovi¢, J. Dzuni¢, B. Neta, Interpolatory multipoint methods with memory for solving nonlinear
equations, Appl. Math. Comput, 218 (2011) 2533-2541.

[4] G. Fernandez-Torres, Derivative free iterative methods with memory of arbitrary high convergence order,
Numer. Algor. 67 (2014) 565-580.

[5] J. F. Traub, Iterative Method for the Solution of Equations, Prentice hall, New York, 1964.

[6] M. S. Petkovi¢, S. Ili¢, J. Dzuni¢, Derivative free two-point methods with and without memory for solving

nonlinear equations, Appl. Math. Comput. 217 (2010) 1887-1895
[7] J. Dzuni¢, M. S. Petkovi¢, L. D. Petkovi¢, Three-point methods with and without memory for solving
nonlinear equations, Appl. Math. Comput, 218 (2012) 4917-4927.
[8] J. Dzuni¢, M. S. Petkovi¢, On generalized multipoint root-solvers with memory, J. Comput. Appl. Math, 236

(2012) 2909-2920.
[9] T Lotfi, A. A. Magrefian, K. Mahdiani, J.Javier Rainer, A variant of Steffensen-King’s type family with
accelerated sixth-order convergence and high efficiency index: Dynamic study and approach. Appl. Math.

Comput. 252(2015) 347-353.

[10] R. F. King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal. 10 (1973)
876-879.

[11] X. Wang, T. Zhang, A new family of Newton-type iterative methods with and without memory for solving
nonlinear equations, Calcolo, 51 (2014) 1-15.

[12] X. Wang, T. Zhang, Some Newton-type iterative methods with and without memory for solving nonlinear
equations, Int. J. Comput. Methods, 11 (2014) 1350078.

[13] X. Wang et al. A Family of Newton Type lterative Methods for Solving Nonlinear Equations, Algorithms, 8
(2015) 786-798.

[14] A. Cordero, T. Lotfi, P. Bakhtiari, J. R. Torregrosa, An efficient two-parametric family with memory for
nonlinear equations, Numer. Algor. 68 (2015) 323-335

[15] J. Dzuni¢, On efficient two-parameter methods for solving nonlinear equations, Numer. Algor, 63 (2013)
549-569.

[16] J. Dzuni¢, M. S. Petkovi¢, On generalized biparametric multipoint root finding methods with memory, J.

17

Comput. Appl. Math, 255 (2014) 362-375.

[17] X. Wang, T. Zhang, High-order Newton-type iterative methods with memory for solving nonlinear equations,
Math. Commun. 19 (2014) 91-109.

[18] F. Soleymani, T. Lotfi, E. Tavakoli, F. K. Haghani, Several iterative methods with memory using-
accelerators, Appl. Math. Comput., 254 (2015) 452-458.

[19] T. Lotfi, P. Assari, New three- and four-parametric iterative with memory methods with efficiency index near
2, Appl. Math. Comp. 270 (2015) 1004-1010

[20] X. Wang, T. Zhang, Y. Qin, Efficient two-step derivative-free iterative methods with memory and their
dynamics, Int. J. Comput. Math., 93 (2016)1423-1446

[21] X. Wang, T. Zhang, Efficient n-point iterative methods with memory for solving nonlinear equations, Numer.
Algor., 70 (2015) 357-375.

[22] J. R. Sharma, R. K. Guha, P. Gupta, Some efficient derivative free methods with memory for solving
nonlinear equations, Appl. Math. Comp. 219 (2012) 699-707.

[23] M. Kansal, V. Kanwar, S. Bhatia, Efficient derivative-free variants of Hansen-Patrick’s family with memory
for solving nonlinear equations, Numer. Algor., (2016) doi:10.1007/s11075-016-0127-6

[24] A. M. Ostrowski, Solution of equations in Euclidean and Banach space, Academic Press, New York, 1973.
[25] H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint iterations, J. Appl. Comput. Math. 21
(1974) 643-651.

[26] G. Alefeld, J. Herzberger, Introduction to Interval Computation, Academic Press, New York,1983.

[27] A. Cordero, J. R. Torregrosa, Variants of Newton’s Method using fifth-order quadrature formulas. Appl.
Math. Comput. 190 (2007) 686-698.

18

