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Abstract In this paper, the improved CK reduction transformation is performed on the

generalized variable-coefficient KdV (vc-KdV) type of equation, then these variable-coefficient e-

quations are transformed into its constant-coefficient counterparts under some conditions. More-

over, the complete Lie group classification is presented, all of the point symmetries of the equa-

tions are obtained. Furthermore, the exact solutions and conservation laws of the equations are

investigated.
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1 Introduction

It is well known that the CK direct transformation is a powerful method for dealing with

similarity reductions and exact solutions to nonlinear partial differential equations (NLPDEs)

[1-4]. In this paper, by the improved CK transformation method, we consider the generalized
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variable-coefficient KdV type of equation as follows:

ut + f(t)uux + g(t)uxxx + h(t)ux + l(t)u = 0, (1.1)

where u = u(x, t) denotes the unknown function of space variable x and time t, the coefficients

f = f(t), g = g(t), h = h(t) and l = l(t) are all arbitrary analytic functions, fg ̸= 0 is assumed

throughout this paper.

In particular, if l(t) = 0, then Eq. (1.1) is reduced to the following equation

ut + f(t)uux + g(t)uxxx + h(t)ux = 0. (1.2)

If h(t) = l(t) = 0, then Eq. (1.1) is reduced to the following vc-KdV equation

ut + f(t)uux + g(t)uxxx = 0. (1.3)

These variable-coefficient nonlinear evolution equations (vc-NLEEs) play a significant role in

mathematical physics, integrable system and physical applications [4-7]. However, the vc-NLEEs

differ greatly from its constant-coefficient counterparts, and they are more involved for inves-

tigating exact solutions and other properties of these generalized variable-coefficient equations.

For dealing with the exact solutions and other properties of vc-NLEEs, a lot of methods were

developed such as the Painlevé test [6-10], Lie symmetry analysis [10-15] and the various trial

function methods based on the homogeneous balance principle (HBP) [16,17], and so on. Ghany

and Mohammed [18,19] studied some complicated vc-NLEEs such as the generalized stochastic

Hirota-Satsuma coupled KdV equation and fractional KdV-Brugers-Kuramoto equation by the

white noise and homotopy analysis method along with the Hermit transform. But such meth-

ods are more involved and the solutions are not presented explicitly. Clarkson and Kruskal [1]

proposed the CK direct method for dealing with similarity reductions of the nonlinear partial

differential equations, Lou et al considered the similarity reductions and exact solutions to some

NLPDEs by using this method [2-4]. In the present paper, we shall develop the improved CK

transformation method for transforming the vc-NLEEs into its constant-coefficient counterparts,

so the exact explicit solutions to the vc-NLEEs are obtained accordingly.

The remainder of this paper is organized as follows. In Section 2, through the improved CK

transformation method, the vc-NLEEs are transformed into its constant-coefficient counterparts

in the same form of the former. In Section 3, the complete Lie group classification of the
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generalized equation is performed, all of the point symmetries of the equations are obtained. In

Section 4, the exact explicit solutions to the generalized vc-NLEEs are investigated through the

similarity reductions and CK transformations. In Section 5, the explicit conservation laws of

the equations are given in terms of the nonlinear self-adjoint method. Finally, the conclusion

and some remarks will be given in Section 6.

2 CK transformations for the vc-NLEEs

In this section, we employ the direct reduction method for investigating the relationship between

variable-coefficient equations (1.1)-(1.3) and its corresponding constant-coefficient counterparts.

Firstly, we assume that Eq. (1.1) can be transformed into the following constant-coefficient

equation

ut + αuux + βuxxx + γux + δu = 0, (2.1)

by the CK transformation as follows:

u ≡ u(x, t) = A(x, t) + B(x, t)U(X,T ), (2.2)

here X = X(x, t), T = T (x, t) and A = A(x, t), B = B(x, t) are functions of x and t to

be determined by requiring that U = U(X,T ) satisfies the same KdV type of equation as

u = u(x, t) with the transformation {u, x, t} → {U,X, T}. That is, requiring that {U,X, T}

satisfy Eq. (2.1), i.e.,

UT + αUUX + βUXXX + γUX + δU = 0, (2.3)

where α, β, γ and δ are all constants, and αβ ̸= 0 in Eqs. (2.1) and (2.3).

Then, substituting (2.2) into Eq. (1.1), through the CK reduction method, we get the

following results:

Case I In general, l(t) ̸= 0. In this case, we have

A = p(t)x − e−
∫
(fp+l)dt

[ ∫
hpe

∫
(fp+l)dtdt − c2

]
, B =

αgr2

βf
,

T =
1

β

∫
gr3dt + c4, X = r(t)x +

γ

β

∫
gr3dt −

∫
fgrdt + c5, (2.4)

where p = p(t) = l
e(t−c1)l±f

, r = r(t) = c3e
−

∫
fpdt, ci (i = 1, 2, ..., 5) are arbitrary constants.
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Thus, if we obtain the exact solution to Eq. (2.1), then the exact solution to Eq. (1.1) can

be given through the transformation as follows

u = p(t)x − e−
∫
(fp+l)dt

[ ∫
hpe

∫
(fp+l)dtdt − c2

]

+
αgr2

βf
U

(
r(t)x +

γ

β

∫
gr3dt −

∫
fgrdt + c5,

1

β

∫
gr3dt + c4

)
, (2.5)

under the condition αβfg′ − αβf ′g + βfgl − αβf2gp − αδfg2r3 = 0, here p = p(t) and r = r(t)

are given by (2.4). In other words, under this condition, Eq. (1.1) can be transformed into the

constant-coefficient equation (2.3) through the transformation (2.2).

Case II If l(t) = 0, then Eq. (1.1) becomes Eq. (1.2), and δ = 0 in Eqs. (2.1) and (2.3),

correspondingly. In this case, we have

A =
1

F (t) + c1
(x + c2 − H(t)), B =

c2
3αg

β(F + c1)2f
,

X =
c3(x + c2)

F + c1
+

c3
3γ

β

∫
g

(F + c1)3
dt − c3H

F + c1
+ c4, T =

c3
3

β

∫
g

(F + c1)3
dt + c5, (2.6)

where F = F (t) =
∫

f(t)dt, H = H(t) =
∫

h(t)dt, ci (i = 1, 2, ..., 5) are arbitrary constants.

Thus, if we obtain the exact solution to Eq. (2.1) with δ = 0, then the exact solution to Eq.

(1.2) can be given through the transformation as follows

u =
1

F (t) + c1
(x + c2 − H(t))

+
c2
3αg

β(F + c1)2f
U

(c3(x + c2)

F + c1
+

c3
3γ

β

∫
g

(F + c1)3
dt− c3H

F + c1
+ c4,

c3
3

β

∫
g

(F + c1)3
dt+ c5

)
, (2.7)

under the condition fg′ − f ′g − f2g
F+c1

= 0, here F = F (t) is given by (2.6). In other words,

under this condition, Eq. (1.2) can be transformed into the constant-coefficient equation (2.3)

with δ = 0, through the transformation (2.2).

In particular, if h(t) = l(t) = 0, then Eq. (1.1) reduces to Eq. (1.3), and γ = δ = 0 in Eqs.

(2.1) and (2.3) at the same time. In this case, we have

A =
1

F (t) + c1
(x + c2), B =

c2
3αg

β(F + c1)2f
,

X =
c3

F + c1
(x + c2) + c4, T =

c3
3

β

∫
g

(F + c1)3
dt + c5, (2.8)

where F = F (t) =
∫

f(t)dt, ci (i = 1, 2, ..., 5) are arbitrary constants.
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Thus, if we obtain the exact solution to Eq. (2.1) with γ = δ = 0, then the exact solution to

Eq. (1.3) can be given through the transformation as follows

u =
1

F (t) + c1
(x + c2)

+
c2
3αg

β(F + c1)2f
U

(c3(x + c2)

F + c1
+ c4,

c3
3

β

∫
g

(F + c1)3
dt + c5

)
, (2.9)

under the condition fg′ − f ′g − f2g
F+c1

= 0, here F = F (t) is given by (2.6). In other words,

under this condition, Eq. (1.3) can be transformed into the constant-coefficient equation (2.3)

with γ = δ = 0, through the transformation (2.2).

Summering the above discussion, we have

Theorem 2.1 If U = U(X, T ) is a solution to Eq. (2.3), then u = A + BU(X,T ) is a

solution to Eq. (1.1), where A, B, X and T are given by (2.4) under the condition (2.5). In

particular, if l = 0, then u = A + BU(X,T ) is a solution to Eq. (1.2), where A, B, X and T

are given by (2.6) under the condition (2.7). If h = l = 0, then u = A + BU(X, T ) is a solution

to Eq. (1.3), where A, B, X and T are given by (2.8) under the condition (2.9). �

Therefore, if the exact solutions to the corresponding cc-NLEEs are obtained, then the exact

solutions to the vc-NLEEs are presented through the CK transformations immediately. So in

what follows, we consider the symmetry reductions and exact solutions to the former only.

Remark 2.1 From our previous discussion, we can see that the coefficient function l = l(t)

rather than h = h(t) affects the CK transformation of the vc-NLEEs greatly, in addition to the

coefficients functions fg ̸= 0.

3 Complete Lie group classification of Eq. (2.1)

In this section, we give the symmetries of Eq. (2.1).

Recall that the geometric vector field of a NLEE is as follows:

V = ξ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u, (3.1)

where ξ(x, t, u), τ(x, t, u) and ϕ(x, t, u) are coefficient functions of the vector fields to be deter-

mined.



H. Liu, et al/CK transformations, symmetries, exact solutions and CLs of vc-KdVs 6

If the vector field (3.1) generates a symmetry of Eq. (2.1), then V must satisfy the Lie’s

symmetry condition

pr(3)V (∆)|∆=0 = 0, (3.2)

where ∆ = ut + αuux + βuxxx + γux + δu. Thus, by the Lie symmetry analysis method, we get

the complete Lie group classification of Eq. (2.1) as follows

Case I In general, if δ ̸= 0, then the vector field of Eq. (2.1) is

V1 = ∂x, V2 = ∂t, V3 = αe−δt∂x − δe−δt∂u, (3.3)

where αδ ̸= 0 are arbitrary constants.

Case II In particular, if δ = 0, then the vector field of Eq. (2.1) is

V1 = ∂x, V2 = ∂t, V3 = αx∂x + ∂u, V4 = αx∂x + 3αt∂t − (2αu + 2γ)∂u, (3.4)

where α ̸= 0 and γ are arbitrary constants.

Remark 3.1 We note that (3.3) and (3.4) is the complete Lie group classification of Eq.

(2.1) actually. If γ = δ = 0, then we get the vector field of the general KdV equation

ut + αuux + βuxxx = 0 (3.5)

as follows

V1 = ∂x, V2 = ∂t, V3 = αx∂x + ∂u, V4 = x∂x + 3t∂t − 2u∂u, (3.6)

where αβ ̸= 0 are arbitrary constants.

4 Exact solutions to the vc-NLEEs

In Section 2, we give the transformation between the vc-NLEEs and cc-NLEEs. Thus, if the

exact solutions to the cc-NLEEs are obtained, then the exact solutions to the corresponding

vc-NLEEs are given through the CK transformations immediately. In Section 3, we present

all of the point symmetries of the cc-NLEEs, now we investigate the exact solutions to these

vc-NLEEs by the symmetry reductions and CK transformations. In what follows, we consider

the general case δ ̸= 0. In this case, the vector field of Eq. (2.1) is (3.3).

(i) For V1 = ∂x, we have

u = ϕ(ξ), (4.1)
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where ξ = t. Substituting (4.1) into Eq. (2.1), we have

ϕ′ + δϕ = 0, (4.2)

where ϕ′ = dϕ/dξ. Solving this equation, we get ϕ(ξ) = ce−δξ. Thus, we obtain the exact

solution to Eq. (1.1) as follows

u(x, t) = A + cBe−δT , (4.3)

where A = A(x, t), B = B(x, t) and T = T (x, t) are given by (2.4), under the condition (2.5), c

is an arbitrary constant.

(ii) For V3 = αe−δt∂x − δe−δt∂u, we have

u = ϕ(ξ) − δ

α
x, (4.4)

where ξ = t. Substituting (4.4) into Eq. (2.1), we have

ϕ′ − γδ

α
= 0, (4.5)

where ϕ′ = dϕ/dξ. So we have ϕ(ξ) = γδ
α ξ + c. Thus, we obtain the exact solution to Eq. (1.1)

as follows

u(x, t) = A + cB − δ

α
B(X − γT ), (4.6)

where A = A(x, t), B = B(x, t) and T = T (x, t) are given by (2.4), under the condition (2.5), c

is an arbitrary constant.

(iii) For V = v∂x + ∂t (v is a constant), we have

u = ϕ(ξ), (4.7)

where ξ = x − vt. Substituting (4.4) into Eq. (2.1), we have

αϕϕ′ + βϕ′′′ + (γ − v)ϕ′ + δϕ = 0, (4.8)

where ϕ′ = dϕ/dξ.

(iv) For V = v∂t + αe−δt∂x − δe−δt∂u (v ̸= 0 is a constant), we have

u =
1

v
e−δt + ϕ(ξ), (4.9)

where ξ = x + α
vδe−δt. Substituting (4.9) into Eq. (2.1), we have

αϕϕ′ + βϕ′′′ + γϕ′ + δϕ = 0, (4.10)
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where ϕ′ = dϕ/dξ. We note that Eqs. (4.8) and (4.10) are the same type of nonlinear higher-

order ODEs, they cannot be solved by the classical integration method in the general case

δ ̸= 0.

Now, we seek the exact power series solutions to such equations. First, we suppose a solution

to Eq. (4.8) in a power series form as follows

ϕ(ξ) =
∞∑

n=0

cnξn, (4.11)

where the coefficients cn (n = 0, 1, 2, ...) are constants to be determined.

Substituting (4.11) into (4.8), and comparing coefficients, we obtain

cn+3 =
−1

β(n + 1)(n + 2)(n + 3)

[
α

n∑

k=0

(n + 1 − k)ckcn+1−k + (γ − v)(n + 1)cn+1 + δcn

]
, (4.12)

for all n = 0, 1, 2, ....

On the other hand, we note that Eq. (4.8) has a constant solution ϕ = ϕ(ξ) = 0 (for δ ̸= 0),

so we have c0 = 0. Thus, for arbitrarily chosen constants c1 and c2, from (4.12), we have

c3 = − 1

6β
(γ − v)c1, c4 = − 1

24β
[αc2

1 + 2(γ − v)c2 + δc1],

and

c5 = − 1

60β
[3αc1c2 + 3(γ − v)c3 + δc2],

and so on.

Hence, the other terms of the sequence {cn}∞
n=0 can be determined successively from (4.12)

in a unique manner. This implies that for Eq. (4.8), there exists a power series solution (4.11)

with the coefficients given by (4.12).

Now, we show the convergence of the power series solution (4.11) to Eq. (4.8). In fact, in

view of (4.12), we have

|cn+3| ≤ M
( n∑

k=0

|ck||cn+1−k| + |cn+1| + |cn|
)
, n = 0, 1, 2, ..., (4.13)

where M = max{|αβ |, |γ−v
β |, | δ

β |}.

If we define a power series P = P (ξ) =
∑∞

n=0 pnξn by p0 = |c0| = 0, p1 = |c1|, p2 = |c2| and

pn+3 = M
[ n∑

k=0

pkpn+1−k + pn+1 + pn

]
, n = 0, 1, 2, ...,
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then by the induction method, it is easily seen that

|cn| ≤ pn, n = 0, 1, 2, ....

In other words, P (ξ) =
∑∞

n=0 pnξn is a majorant series of (4.11).

Now, we prove that P = P (ξ) has a positive radius of convergence. Indeed, noting that by

the formal power series calculation, we have

P = P (ξ) = p1ξ + p2ξ
2 +

∞∑

n=0

pn+3ξ
n+3

= p1ξ + p2ξ
2 + M

[ ∞∑

n=0

( n∑

k=0

pkpn+1−k

)
ξn+3 +

∞∑

n=0

pn+1ξ
n+3 +

∞∑

n=0

pnξn+3
]

= p1ξ + p2ξ
2 + Mξ2[P 2(ξ) + ξP (ξ) + P (ξ)].

Consider now the implicit functional equation

F = F (ξ, P ) = P − p1ξ − p2ξ
2 − Mξ2(P 2 + ξP + P ) = 0.

Since F is analytic on a disk with the origin as the center and F (0, 0) = 0, F ′
P (0, 0) = 1 ̸= 0, by

the implicit function theorem [20,21], we see that P = P (ξ) is analytic in a neighborhood of the

origin and with a positive radius. This completes the proof.

Therefore, the general solution in power series form of Eq. (4.8) can be written as follows:

ϕ(ξ) = c1ξ + c2ξ
2 +

∞∑

n=0

cn+3ξ
n+3 = c1ξ + c2ξ

2 − 1

6β
(γ − v)c1ξ

3

−
∞∑

n=1

1

β(n + 1)(n + 2)(n + 3)

[
α

n∑

k=0

(n+1−k)ckcn+1−k +(γ−v)(n+1)cn+1 +δcn

]]
ξn+3. (4.14)

So, we obtain the corresponding exact traveling wave solution to vc-NLEE (1.1) in power

series form as follows

u(x, t) = A + B
[
c1(X − vT ) + c2(X − vT )2 − 1

6β
(γ − v)c1(X − vT )3

−
∞∑

n=1

1

β(n + 1)(n + 2)(n + 3)

(
α

n∑

k=0

(n+1−k)ckcn+1−k +(γ−v)(n+1)cn+1+δcn

)
(X −vT )n+3

]
,

(4.15)

where c1 and c2 are arbitrary constants, cn+3 (n = 0, 1, 2, ...) are given by (4.12) successively,

A = A(x, t), B = B(x, t), X = X(x, t) and T = T (x, t) are given by (2.4), under the condition

(2.5), v is the wave speed.
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Second, we suppose that Eq. (4.10) has a solution in a power series of the form (4.11) also.

Then substituting (4.11) into (4.10), and comparing coefficients, we obtain

cn+3 =
−1

β(n + 1)(n + 2)(n + 3)

[
α

n∑

k=0

(n + 1 − k)ckcn+1−k + (n + 1)γcn+1 + δcn

]
, (4.16)

for all n = 0, 1, 2, ....

Similar to the above, we obtain the exact solution to vc-NLEE (1.1) in power series form as

follows

u(x, t) = A + B
[1

v
e−δT + c1(X +

α

δv
e−δT ) + c2(X +

α

δv
e−δT )2 − γc1

6β
(X +

α

δv
e−δT )3

−
∞∑

n=1

1

β(n + 1)(n + 2)(n + 3)

(
α

n∑

k=0

(n+1−k)ckcn+1−k +(n+1)γcn+1 +δcn

)
(X +

α

δv
e−δT )n+3

]
,

(4.17)

where c1 and c2 are arbitrary constants, cn+3 (n = 0, 1, 2, ...) are given by (4.16) successively,

A = A(x, t), B = B(x, t), X = X(x, t) and T = T (x, t) are given by (2.4), under the condition

(2.5), v ̸= 0 is an arbitrary constant.

5 Conservation laws of Eq. (2.1)

In the preceding section, we give all of the point symmetries of Eq. (2.1), the symmetries of

the other equations are presented successively. In this section, we give the explicit conservation

laws in terms of the point symmetries. Since this equation is not a self-adjoint in general, so

we employ the the nonlinear self-adjoint concept [22], it is the generalization of the self-adjoint

method.

First, for Eq. (2.1), if we write that

F = ut + αuux + βuxxx + γux + δu = 0, (5.1)

then the adjoint equation to this equation is as follows

F ∗ = vt + αuvx + βvxxx + γvx − δv = 0, (5.2)

where v = v(x, t) is a new dependent variable of x and t.

Clearly, if δ ̸= 0, then Eq. (2.1) is not self-adjoint. In particular, if δ = 0, then it is

self-adjoint.
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Second, for Eq. (2.1), the formal Lagrangian is

L = v(ut + αuux + βuxxx + γux + δu), (5.3)

where v = v(x, t) is defined by (5.2). Moreover, we consider the conservation laws of Eq. (2.1)

in following cases, respectively.

(I) In general, δ ̸= 0. In this case, Eq. (2.1) is not self-adjoint. If we get v = φ(x, t, u) ̸= 0,

such that

F ∗|v=φ = λF, (5.4)

then Eq. (2.1) is said to be nonlinearly self-adjoint. Furthermore, through the similar procedure

to symmetry analysis, we get φ = ue2L(c3 − c1

∫
fe−Ldt) + eL(c1x − c1H + c2), where H =

H(t) =
∫

h(t)dt, L = L(t) =
∫

l(t)dt, ci (i = 1, 2, 3) are constants.

Based on the generators V = (k1e
−δt +k3)∂x +k2∂t − δ

αk1e
−δt∂u (k1, k2 and k3 are arbitrary

constants), the conservation laws of Eq. (2.1) is as follows

Dt(C
1) + Dx(C2)|(2.1) = 0, (5.5)

with the following components of the conserved vector C = (C1, C2):

C1 = φ(k2F + W ),

C2 = φ[(k1e
−δt + k3)F − β(k1e

−δt + k3)uxxx − βk2uxxt] + W
[
αφu + γφ

+β
(
c3 − c1

∫
fe−Ldt

)
e2Luxx

]
+ β[(k1e

−δt + k3)uxx − k2uxt]
[
c1e

L +
(
c3 − c1

∫
fe−Ldt

)
e2Lux

]
,

(5.6)

where φ = ue2L(c3 − c1

∫
fe−Ldt) + eL(c1x − c1H + c2), F = ut + αuux + βuxxx + γux + δu,

W = − δ
αk1e

−δt − (k1e
−δt + k3)ux − k2ut, H = H(t) =

∫
h(t)dt, L = L(t) =

∫
l(t)dt, ci and ki

(i = 1, 2, 3) are arbitrary constants.

(II) In particular, δ = 0. In this case, Eq. (2.1) is self-adjoint. So we have v = u.

Based on the generators V = (c1x + c3t + c4)∂x + (3c1t + c2)∂t − (2c1u + 2γ
α c1x + 1

αc3)∂u (c1,

c2 and c3 are arbitrary constants), the conservation laws of Eq. (2.1) is (5.5) with the following

components of the conserved vector C = (C1, C2):

C1 = α(3c1t + c2)u
2ux + β(3c1t + c2)uuxxx − [c1x − (3γc1 − c3)t + c4]uux − 2c1u

2 − 2γc1 − c3

α
u,
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C2 = [c1x − (3γc1 − c3)t − γc2 + c4]uut + β(c1x + c3t + c4)uuxxx − 2αc1u
3 − 2βc1uuxx

−(4γc1 − c3)u
2 − γ

α
(2γc1 − c3)u − β

α
(2γc1 − c3)uxx + 2β(c1x + c3t + c4)uxuxx

−α(3c1t + c2)u
2ut − β(3c1t + c2)uxxut + 3βc1u

2
x + β(3c1t + c2)uxuxt − 4βc1u

2
xx

−β(c1x + c3t + c4)uxxuxxx − β(3c1t + c2)uxxuxxt, (5.7)

where ci (i = 1, ..., 4) are arbitrary constants.

6 Conclusion and remarks

In the current paper, the generalized variable-coefficient KdV types of equations are investigat-

ed by the improved CK reduction transformation method. Under some constraint conditions,

the vc-PDEs are transformed into its constant-coefficient counterparts. Then, all of the point

symmetries are obtained, the exact solutions to the vc-PDEs are presented through the symme-

try reduction and CK transformation method. Moreover, the explicit conservation laws of the

equations are investigated by the nonlinear self-adjoint method. However, how to consider the

other properties of vc-PDEs through such CK transformation, it is an interesting and promising

problem, we hope to investigate it in the future.

Remark 6.1 Generally speaking, the improved CK transformations in the current paper are

equivalent transformations, they transform the vc-PDEs into its constant-coefficient counterparts

under some conditions. Conversely, they can transform the exact solutions and other properties

of the latter into the former. From the above discussion, we can see that compare to the other

aforementioned methods, this CK transformation method is more effective and direct for tackling

exact solutions to the vc-PDEs. Moreover, we think it will plays a more great role in studying

other properties of vc-PDEs.
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