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a b s t r a c t

An element-based adaptation method is developed for an anisotropic a posteriori error
estimator. The adaptation does not make use of a metric, but instead equidistributes
the error over elements using local mesh modifications. Numerical results are reported,
comparing with three popular anisotropic adaptation methods currently in use. It was
found that the new method gives favourable results for controlling the energy norm of
the error in terms of degrees of freedom at the cost of increased CPU usage. Additionally,
we considered a new L2 variant of the estimator. The estimator is shown to be conditionally
equivalent to the exact L2 error. We provide examples of adapted meshes with the L2
estimator, and show that it gives greater control of the L2 error compared with the original
estimator.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last twenty years, anisotropic mesh adaptation has seen great activity. Since the work of D’Azevedo and Simpson
in [1,2] for piecewise linear approximation of quadratic functions there has been a significant amount of research dedicated
to producing practical adaptation procedures based on their results. In addition, there has been much software written for
the implementation, which either construct an entirely new mesh, such as BAMG [3], BL2D [4], GAMANIC3D [5], or apply
local modifications to a previous mesh, such as MEF++ [6], MMG3D [7], YAMS [8]. The main idea they share in common is
to construct a non-Euclidean metric from the Hessian of the solution. We will refer to them as Hessian adaptation methods,
see for instance [9–13].

Residual a posteriori error estimation for elliptic equations has been around for some time. In [14,15], Babuska and
Rheinboldt introduced a local estimator, constructed entirely from the approximate solution, that is globally equivalent to the
energy norm of the error. Numerical results showed that it was suitable for the purposes of mesh adaptation by determining
regions in which the mesh could be refined or coarsened. While initially an entirely isotropic method, recently, the residual
method was modernized by the introduction of anisotropic interpolation estimates from [16]. Unlike classical results, the
new estimates did not require a minimum (or maximum) angle condition, and instead took into account the geometric
properties of the element. In [17,18] these interpolation results were combined with the standard a posteriori estimates to
drive mesh adaptation by constructing a metric. We will refer to this method as the residual metric method. The method
results in highly anisotropic meshes, reducing the error by an order of magnitude compared to isotropic methods [17].
Moreover, the procedure has been successfully applied to a variety of nonlinear situations, including a reaction–diffusion
system to model solutal dendrites in [19] and the Euler equations to model the supersonic flow over an aircraft in [20].
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Recent work in [21] demonstrates the potential advantages of element-based anisotropicmesh adaptation over the usual
metric based mesh adaptation methods used so far. The error estimator they use is hierarchical: from a given approximate
solution, they construct a higher-order, more accurate approximation. For the Hessian method it is necessary to take the
absolute value of the eigenvalues of the Hessian, thus treating positive and negative curvature as essentially equal, while the
distinction can be seen very clearly in meshes adapted with the hierarchical method. Further, the hierarchical estimator has
the advantage that it can naturally be applied to finite elements of arbitrary order.

The primary goal of this paper is to introduce, and numerically assess, an element-based adaptation approach to be used
with the residual estimator from [17]. We will refer to this method as the element-based residual method. Motivation
for implementing such a method includes avoiding the additional steps involved in converting the estimator defined on
elements, to a metric defined on the nodes, during which information could be lost. Additionally, we would like to attempt
to mimic the success of the hierarchical method. The adaptation will be implemented by interfacing the estimator with the
hierarchical adaptation code MEF++. We also introduce a variant of the estimator for the L2 norm error, which is shown
to be reliable and efficient under certain assumptions, and show that the estimator is also suitable for anisotropic mesh
adaptation. A secondary goal of the paper will be to provide a comparative performance analysis between four different
adaptation techniques: element-based residual, metric based residual, Hessian, and hierarchical.

The outline of this paper is as follows: in Section 2 we introduce the model problem and error estimator, as well as
recall some results from the literature; in Section 3 we discuss both the metric and element-based adaptation procedures;
in Section 4 we produce numerical results, validating the element-based method, and comparing it with other anisotropic
adaptation procedures.

2. The estimator

We discuss the model problem and introduce a residual estimator. Main results will be summarized from the literature.
Full details can be found for instance in [16,17,22].

2.1. Model problem

Let Ω ⊆ R2 be a bounded polygonal domain, with boundary ∂Ω. Let V = H1(Ω) and V0 = {v ∈ H1(Ω) : v|∂Ω = 0}. For
g ∈ H1/2(∂Ω), let Vg = {v ∈ H1(Ω) : v|∂Ω = g}, which may be thought of as the translation of V0 by g . For f ∈ L2(Ω), and a
positive definite matrix A, let u ∈ Vg be the solution of the equation{

−div(A∇u) = f , in Ω,

u = g, on ∂Ω.
(1)

Then u is the solution to the variational equation

B(u, v) = F (v), ∀v ∈ V0,

where

B(u, v) =

∫
Ω

A∇u · ∇v dx, u ∈ Vg , v ∈ V0,

F (v) =

∫
Ω

f v dx, v ∈ V0.

For h > 0, let Th be a conformal triangulation of Ω consisting of triangles K with diameter hK ≤ h. Denote by Vh the
finite element space of continuous, piecewise linear functions (P1) on Th and Vh,0 the subspace of functions vanishing on
∂Ω . Let gh be a piecewise linear approximation of g on ∂Ω and let Vh,g = {vh ∈ Vh : vh|∂Ω = gh}. Then the finite element
approximation uh ∈ Vh,g of u satisfies the discrete variational equation

B(uh, vh) = F (vh), ∀vh ∈ Vh,0. (2)

For details on the finite element method for elliptic problems, see for instance [23].

2.2. Anisotropic residual error estimator

Define the energy norm by |||v|||= B(v, v)1/2 for v ∈ V . The residualmesh adaptation procedure is based on controlling the
energy norm of the discretization error eh = u−uh. The error estimator, whichwill be outlined below, combines information
of the residual with anisotropic interpolation estimates.

Define the localized residual by

RK (uh) = f + div(A∇uh),
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where the divergence operator is local to K . The jump of the derivative for an element K with edges ei is defined by

rK (uh) =

3∑
i=1

[A∇uh]ei ,

where the jump [A∇vh]ei over ei is defined as follows: denoting the outward unit normal by ni and the adjacent element (if
it exists) by K ′, then

[A∇vh]ei =

{
0, ei ⊂ ∂Ω,

A∇(vh|K ) · ni − A∇(vh|K ′ ) · ni, otherwise.

For a triangular element K , the anisotropic information comes from the affine mapping FK : K̂ → K . The reference
element K̂ is taken to be the equilateral triangle centred at the origin with vertices at the points (0, 1), (−

√
3

2 , −1
2 ), (

√
3
2 , −1

2 ).
The Jacobian JK of FK is non-degenerate, so the singular value decomposition (SVD) JK = RT

KΛKRKZK consists of orthogonal
matrices RK , ZK , and positive definite diagonal matrix ΛK . The matrices RK , ΛK take the form

RK =

(
rT1,K
rT2,K

)
, ΛK =

(
λ1,K 0
0 λ2,K

)
,

where λ1,K ≥ λ2,K > 0, r1,K , r2,K are orthogonal unit vectors. Geometrically, these eigenvalues and eigenvectors represent
the deformation of the unit ball inR2 to an ellipsewith axes of lengthλ1,K , λ2,K in directions r1,K , r2,K respectively.Moreover,
they represent K in the sense that the ellipse circumscribes the element.

Denote by ∆K the patch of elements containing a vertex of K . As noted in [24], for the bounds for the quasi-interpolation
operator to be uniform, theremust be an integerΓ > 0 and a constant C > 0 such that all such patch satisfies card(∆K ) ≤ Γ

(cardinality) and diam(F−1
K (∆K )) ≤ C (diameter). For v ∈ V , define the following ‘‘Hessian’’ type matrix:

G̃K (v) =

(∫
∆K

∂v

∂xi

∂v

∂xj
dx
)

i,j

, (3)

and let

ω̃K (v) = (λ2
1,K r

T
1,K G̃K (v)r1,K + λ2

2,K r
T
2,K G̃K (v)r2,K )1/2,

Finally, define

η̂2
K =

(
∥RK (uh)∥0,K +

(
hK

λ1,Kλ2,K

)1/2

∥rK (uh)∥0,∂K

)
ω̃K (eh). (4)

Theorem 1 ([17,22,25]). There exist constants C1,K̂ , C2,K̂ > 0 such that

C1,K̂

∑
K

η̂2
K ≤ |||eh|||2 ≤ C2,K̂

∑
K

η̂2
K .

The upper and lower bounds in Theorem 1 still depend on the unknown solution due to the ω̃K (eh) term. The approach
taken in [17] is to remove this dependency by using a gradient recovery operator of the formΠ : Vh → Vh⊕Vh. The operator
should be super-convergent in the sense that Π (uh) converges to ∇u faster than ∇uh, at least of order 1 + ϵ where ϵ > 0.
For full details on the derivation of upper and lower bounds using super-convergence assumptions, see [22]. Therefore, for
the remainder we replace G̃K (eh) by

GK (uh) =

(∫
K

(
∂uh

∂xi
− Π (uh)i

)(
∂uh

∂xj
− Π (uh)j

)
dx
)

i,j
,

and ω̃K (eh) by ωK (uh) = (λ2
1,K r

T
1,KGK (uh)r1,K + λ2

2,K r
T
2,KGK (uh)r2,K )1/2 and the estimator becomes

η2
K =

(
∥RK (uh)∥0,K +

(
hK

λ1,Kλ2,K

)1/2

∥rK (uh)∥0,∂K

)
ωK (uh). (5)

Note furthermore, that the integral for the matrix G̃K (eh) is taken on the patch ∆K while that for GK (uh) is taken only on
the element K . We found that this simplification works in practice and greatly reduces the computational complexity of the
estimator, and has been used for instance in [17,26].

2.3. Gradient recovery

Here we discuss briefly our choice of gradient recovery method. A popular choice is the simplified Zienkiewicz–Zhu (ZZ)
operator, see [27], which generally performs very well. For instance, on certain regular meshes (parallel) it is asymptotically
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exact. Moreover, despite the fact that it cannot be proven to be super-convergent for non-regular meshes, in practice
superconvergence has been observed for adapted meshes, as in [17,22].

An improved method is proposed by Zhang and Naga in [28]. The main idea is that for each node, one fits the solution
values to a higher-order polynomial on a surrounding patch, the fit being obtained in a least-square sense. The value of the
recovered gradient at the node is obtained by taking the gradient of the higher-order polynomial. They prove that themethod
is super-convergent for any regular mesh pattern, including situations where the ZZ estimator is not, such as the chevron
pattern [27]. In addition, while the ZZ estimator only preserves polynomials of degree 1, their method can be extended to
higher-order elements.

In this paper we have chosen to use the recovery method of Zhang and Naga due to an observed increase in performance.
We remark that the usual justification of use of the ZZ estimator is its low cost. However, the gradient recovery is only
computed once at the start of each iteration of the adaptation loop. As it turns out in our case, calculation of the Zhang/Naga
gradient recovery accounted for less than 0.5% of the total CPU time.

3. Adaptive procedure

In this section, we describe the four mesh adaptation methods that will be compared in Section 4, starting with the new,
element-based adaptation procedure for the residual estimator ηK . The section concludes with a discussion of the control of
the L2 norm error vs. the H1 seminorm error.

3.1. Element-based adaptation

By Theorem 1, the estimator η =
(∑

Kη2
K

)1/2 is globally equivalent to the energy norm of the error |||eh|||. Given an error
tolerance TOL > 0, the adaptation algorithm will attempt to control the error so that η ≈ TOL. Moreover, the mesh should
have the least possible number of elements NT . Therefore, the primary goal of the adaptation algorithm is to equidistribute
the estimated error by asking that every element K satisfies η2

K ≈
TOL2
NT

. From an initial calculation of ηK we adapt themesh by
performing the following localmeshmodifications: edge refinement, edge swapping, node removal, and node displacement.
For a complete description of local mesh modifications, see for instance [11,13,21,29].

For convenience we define two element patches, which will be referred to frequently while discussing the local
modifications. For an edge e, the patch ∆e will denote the patch of elements containing e. Similarly, for a vertex p, the patch
∆p will denote the patch of elements containing p.

3.1.1. Edge refinement
Edge refinement is used to decrease the level of error where it is too large. The candidate edges for refinement are those

belonging to an element K for which η2
K > 1.5 TOL2

NT
. For such an edge e with associated edge patch ∆e, denote by ∆′

e the
resulting patch after refining e, and suppose they have respectively NT ,e, NT ,e′ elements. Denote respectively by η2

∆e
and η2

∆′
e

the error on the patch before and after refinement. The refinement is accepted if the new error is closer to the goal in the
following sense:⏐⏐⏐⏐⏐ η2

∆′
e

NT ,e′
−

TOL2

NT

⏐⏐⏐⏐⏐ <

⏐⏐⏐⏐⏐ η2
∆e

NT ,e
−

TOL2

NT

⏐⏐⏐⏐⏐ . (6)

3.1.2. Edge swapping
Edge swapping is used to minimize the error without changing the number of elements. For an internal edge e, consider

the edge patch∆e, test the reconnection of the edge, and denote this patch∆e′ . Note that it may be geometrically impossible
to swap an edge, for instance if the patch is not convex, or degenerates to a triangle. Edge swapping is performed if the global
error decreases. At first, one might try swapping if the following criterion holds:∑

K ′∈∆e′

η2
K ′ <

∑
K∈∆e

η2
K .

However, for the residual estimator, the above criteria is not enough, and we had to enlarge the patch as in Fig. 1. Note
that swapping the edge changes the normal jump of the derivative for elements adjacent to ∆e. Including these elements
in the error calculation means that we have included all elements for which ηK is changed by swapping, so that if the error
decreases on the patch, then in fact the error will have decreased globally.

The edges are stored in an ordered list, and edge swapping is carried out by looping over this list and checking all internal
edges.When an edge is swapped, the new edge is placed at the end of the list, so will be considered for swapping again. After
the list is exhausted, if any edges were swapped the entire procedure will be repeated.

We remark that the loop will in fact terminate. There are only finitely many ways to reconfigure the mesh by swapping,
and the edges are only swapped if the global error decreases. Furthermore, because no interpolation of the solution takes
place during edge swapping, the map from edge configuration to global error calculation is well-defined, so it is not possible
to arrive at a previous configuration but with smaller error. Also, as noted on p. 1339 of [17], the choice of reference element
means that the contribution of the SVD will not depend on a reordering of the nodes.
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Fig. 1. Extension of the edge patch for edge swapping.

3.1.3. Node removal
Node removal is used to reduce the number of mesh elements where possible, particularly where the error is small. Node

removal consists in removing a node p from themesh, aswell as the patch of elements,∆p, attached to the node. The resulting
‘‘hole’’ then is remeshed, and we will call the resulting patch ∆′

p. The initial choice of remeshing is not important because
the optimal choice will be determined by edge swapping. One compares the error before and after the procedure, denoted
η∆p , η∆′

p
, and the node is accepted for removal if the following analogue to (6) holds⏐⏐⏐⏐⏐ η2
∆′

p

NT ,p′

−
TOL2

NT

⏐⏐⏐⏐⏐ <

⏐⏐⏐⏐⏐ η
2
∆p

NT ,p
−

TOL2

NT

⏐⏐⏐⏐⏐ . (7)

3.1.4. Node displacement
The goal of node displacement is to equidistribute the error over the mesh elements. Node displacement is applied to

each vertex p to determine the optimal position of the vertex within the vertex patch ∆p. Note that this patch might not
be convex, so care has to be taken to avoid overlapping elements. We consider the value of the error on the elements
as a discrete distribution, and find the position within the patch which minimizes the variance: minp

(
VarK∈∆p{η

2
K }
)
. No

attempt is made to solve the minimization problem fully for each vertex, but only to find an approximate solution with
one iteration of a gradient recovery method. Computing the full solution could be costly, and moreover might not even be
possible depending on the shape of the function being minimized. Instead, one applies several iterations of the global node
displacement procedure. As we will see in Section 3.2, node movement minimizes a different function in the hierarchical
method from [21].

Edge refinement and node removal work towards achieving the error tolerance, node movement ‘‘smooths’’ the mesh by
equidistributing the error, while edge swapping minimizes the error.

After amesh operation is performed the error estimator needs to be recalculated. Firstwe interpolate the continuous data,
which in this case is uh and the recovered gradient Π (uh). The discontinuous data needs to be recalculated on each element,
i.e. the singular value decomposition, discontinuous gradient, jump of the derivative, and the residual. Additionally, after
each operation is performed there is a check to ensure degenerate elements were not produced.

All numerical results are produced with MEF++. The hierarchical estimator adaptation driver was used, described in [21],
suitably adjusted.

3.2. Hierarchical

We summarize the ideas from [21]. Given a Pk approximation uh,k, construct a higher-order solution ũh,k+1 ∈ Pk+1, which
is supposed to be more accurate. From this, one obtains an approximation of the error

eh ≈ ũh,k+1 − uh,k. (8)

Taking k = 1, and the barycentric representation of the element K by uh,1|K = u1λ1 + u2λ2 + u3λ3, one builds ũh,2 in the
‘‘hierarchical’’ basis

ũh,2|K = u1λ1 + u2λ2 + u3λ3 + 4(e1λ1λ2 + e2λ1λ3 + e3λ2λ3),

where ei denotes the mid-edge values. Taking the Zhang–Naga (or any other sufficiently accurate) recovered gradient
Π (uh,1) = (Π (uh,1)1, Π (uh,1)2), the mid-edge values are found by enforcing consistency between the Hessian of ũh,2 and
the derivatives of Π (uh):

∂2ũh,2

∂x21
=

∂Π (uh,1)1
∂x1

,
∂2ũh,2

∂x22
=

∂Π (uh,1)2
∂x2

,

∂2ũh,2

∂x1∂x2
=

1
2

(
∂Π (uh,1)1

∂x2
+

∂Π (uh,1)2
∂x1

)
.
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Having computed the higher-order solution, the adaptation process follows similarly to that used in Section 3.1. But since
(8) gives a direct representation of the error field, one has considerably more freedom in how to calculate the error on each
element. The choice in [21], and as implemented by the authors in MEF++, is to target the global error in the L2 norm. The
operations of edge refinement and node removal will be used to achieve a global level of error, while node displacement
and edge swapping are used to locally equidistribute the error by minimizing the gradient of the error, i.e. the H1-seminorm
error.

In this paper, we only consider hierarchical adaptation for P1 finite elements for the sake of comparison. However, note
that (8) is quite general, and it is very easy to generalize these ideas to higher-order finite elements. The hierarchical method
has been successfully applied to P2 finite elements in [30].

3.3. Metric adaptation

Currently, the most popular anisotropic mesh adaptation methods in use are metric based. Here, the main idea is to
control the edge length in a Riemannian metric. For a planar domain Ω , an inner product is given by a set {M(x)|x ∈ Ω}

of 2 × 2 positive definite matrices. In practice we only have a discrete approximation, consisting of a metric defined at the
nodes of the mesh, the values at other points being obtained by interpolation [12]. For an edge e = PQ , the edge length is
given by

|e|M =

∫ 1

0

√
eTM(P + te)e dt. (9)

The goal of a metric based adaptation algorithm will be to generate meshes which are ‘‘unit’’ with respect to the metric. For
2D meshes this simply means that, up to some tolerance, the edges have unit length.

The metric adaptation will be done using MEF++, applying the same mesh modification operations discussed in
Section 3.1. The goal of edge refinement and node removal is to achieve unit edge length, while the second two locally
equidistribute the error. More precisely, edge swapping applies a non-Euclidean variant of the classical Delaunay edge
swapping criterion tomaximize theminimumangle. For nodemovement, the edges attached to a node are seen as a network
of springs with stiffness proportional to metric edge length, and the goal is to minimize the ‘‘energy’’ of the system. For full
details see for instance [13].

3.4. Residual metric based

Now we describe how the residual estimator introduced in Section 2 can be used to define a metric. There exist at
least two approaches used in the literature, both following similar principles. The one we will use is that from [22] since
it resulted in unit meshes in only a few iterations. The metric is constructed locally for the element K by finding the shape
of a new element Knew which minimizes ηKnew up to a fixed area. From [22], Proposition 26, the minimizing shape is given by
r̃1,K = p2, r̃2,K = p1, and s̃K =

√
α1,K
α2,K

,whereα1,K ≥ α2,K > 0 and p1, p2 are respectively the eigenvalues and eigenvectors of

the normalized matrix GK
|K |

. Under these conditions, one obtains a simple relation for the error [22, p. 826]. Imposing ηK ≡ τ ,
where τ > is the local error tolerance, one determines the area from this relation, and then easily recovers the optimal
values λ̃1,K , λ̃2,K . Finally, defining R̃K , Λ̃K in the obvious way, the metric on K is then given by M̃K = R̃T

K Λ̃−2
K R̃K . We remark

that the mesh adaptation software used for this paper requires the metric to be defined on vertices, and for this purpose we
apply metric intersection. For a vertex p, the metric M̃p will be defined as the intersection of all the metrics M̃K over the
patch ∆p. For details on metric intersection, see for instance [11]. Note that, alternatively to metric intersection, we found
that a simple averaging procedure gave satisfactory results.

3.5. Hessian

The Hessian metric approach introduced here follows the expositions from [12,13]. The P1 interpolation error eIh =

u − Ih(u) of a function u on an edge ℓ = [xi, xj] satisfies

|eIh|L∞(ℓ) =
|ℓ|2

8

⏐⏐⏐⏐d2u
dx2

(ξ )
⏐⏐⏐⏐ ,

where ξ is some point in ℓ. The error on the edge can then be approximated using the end-points of the interval

|eIh|L∞(ℓ) ≈
1
2

(
ℓT |H(xi)|ℓ + ℓT |H(xj)|ℓ

)
, (10)

where H(x) is the Hessian of u at x, and |H(x)| is the positive semi-definite matrix obtained by taking the absolute value of
the eigenvalues of the symmetric matrix H(x). Fixing an error level eD, defining the metricMx =

1
8·eD

|H(x)|, and computing
the edge length from (9) with the trapezoid rule give |ℓ|M = 1 precisely when the approximate error (10) is equal to eD. For
a slightly different approach to Hessian methods, see [9,10].

Note that (10) depends on the unknown Hessian of the solution. One may obtain a piecewise linear approximation of the
Hessian from the computed solution, for instance, with the least square fitting method used in [31].
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3.6. L2 error vs. H1 seminorm error estimation

While the residual estimator targets the energy norm of the error, it is also interesting to determine whether we can
expect to control the L2 norm of the error. Recall that for elliptic problems such as (1), if a set of meshes uniformly satisfies
the minimum (or maximum) angle condition for some angle θ > 0, then there exists C1 > 0 such that for any such mesh
with maximum edge length h > 0,

|eh|1,Ω ≤ C1h. (11)

Furthermore, the Aubin–Nitsche Lemma states that there is a C2 > 0 such that the L2 error satisfies

∥eh∥0,Ω ≤ C2h|eh|1,Ω . (12)

Combining (11) with (12) one concludes that there is a C3 > 0 such that

∥eh∥0,Ω ≤ C3h2. (13)

Therefore, if we adapt the mesh to control the H1 seminorm error, which is the case for the residual estimator, we expect
higher-order convergence for the L2 error coming from an upper bound similar to (13).

In the absence of an Aubin–Nitsche Lemma in the context of anisotropic meshes, we attempt to find a comparison at the
element level between the L2 and energy norm of the error. The ultimate goal of the analysis is to derive an L2 norm variant
of the residual estimator ηK , which could be used for mesh adaptation.

To motivate our results, we first recall two existing a posteriori L2 error estimators. The first, in the isotropic setting is of
the form ηL2(K ) = hKηH1(K ), where ηH1(K ) is an estimator for the energy norm, see (3.20) and (3.31) from [32] and (5.1) from
[33]. Similarly, the authors in [34] derived an anisotropic estimate of the form η̃E = (hmin,E)ηE , where ηE, η̃E are respectively
estimates for the H1 seminorm and L2 norm of the error for the edge E, and where hmin,E plays an analogous role to λ2,K in
the current setting. These observations lead us to propose the following candidate for an L2 error estimator:

η̃K = λ2,KηK , (14)

where ηK is the energy norm estimator (5). In what follows we present some partial results towards the reliability and
efficiency of this estimator.

We make the following strong assumption on the equivalence of the energy norm error: there exist C1, C2 > 0 such that
for every element K ,

C1ηK ≤ |eh|1,K ≤ C2ηK . (15)

Given this assumption, the strategy will be to relate the L2 error and energy norm locally. Note that in the literature, the
upper bound in (15) only appears globally (for the entire domain Ω), while the lower bound holds on a patch related to a
quasi-interpolation operator, see [22, Propositions 16, 21]. Numerical results in Section 4.1.1 suggest that provided themesh
is not too coarse, the inequality holds with C1 = 1 and C2 = 10, see Fig. 4.

Webeginwith a technical lemma. Inwhat followswe letWh denote the space of continuous piecewise quadratic functions
on Th. We consider a hierarchical decomposition Wh = Vh ⊕ W F

h , where Vh is the space of continuous piecewise linear
functions introduced above and W F

h is the ‘‘fluctuation’’ space spanned by the mid-edge quadratic basis functions. This
hierarchical splitting holds globally for functions defined on the mesh but also locally on each element. We shift from the
global to local splitting whenever required. We note, however, that Wh could be replaced by a higher-order finite element
space, with different constants for the inequalities.

Lemma 1. Let vh ∈ Vh.

1. There exists CK̂ ,1 > 0 depending only on the reference element K̂ such that for all wh ∈ Wh and K ∈ Th,

∥vh − wh∥0,K ≥ CK̂ ,1λ2,K |vh − wh|1,K . (16)

2. Suppose that wh = vh + wF
h ∈ Wh with wF

h ∈ W F
h , and C > 0 such that for all K ∈ Th

λ1,K∥∇(vh − wh) · r1,K∥0,K ≤ Cλ2,K∥∇(vh − wh) · r2,K∥0,K . (17)

Then there exists CK̂ ,2 > 0 depending only on the reference element K̂ such that for all K ∈ Th,

∥vh − wh∥0,K ≤ CK̂ ,2λ2,K |vh − wh|1,K . (18)

Proof. By [16], Lemma 2.2 we have

|vh − wh|1,K ≤

(
λ1,K

λ2,K

)1/2

|v̂h − ŵh|1,K̂ ,



8 E. Boey et al. / Journal of Computational and Applied Mathematics 349 (2019) 1–20

where ŵ = w ◦ FK for a function w on K and the affine transformation FK from K̂ to K . Since P2(K̂ ) is finite dimensional,
there exists a positive constant C̃K̂ ,1 such that

|ŵ|1,K̂ ≤ C̃K̂ ,1∥ŵ∥0,K̂ , ∀ŵ ∈ P2(K̂ ).

Therefore,

|vh − wh|1,K ≤ C̃K̂ ,1

(
λ1,K

λ2,K

)1/2

∥v̂h − ŵh∥0,K̂

= C̃K̂ ,1

(
1

λ1,Kλ2,K

)1/2(
λ1,K

λ2,K

)1/2

∥vh − wh∥0,K

=
C̃K̂ ,1

λ2,K
∥vh − wh∥0,K , (19)

and (16) follows.
Since | · |1,K is a norm onW F

h |K , there exists a positive constant C̃K̂ ,2 such that

∥ŵ∥0,K̂ ≤ C̃K̂ ,2|ŵ|1,K̂ , ∀ŵ ∈ W F
h |K̂ .

For (18), we have wh − vh = wF
h ∈ W F

h , which implies

∥vh − wh∥0,K =
(
λ1,Kλ2,K

)1/2
∥v̂h − ŵh∥0,K̂

≤ C̃K̂ ,2

(
λ1,Kλ2,K

)1/2
|v̂h − ŵh|1,K̂ .

Applying [16], Eq. (17) to the right side of the inequality, and applying assumption (17),

∥vh − wh∥0,K

≤ C̃K̂ ,2

(
λ2
1,K∥∇(vh − wh) · r1,K∥

2
0,K + λ2

2,K∥∇(vh − wh) · r2,K∥
2
0,K

)1/2
≤ C̃K̂ ,2Cλ2,K |vh − wh|1,K . □

In the present situation we take vh = uh. To apply Lemma 1 in a meaningful way, we would like to find functions
{wh ∈ Wh}h that converge to u faster than {uh ∈ Vh}h and that moreover satisfy (17) uniformly. Let gh = Πh(uh) denote
the recovered gradient, which is assumed to be superconvergent. In the literature, the adaptive algorithm is designed to
achieve the equality

λ1,K∥(∇uh − gh) · r1,K∥0,K = λ2,K∥(∇uh − gh) · r2,K∥0,K ,

In the context of [22], this equality means that ηK has been minimized with respect to the choice of r1,K , r2,K and aspect
ratio sK . The adaptive algorithm discussed in Section 4.1.1 will ensure that the equality holds by minimizing of ηK with edge
swapping and node movement. In general, gh is not the gradient of a function in Wh. Instead, we take ũh,2 ∈ Wh to be the
hierarchical reconstruction introduced in [21],which in practice provides a higher-order approximation to u, for instance [21,
Figure 17]. This hierarchical reconstruction satisfies ũh,2 = uh+wF

h withwF
h ∈ W F

h , so that the second statement in the above
lemma applies. Additionally, it will be assumed that ∇ũh,2 and gh are close enough so that (17) holds with wh = ũh,2.

Proposition 1. With the notation and assumptions of the preceding paragraph, there exist positive constants CK̂ ,1, CK̂ ,2 such that
for all K ∈ Th,

∥eh∥0,K ≥ CK̂ ,1λ2,K
(
|eh|1,K − |u − ũh,2|1,K

)
− ∥u − ũh,2∥0,K , (20)

and

∥eh∥0,K ≤ ∥u − ũh,2∥0,K + CK̂ ,2λ2,K
(
|eh|1,K + |u − ũh,2|1,K

)
(21)

Proof. This follows directly from Lemma 1 and triangle inequality arguments, e.g.

CK̂ ,1λ2,K
(
|uh − u|1,K − |u − ũh,2|1,K

)
≤CK̂ ,1λ2,K |uh − ũh,2|1,K

≤∥uh − ũh,2∥0,K

≤∥uh − u∥0,K + ∥u − ũh,2∥0,K . □

Finally, if we apply the superconvergence assumptions on ũh,2 and ∇ũh,2, and the strong energy norm error assumption
(15), we conjecture that there exist C̃K̂ ,1, C̃K̂ ,2 > 0 such that for every element K , up to the addition of higher-order terms,
the L2 norm error satisfies

C̃K̂ ,1η̃K ≤ ∥eh∥0,K ≤ C̃K̂ ,2η̃K . (22)

This local estimate will be verified numerically in the following section.



E. Boey et al. / Journal of Computational and Applied Mathematics 349 (2019) 1–20 9

Fig. 2. Left: initial uniform mesh with 121 vertices. Middle: first adapted mesh with 324 vertices. Right: final mesh with 8559 vertices.

4. Numerical results

In this sectionwe provide numerical validation for the new, element-based adaptationmethod for the residual estimator.
The full adaptation loop is given in Algorithm 1. The first test case will begin with an illustration of the convergence of the
loop for the element-based residual method introduced in this paper, the notion of convergence to be made more precise in
the following section. Next, we will assess howwell the method performs in achieving the goal of equidistributing the error
over the elements of the mesh. Since what we are really interested in is controlling the actual error, the analysis will include
an element-level comparison of the estimated versus exact error. Following will be a numerical validation of the L2 error
control results from Section 3.6. Finally, the remainder of the section will be devoted to the comparison of the adaptation
methods outlined in Section 3.

Algorithm 1 Solution-adaptation loop

1 Compute the solution and error estimator on the current mesh.

2 Adapt the current mesh by performing the following loop one or more times:

(a) Refine edges where the error is too large.

(b) Minimize the error by swapping edges until the algorithm terminates, then equidistribute the error by applying
node displacement. Repeat the procedure one or more times.

(c) Remove nodes where the error is too small, or when the impact on the error is minimal.

(d) Apply 2(b).

4.1. First test case

We consider the problem (1) using A = I, with domain Ω = (0, 1) × (0, 1), and f , g chosen so that the exact solution is

u1(x, y) = 4(1 − e−100x
− x(1 − e−100))y(1 − y).

Due to the boundary layer near x = 0, this function can be used to check the anisotropy of an error estimator and adaptation
method, and appears for instance in [16,17].

4.1.1. Assessment of the residual element-based method
Convergence of the adaptation loop. The convergence of the algorithm for the element-based residual method is assessed.
Starting from a relatively coarse initial mesh, the tolerance TOL is set to 0.125 and the loop is run for 40 iterations (which
for our purposes will be more than sufficient). See Fig. 2 for initial and adapted meshes. In the context of Algorithm 1, the
edge swapping/node movement step is always run 3 times. Additionally, the adaptation step 2 is only run once before the
solution and the estimator are recomputed. The point of view taken here is that the adaptation algorithm should not be run
too long before recomputing the solution and error estimator. For comparison, we computed an example where step 2 from
Algorithm 1 is run twice, as opposed to just once. From Fig. 3(a), repeating the loop initially calls for too much refinement.
This is likely due to a loss of accuracy of the estimator on coarse meshes (see Fig. 4 and the related discussion).

Table 1 records the number of refinements, derefinements and edge swappings performed at each iteration. The columns
for edge swapping include the sum of three separate edge swapping loops. In all cases, note that the number of operations
performed becomes small by about 10 iterations.
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Fig. 3. Left: Number of vertices after refinement/derefinement. Right: Maximum and average displacement of nodes for cumulative nodemovement loops.

Table 1
Number of local operations for complete adaptation loop.

it. Refinement Derefinement Swapping

After refinement After derefinement

Edges % Nodes % Edges % Edges %

1 212 175.21 9 2.70 500 53.48 251 27.61
2 415 128.09 47 6.36 1049 49.23 418 20.93
3 487 70.38 55 4.66 1179 34.40 569 17.41
4 996 88.61 20 0.94 1616 25.96 768 12.44
5 2383 113.48 78 1.74 3275 24.66 1235 9.45
6 3295 74.80 256 3.32 4556 19.91 1675 7.57
7 2031 27.28 507 5.35 3926 13.95 1380 5.18
8 265 2.95 497 5.38 1902 6.94 990 3.82
9 189 2.16 223 2.50 1173 4.43 677 2.62
10 87 1.00 132 1.50 777 2.98 535 2.08
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

40 5 0.06 4 0.05 153 0.60 110 0.43

Convergence of node movement is measured by norm of the displacement of individual nodes. For a node p denote by Dp
the norm of its displacement. Fig. 3(b) plots the max and mean displacement for each iteration of node movement during
the adaptation loop. While the maximum displacement remains of the order 10−2, this value represents only a few outlier
cases, with the average displacement occurring between 10−5 and 10−4.

Control of the energy norm of the error. Next we assess the performance of the algorithm towards equidistributing the
error. The distribution of the estimated error for different iterations is plotted in Fig. 4. The error is normalized by taking
eK = log10

(
ηK

TOL/
√
NT

)
. From the figure, we see that after successive iterations the error increasingly tends to cluster towards

the target error and the distribution tends to be more normal. Furthermore, the standard deviation of the error decreases
from 0.58 on the initial mesh to 0.041 on the final mesh.

Next we establish numerically the equivalence between the exact and estimated error. The motivation is to assess to
what degree we can expect to control the exact error, both locally and globally, by equidistributing the estimated error as
in Fig. 4. Define the global effectivity index with respect to the energy norm by ei =

η

|||eh|||
, where η =

√∑
Kη2

K . Theorem 1
says that globally the energy norm of the error is equivalent to the estimated error, so that the effectivity index assesses
this equivalence on a given mesh. Ideally, the effectivity index satisfies ei → 1 as the mesh element size goes to 0, in which
case we say that the estimator is asymptotically exact. This effectivity index is studied for instance in [17,22], where it was
observed to remain reasonably low for adaptedmeshes (between 2 to 5). Furthermore, for meshes adapted with target error
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Fig. 4. Left: distribution of the error over elements. Middle: standard deviation of error distribution. Right: Distribution of the local effectivity. The global
effectivity index is indicated by a red star for the coarse uniform mesh, by a blue square for the fine uniform mesh, and a black plus for the adapted mesh.

TOL, the index remains bounded as TOL → 0, see for instance [17, Table 3.7]. Thus, while the estimator is not asymptotically
exact, it is clearly equivalent to the exact error.

We define the local effectivity index for a triangle K by

eiK =
ηK

|eh|1,K
. (23)

(Recall that since A = I in (1) the energy norm is just the H1 seminorm.) The quantity (23) measures the equivalence of the
exact and estimated error at the level of the element. In Fig. 4 we plotted the distribution of (23) for a few meshes. For the
coarse uniformmeshwith 200 elements, note that while the global effectivity index is quite low (ei = 1.08), the distribution
of the local effectivity index is spread out, with a large upper tail. On the other hand, the finer uniform mesh with 20000
elements has a higher global effectivity index (ei = 1.70) with a smaller tail, suggesting that the accuracy of the estimator
improves with refinement. We also show the distribution for a relatively coarse adapted mesh with 4500 elements. While
the global effectivity index is higher (ei = 2.42), the local effectivity index is more closely distributed about the global
effectivity index. What appears to happen is that refinement exaggerates the overestimation of the error that already occurs
in uniform meshes.

Control of the L2 norm of the error. In the remainder of the subsection, wewill assess numerically the lower and upper bounds
for the L2 error given in (22), and briefly present some results using the estimator (14) for mesh adaptation.

Setting TOL = 0.125, the final adapted mesh using ηK has about 18000 elements. Fig. 5(a) records for each element
the estimated error ηK (in blue) and η̃K (in black) vs. the exact L2 error ∥eh∥0,K . While ηK remains within less than 1 order
of magnitude, the exact L2 error is spread by about 3 orders. Therefore, equidistributing the estimator ηK does not lead to
equidistribution of the L2 error. In verifying the lower and upper from (22), we see that the local effectivity index ẽiK =

η̃K
∥eh∥0,K

remains between about 0.1 and 10, with the lower bound appearing sharp.
Next we adapt the mesh using the scaled error η̃K . The mesh is adapted using the hybrid error approach from [21] for the

hierarchical estimator. That is, edge refinement and node removal are used to control the global L2 error level (here using
(14)), while edge swapping and node movement are used to equidistribute the error by minimizing the energy norm (here
using (5)). Results of two meshes adapted using different target error levels are presented in Fig. 5(b): a mesh with about
1000 elements (top right) and one with 14000 (bottom left). The spread of the L2 error is significantly lower, going from 3
orders of magnitude to about 1.5.

We compare global error calculations using the scaled and non-scaled estimators in Fig. 6. Clearly, the non-scaled
estimator results in lower energy norm error for the same degrees of freedom. Moreover, as predicted, the scaled error
significantly improves the results for the L2 error.

Lastly, we compare meshes adapted with the scaled and unscaled estimators in Fig. 7. Both meshes have roughly the
same number of vertices/elements, but the distribution of the elements for the mesh adapted using the scaled estimator
is much more spread throughout the domain, while that in the original estimator tends to concentrate near the boundary
x = 0. This observation is really not surprising, since scaling the estimator by the smallest eigenvalue will permit elements
to be larger in areas where the H1 error is largest, such as the boundary layer. Generally, we expect that the error converges
at a higher order in the L2 norm than for the H1 seminorm error. But as seen in Fig. 5(b), this higher order is not just global
(at the level of the domain), but local (element level). This observation about mesh quality being related to the norm will be
further confirmed in what follows when we consider the hierarchical estimator, which natively controls the L2 error.
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Fig. 5. Estimated error vs. exact L2 error over elements. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. Energy norm (left) and L2 norm (right) error calculations for u1 for residual estimators.

Fig. 7. Adapted meshes with 2500 vertices using the H1 estimator (left) and scaled estimator (right).
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Fig. 8. Adapted meshes for u1 with approximately 2500 vertices, with zoom near the boundary at x = 0. From top to bottom: residual (element), residual
(metric), Hessian, hierarchical.

4.1.2. Comparison of the adaptation methods
Qualitative comparison. Fig. 8 presents examples of adapted meshes with about 2500 vertices produced by each method.
In all cases, we see that the meshes contain elements that are very stretched near the boundary layer. Note that in general
the meshes obtained from the residual estimators tend to have more elements near the boundary layer, while the meshes
from Hessian and hierarchical methods tend to be more spread out. The difference in mesh density is likely due to the target
norm used by eachmethod. As discussed in the previous section, the target norm is related to the local order of convergence,
which affects local element size.

Another note is that the mesh for the Hessian is quite regular in the top and bottom right corners. The initial mesh is
regular, consisting of right triangles as in Fig. 2(a), so what seems to be happening is that in these regions themain operation
performed is edge refinement. In particular, node displacement appears to be less smooth for the Hessian. Repeating the
adaptation loop starting from a non-uniform mesh does in fact result in a final mesh which is not regular.

Analytical comparison. The error is reported in Fig. 9 as a function of the number of vertices. Recall that for a regular mesh in
2D, the number of vertices is roughly proportional to ( 1h )

2, so that the theoretically optimal (logarithmic) slope corresponding
to (11) is −1/2, while for (13) it is −1.



14 E. Boey et al. / Journal of Computational and Applied Mathematics 349 (2019) 1–20

Fig. 9. Energy norm (left) and L2 norm (right) error calculations for u1 .

Table 2
Distribution of error.

Method Vertices Mean St. Dev. Mean St. Dev.
∥∇(eh)∥K ∥∇(eh)∥K ∥eh∥K ∥eh∥K

Residual (element) 657 5.37e−03 1.20e−03 2.16e−05 3.16e−05
Residual (metric) 639 6.04e−03 1.74e−03 2.63e−05 3.93e−05
Hessian 691 5.27e−03 3.84e−03 2.27e−05 2.07e−05
Hierarchical 670 5.42e−03 5.30e−03 1.84e−05 1.21e−05

Residual (element) 2369 1.42e−03 2.82e−04 3.25e−06 5.13e−06
Residual (metric) 2251 1.62e−03 4.09e−04 3.55e−06 4.99e−06
Hessian 2342 1.51e−03 1.08e−03 4.40e−06 5.98e−06
Hierarchical 2356 1.41e−03 1.54e−03 2.14e−06 1.08e−06

Residual (element) 8992 3.63e−04 7.24e−05 4.51e−07 7.65e−07
Residual (metric) 8701 4.01e−04 8.88e−05 4.99e−07 8.20e−07
Hessian 8842 3.85e−04 2.56e−04 6.63e−07 1.09e−06
Hierarchical 8786 3.55e−04 3.62e−04 2.96e−07 1.72e−07

Residual (element) 35218 9.12e−05 1.76e−05 7.13e−08 1.44e−07
Residual (metric) 33448 1.02e−04 2.14e−05 8.16e−08 1.58e−07
Hessian 38290 8.78e−05 7.92e−05 1.06e−07 1.85e−07
Hierarchical 38205 7.90e−05 8.10e−05 3.95e−08 2.97e−08

Fig. 9 reports the error in the energy and L2 norm. We see that all methods approach the theoretical rate of convergence
for the energy norm. Moreover the hierarchical method, which reports the largest error, remains about 1.3 times higher
than the residual element-based method, which reports the smallest error. The convergence for the L2 norm, on the other
hand, appears to be more erratic, with none of the methods achieving the optimal rate of convergence. Here the hierarchical
method reports the lowest error, the residualmethods report an error 2 to 3 times as large, while the Hessianmethod reports
an error about 4 to 5 times as large. Note that for both, the energy and L2 norms, the results for both residual methods are
close.

In Table 2 we record the mean and variance of the distribution of the error over the elements. While Fig. 9 shows that the
global energy norm is lowest for the residual methods and highest for the hierarchical, the situation is reversed here, with
the hierarchical reporting the lowest mean error. This can be partially accounted for by the fact that the residual methods
result in the lowest standard deviation for the energy norm of the error, which is likely the result of the equidistribution
of the estimated error achieved by the adaptive method. For the L2 error, as expected the hierarchical method reports the
lowest mean and standard deviation.

We remark that the target norm for the Hessian adaptation is L∞, so it is possible that the Hessian does the best job
equidistributing the error in the L∞ norm. We did not calculate the L∞ norm. Furthermore, it should be noted that in [10],
a Hessian-based error estimator was developed to control the Lp error for 1 ≤ p < ∞. Adaptation is, as before, done by
constructing a metric, which turns out to be the same as that discussed in Section 3.5 with the eigenvalues appropriately
scaled for the choice of p, see [10, Section 2]. It is reasonable to expect that the results for the L2 error could be improved
using their estimates.
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Fig. 10. Left: CPU time for each iteration. Right: number of nodes at each iteration.

Computational performance. Fig. 10(a) records the CPU time for the adaptation part of each iteration of the loop. For each
method, we chose the global error level so that the final mesh has about 9000 vertices. The number of vertices at each
iteration is recorded in Fig. 10(b), and the gap between lowest and highest at the last step is about 6%. We find that metric
adaptation requiresmuch less time than the othermethods, and in the plot bothmetric basedmethods appear superimposed.
This result is not surprising. The only value we really need to keep track of is the metric tensor at each vertex. The local error
calculations are relatively insubstantial compared to those required for element-based adaptation.

In addition, note that the element-based residualmethod takes roughly 5 to 6 times that of the hierarchical estimator. For
one thing, the residual estimator requires the contribution from discontinuous functions. These functions cannot be directly
interpolated after performing local modifications, andmust be recomputed on each element/edge. Especially problematic is
the calculation of the singular value decomposition. Even for a 2 × 2 matrix A, it can be numerically disastrous to calculate
the singular value decomposition of A directly by first computing AAT [35], and instead it is recommended to use an iterative
method. We have used the implementation provided by DGESVD from LAPACK. Overall, it was found that this computation
takes between 13 and 18% of the total adaptation process. Another contribution towards increased CPU time is due to the fact
that the jump term depends onmore than one element. Asmentioned in Section 3.1.2, when performing edge swapping, the
error needs to be calculated on an enlarged patch as in Fig. 1 in order to accurately compute the jump term. The construction
and handling of this patch introduces significant computational overhead.

4.2. Second test case

With the same parameters for problem (1) as test case 1, we consider the function taken from [36]

u2 = tan−1(α(r − r0)),

where r =

√
(x + 0.05)2 + (y + 0.05)2, and r0 = 0.7. Thus, we have a circular wave-front type solution, centred at

(−0.05, −0.05) with a transition region with thickness of order α−1. We will run simulations with both α = 100 and
α = 1000.

4.2.1. Qualitative comparison
In Fig. 11 we show some examples of adapted meshes. In each case, the mesh follows what we would expect from the

solution. The elements are mainly concentrated near the wave-front where the gradient is steep in the direction orthogonal
to the wave, and with the alignment of the elements in this region reflecting the curvature. Outside this region, variation in
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Fig. 11. Adapted meshes for u2 , α = 100 with approximately 3000 vertices, with zoom to wave front. From top to bottom: residual (element), residual
(metric), Hessian, hierarchical.

the solution is reduced significantly, so that the elements can be much larger. What is striking, however, is the difference
between the mesh produced by the hierarchical method compared to the others. For the hierarchical method, the mesh
is more spread out and less concentrated near the wave-front. As discussed in Section 4.1, we attribute this difference to
the target norm used. Another feature of interest, seen in the zoom to the wave-front, is a sub-layer of elements where the
mesh is coarser. In this region, the function is almost linear in the direction orthogonal to the wave-front, so that the error
is somewhat smaller than in the immediate surroundings.

4.2.2. Analytical comparison
Calculation of the residual term. This test case highlights one of the drawbacks of residual estimators. To calculate the error
ηK , we need to evaluate the integrals

∫
K f 2 dx of the source term f . (Since A = I and uh is piecewise linear, we get RK (uh) = f .)

At the wave front with α = 1000 this value is very difficult to compute accurately. The immediate effect on adaptation was
that some elements were not being refined despite being flagged as having large error. In particular, the algorithm reported∫

K1

f 2 dx +

∫
K2

f 2 dx ≫

∫
K
f 2 dx, (24)

where K1, K2 are obtained by refining an edge of K .
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Table 3
Percentage of elements where additional subdivision occurs at each iteration
of the global adaptation step.

it. 2 sub. % 3 sub. %

1 7.55 4.02
5 10.69 2.69
10 1.79 0.88
20 1.49 0.77

We improve the accuracy of the integral by subdivision. For a given quadrature rule QK on an element, we divide the
triangle into 4 by splitting the edges in half, then define the subdivided quadrature rule QK ,1 to be that composed of four
copies of the original, eachweighted 1

4 |K |. The effect is that if the rulewehad beforewas Chk accurate, the subdivided scheme
is C

2k
hk accurate. We therefore increase the accuracy without introducing a large constant from a higher-order method. See

Algorithm 2 for implementation details.

Algorithm 2 Calculation of the residual on element K .

1. Calculate the residual R̃0 with the original quadrature QK ,0.

2. Choose ϵ > 0 to be small. For i = 0, 1, 2 do the following:

(a) Subdivide the current quadrature QK ,i into QK ,i+1 and compute the residual R̃i+1.

(b) If i = 2 or if |R̃i−R̃i+1|

R̃i+1
≤ ϵ then accept R̃i+1 as the residual and exit.

Since each time we subdivide, we multiply the number of Gauss points by 4, subdivision can quickly become expensive.
We always subdivide at least once, so that at the very least we need to compute values at (1 + 4)BG points, where BG is
the base number of Gauss points. Therefore, higher-order quadrature rules are virtually unusable for subdivision, and the
total number of subdivisions never exceeds 3. Fortunately, in our case it was sufficient to use the single point (barycentre)
integration scheme. Even still, this comes at the high cost of 64 Gauss points for the third subdivision. The percentage of
subdivisions that occur for an adaptation loop with ϵ from Algorithm 2 set to 0.05 are reported in Table 3. By the tenth
iteration, additional subdivision is not significant.

We remark that subdivision integration is not necessary if adapting using a metric. There, the residual is calculated only
once to compute the metric so that issues such as (24) will not be seen during adaptation. Furthermore, when computing
the metric, the residual term is often left out altogether to save computational time, as is done in [19]. Theoretically, this
simplification can be justified for the Laplace equation as proven in [34]. In the case of element-based adaptation, we found
that including the residual term was necessary, since experiments with removing the residual term generally resulted in
meshes of poor quality.

Global error comparison. In Figs. 12(b) and 13(b), we record the error convergence for u2 for α = 100 and α = 1000. The
results are very similar to that for u1: for the energy norm, the results are close, with the element-based residual method
reporting the lowest error, while for the L2 error, as in Section 4.1, the hierarchical method reports the lowest. The results for
the L2 error for α = 1000 will be discussed in some detail here, for they clearly highlight the issue of controlling the L2 norm
with an estimator for the H1 seminorm. We found that the L2 error oscillates over consecutive iterations when adapting
with the residual in some situations. To illustrate this issue, we reported the results in a different way in Fig. 13. For each
target error, after the number of local modifications and vertices has stabilized, we take the smallest and largest error after
10 further adaptation iterations, giving an upper and a lower envelope. With the exception of the residual element-based,
where we see a persistent spread of about 5 to 10%, the envelope becomes narrow as the number of nodes increases.

In Fig. 14, we illustrate that the oscillation is due to a few outlier elements, appearing just before and after the wave-
front. These elements account for a significant percentage of the overall error, and at each iteration, slight variations in this
region cause significant fluctuation in the error. From Fig. 13(b) we see that for coarse meshes, this instability arises for all
methods. For the hierarchical method, as we decrease the target error, the region is refined, and the L2 error stabilizes. The
lack of stability for the L2 error in the case of the residual estimator is the result of two combined factors. First, the estimator
does not detect the fact that the L2 error is still quite large outside the wave-front, and therefore, even at very fine meshes of
over 250000 vertices, the mesh is not refined in those regions. This observation fits within the context of Proposition 1 very
well, because while we have equidistributed the H1 seminorm error over the elements, the value of λ2,K is much smaller for
elements at the wave-front, which predicts that the L2 error should also be much lower. The other contributing factor is that
the mesh is not completely stationary in this region, so that slight variations in the mesh, which barely registered as far as
the H1 seminorm is concerned, cause large variations in the L2 error.
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Fig. 12. Energy norm error calculations for u2 with α = 100 (left) and α = 1000 (right).

Fig. 13. L2 norm error calculations for u2 with α = 100 (left) and α = 1000 (right). The plot on the right depicts the envelope of the oscillating error.

Fig. 14. Mesh with about 1100 vertices adapted with the hierarchical method (left) and the distribution of the exact L2 error (right).
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5. Conclusion

We introduced an element-based mesh adaptation method for the anisotropic a posteriori error estimator appearing
in [17]. Themethod is done by interfacingwith the hierarchical estimator driver fromMEF++, as introduced in [21].We tested
the method in numerical test cases that feature significant anisotropic behaviour and verified that the adaptation algorithm
produces anisotropic meshes and converges. Additionally, we considered an L2 norm error variant of the estimator, which,
under some hypotheses on the mesh, is equivalent to the exact L2 error. Numerical examples were provided to confirm the
equivalencewith the exact error. Examples of adaptedmeshes using themodified estimatorwere provided, and it was found
to give improved performance for control of the L2 error over the original estimator.

The new element-based method was compared with three existing anisotropic mesh adaptation methods for P1 finite
elements: residual metric based, Hessian metric, and hierarchical. In terms of controlling the level of error with respect to
degree of freedom, the newmethod generally performed slightly better for the energy norm, while the hierarchical method
performed significantly better than the other methods for the L2 norm. However, the new method is significantly more
expensive from a computational standpoint. We note that the results for both element and metric based methods for the
residual estimator were generally very close for both norms. Given the results presented in Section 4, it seems likely that
the method that obtains a given level of error in the energy norm in the shortest time would be the residual metric method,
while for L2 error it would be one of the residual metric or Hessian methods.

Currently the authors are working on optimizing the computational aspects of the method to make it more competitive
with the othermethods in terms of CPU efficiency. Additionally, an investigation is beingmade to determinewhy the element
residual cannot be dropped from the computation, as for instance in [19].
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