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In this paper, we study the problem of finding the solution of a multi-dimensional time
fractional reaction–diffusion equation with nonlinear source from the final value data.
We prove that the present problem is not well-posed. Then regularized problems are
constructed using the truncated expansion method (in the case of two-dimensional)
and the quasi-boundary value method (in the case of multi-dimensional). Finally,
convergence rates of the regularized solutions are given and investigated numerically.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In recent times, fractional partial differential equations have received great attention both in analysis and application,
which are used in modeling several phenomena in different areas of science such as physics, biology, chemistry,
engineering and control theory, see [1–10], so the fractional computation is increasingly attracted to mathematicians,
where some circumstances of integer-order partial differential equations cannot simulate. Accordingly, many definitions
of fractional derivative are given [4,11,12]. In this paper, we study a problem for the time fractional reaction–diffusion
equation with nonlinear source⎧⎪⎪⎨⎪⎪⎩

∂

∂t
u(t, x) −

∂1−α

∂t
∆u(t, x) = f (t, x, u(t, x)), (t, x) ∈ (0, T ) ×Ω, α ∈ (0, 1)

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(T , x) = ϕ(x), x ∈ Ω,

(1)
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where Ω = (0, π )d is a subset of Rd, x = (x1, x2, . . . , xd) is a d-dimensional variable. The source function f is given and
ϕ is called the final value status. The notation ∂1−α

∂t denotes the R-L fractional derivative

∂1−α

∂t
v(t) =

1
Γ (α)

d
dt

∫ t

0
(t − s)α−1v(s)ds, t > 0,

where Γ (·) is the Gamma function. It should be noted that if α = 1 then ∂1−α

∂t ∆u becomes ∆u and the equation

∂

∂t
u(t, x) −

∂1−α

∂t
∆u(t, x) = f (t, x, u(t, x)), (2)

reduces to the typical heat equation (note (2) comes from [13]). Schneider and Wyss [13] showed that the description
of diffusion in special types of porous media is an application of (2) and that the fractional parameter α ∈ (0, 1) can
represent the ‘‘gray’’ noise instead of the white noise in the case of α = 1.

Eq. (2) with the initial condition u(0, x) = ψ(x) is known as the direct problem. For more details of this equation we
refer the reader to [13–15] and the references therein. Numerical solutions of the alternative representation of such direct
problem have been studied in [16–19]. In contrast, the problem of recovering the function u at previous time t ∈ [0, T ) as
in (1) is called the backward problem. This kind of equation arises in practical situations in which the initial density of the
diffusing substance is not available and we can only measure the density at positive time. We mention the applications of
backward in time diffusion equations in the work of A. S. Carraso [20,21]. Two major current applications of the backward
problem are hydrologic inversion and image deblurring. Hydrologic inversion seeks to identify sources of groundwater
pollution by backtracking contaminant plumes (see [22,23]) and this involves solving the diffusion backward in time,
given the contaminant spatial distribution at the current time T . In image analysis, an effective setting for studying 2-D
backward diffusion lies in the field of imaging rehabilitation. One can create imaginary fuzzy image data, using a certain
sharp image as the initial value in the nonlinear diffusion equation studied and select the corresponding solution in a
positive number time T so successful backward continuation from t = T to t = 0, would restore the original sharp image.
Until now, there are some interesting papers on inverse problem of fractional diffusion. We can list some well-known
results, for example, [24,25], some papers of M. Yamamoto and his group see [26–38], etc. However, to the best of our
knowledge, there is no result concerning the backward problem for (2) with random noise.

Motivated by the above, in this paper, we study problem (1) and aim to provide an approximate solution. In reality,
it is impossible to get the exact final data ϕ and we only have the noisy physical measurement ϕ̃. A difficult point of the
backward problem is a small noise between ϕ̃ and ϕ can generate a very large error in the solution u. In other words, the
solution does not depend continuously on the final value status (which makes (1) not well-posed). Therefore, we must
provide some suitable methods to find an approximation for u. When the final value status is measured on the whole space
Ω many good methods can be applied to establish the approximate regularized solution such as the Tikhonov, the quasi-
boundary value (QBV), the quasi-reversibility (QR) and the truncated expansion method (see [39–42]). Here we consider
a different situation in which only a finite number of data (instead of data on the whole space) is available. Precisely, we
assume that the data ϕ is measured at n1 ×n2 ×· · ·×nd grid points xk = xk1,k2,...,kd ∈ Ω , d ≥ 2, k = (k1, k2, . . . , kd) ∈ Nd,
as follows

xk = (Xk1 ,Xk2 , . . . ,Xkd ) =

(
2k1 − 1
2n1

π,
2k2 − 1
2n2

π, . . . ,
2kd − 1
2nd

π

)
,

where ki = 1, 2, . . . , ni, i = 1, 2, . . . , d. Furthermore, the value of ϕ at each point xk is contaminated by the observation
Φobs

k

ϕ(xk) = ϕ
(
Xk1 ,Xk2 , . . . ,Xkd

)
≈ Φobs

k1,k2,...,kd = Φobs
k .

The relationship between the two kinds of data is described by the random model

Φobs
k = ϕ(xk) + εkWk, (3)

where Wk = Wk1,k2,...,kd are mutually independent random variables, Wk ∼ N (0, 1) and εk = εk1,k2,...,kd are positive
constants bounded by a positive constant εmax. Some inverse problems when d = 1 were studied in [43–45].

Our main contributions in this paper are as follows:

• For the two dimensional case, i.e, d = 2, we apply the Fourier truncation method introduced in [46] to give a
regularized problem. The model in [46] is linear. Our problem is nonlinear and we use the Banach fixed point
theorem to show the existence of the regularized solution in the space XT (note this space does not appear in [46]).
Some new estimates of Mittag-Leffler type are used.

• For the multidimensional case with d > 2, we apply the quasi-boundary value method (QBV). We emphasize that
our random model here is a multidimensional case which is a generalization of the results in [43–45]. Our method
in this case is new and very different from the methods in [46]. First, we approximate H and ϕ by the approximating
functions ϕ̂γn defined in Theorem 5.1. Then, we use the approximation data to establish a regularized solution using
the QBV method. Moreover, we also give a new filter method which contains some results on the truncation and
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quasi-boundary value method (this filter is a new contribution). In particular in our error estimates we show that
the norm of the difference between the regularized solution and the solution of the problem (1) tends to zero when√
n2
1 + · · · + n2

d → +∞.

The structure of this paper is as follows. We first give some preliminaries which are needed for this paper in Section 2.
In Section 3, we establish an integral formulation for the solution of problem (1). In Section 4, we prove that the present
problem is not well-posed and then we construct an approximate regularized solution for the 2-dimensional problem
using the Fourier truncated method. The convergence result is also given there. In Section 5, the multi-dimensional
problem is considered and regularized using the quasi-boundary value method. We estimate the error between the
approximation and the sought solution in two different spaces. Finally, we provide some numerical results to illustrate
the convergence rates.

2. Preliminaries

Before going to the main parts, we present some concepts:

• For j = (j1, j2, . . . , jd) ∈ Nd, we denote |j| =

√∑d
i=1 j

2
i . It is well-known that the following problem{

−∆ξj(x) = λjξj(x), x ∈ Ω,

ξj(x) = 0, x ∈ ∂Ω.

admits eigenvalues
{
λj
}
and eigenvectors

{
ξj
}
as follows

λj = λj1,...,jd =

d∑
i=1

j2i = |j|2, ξj(x) = ξj1,...,jd (x) =

(√
2
π

)d d∏
i=1

sin(jixi).

• For α > 0 and β > 0, the function defined as follows

Eα,β (z) =

∞∑
i=0

z i

Γ (αi + β)
, z ∈ C. (4)

is called the Mittag-Leffler function. Some properties of this function can be found in [4].
• We introduce the subspace of L2(Ω)

Hθ (Ω) =

⎧⎨⎩g ∈ L2(Ω) :

∑
j∈Nd

λθj
⟨
g, ξj

⟩2
< ∞

⎫⎬⎭ , θ > 0,

with the norm ∥g∥Hθ (Ω) =

(∑
j∈Nd λ

θ
j
⟨
g, ξj

⟩2)1/2
, in which ⟨·, ·⟩ denotes the inner product in L2(Ω).

• For an arbitrary Banach space B, we set

L∞ (0, T ;B) =
{
h : (0, T ) → B measurable s.t. esssupt∈(0,T ) ∥h(t, ·)∥B < ∞

}
.

• We denote by XT (see [47]), the space of all L2-valued predictable processes w such that

∥w∥XT = sup
t∈[0,T ]

√
E ∥w(t, ·)∥2

L2(Ω) < ∞.

For σ > 0, we denote by Sσ ,T , the space of all Hσ -valued predictable processes w such that

∥w∥Sσ ,T = sup
t∈[0,T ]

√
E ∥w(t, ·)∥2

Hσ (Ω) < ∞.

3. The solution of the backward problem

Let u(t, x) =
∑

j∈Nd uj(t)ξj(x) be the Fourier series of u in L2(Ω), where uj(t) :=
⟨
u(t, ·), ξj

⟩
are called the Fourier

coefficients of u. Similarly, we denote hj :=
⟨
h, ξj

⟩
and fj(u)(t) :=

⟨
f (t, ·, u(t, ·)), ξj

⟩
. Next, we find a representation for the

solution u of problem (1). By taking the inner product on both sides of the first equation in (1) with ξj, one has

∂

∂t
uj(t)+λj

∂1−α

∂t
uj(t) = fj(u)(t).

Using the Laplace transform and uj(T ) = ϕj, one obtains

ûj(s) =
sα−1

sα + λj
uj(0) +

sα−1

sα + λj
f̂j(u)(s),
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where the notation ĝ is the Laplace transform of g . In order to solve the equation above, we need some following properties
of the Mittag-Leffler function (see [4])

∂

∂t

(
Eα,1(−λtα)

)
= −λtα−1Eα,α(−λtα),

∂

∂t

(
tα−1Eα,α(−λtα)

)
= tα−2Eα,α−1(−λtα),

and ∫
∞

0
e−stEα,1(−λtα)dt =

sα−1

sα + λ
, for Re(s) > λ1/α,

in which λ is a positive constant. In this way, one gets

uj(t) = Eα,1
(
−λjtα

)
uj(0) +

∫ t

0
Eα,1

(
−λj(t − s)α

)
fj(u)(s)ds. (5)

It follows that

uj(T ) = Eα,1
(
−λjT α

)
uj(0) +

∫ T

0
Eα,1

(
−λj(T − s)α

)
fj(u)(s)ds.

Using the latter equation to determine uj(0) based on uj(T ) and then substituting this quantity into (5), the Fourier
coefficients are obtained

uj(t) =
Eα,1

(
−λjtα

)
Eα,1

(
−λjT α

)ϕj + ∫ t

0
Eα,1

(
−λj(t − s)α

)
fj(u)(s)ds

−

∫ T

0

Eα,1
(
−λjtα

)
Eα,1

(
−λj(T − s)α

)
Eα,1

(
−λjT α

) fj(u)(s)ds. (6)

For convenience, we define the operators

A(t)g :=

∑
j∈Nd

(
Eα,1

(
−λjtα

)
Eα,1

(
−λjT α

) ⟨g, ξj⟩)ξj, (7)

B(t)g :=

∑
j∈Nd

(
Eα,1

(
−λjtα

) ⟨
g, ξj

⟩)
ξj, (8)

and D(t, s)g := A(t)B(s)g , for g ∈ L2(Ω), t, s ∈ [0, T ]. Now, we conclude that u satisfies the equation

u(t, x) = A(t)ϕ(x) +

∫ t

0
B(t − s)f (s, x, u(s, x))ds −

∫ T

0
D(t, T − s)f (s, x, u(s, x))ds. (9)

The following lemma (see [4]) is useful for estimating the Mittag-Leffler function:

Lemma 3.1. Let 0 < α < 1 and the function Eα,α defined in (4). For a real number z > 0, we have

M1

1 + z
≤ Eα,α(−z) ≤

M2

1 + z
,

in which M1 = M1(α) and M2 = M2(α) are positive constants depending only on α.

Using the latter lemma, we give some properties for the operators B,D as follows:

Lemma 3.2. Let g be a function in L2(Ω). For t ∈ [0, T ], s ∈ (0, T ], we have

∥B(t)g∥L2(Ω) ≤ M2 ∥g∥L2(Ω) , ∥D(t, s)g∥L2(Ω) ≤
M2

2T
α

M1sα
∥g∥L2(Ω) .

Proof. Using Lemma 3.1, we have

∥B(t)g∥
2
L2(Ω) =

∑
j∈Nd

E2
α,1

(
−λjtα

) ⟨
g, ξj

⟩2
≤ M

2
2 ∥g∥

2
L2(Ω) .
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For the second term, we have

∥D(t, s)g∥
2
L2(Ω) =

∑
j∈Nd

(
Eα,1

(
−λjtα

)
Eα,1

(
−λjsα

)
Eα,1

(
−λjT α

) )2 ⟨
g, ξj

⟩2
≤

∑
j∈Nd

(
M2

2(1 + λjT α)
M1(1 + λjsα)

)2 ⟨
g, ξj

⟩2
≤

(
M2

2T
α

M1sα

)2

∥g∥
2
L2(Ω) .

This completes the proof. □

4. Backward problem in the case of two-dimensional

In this section, we study problem (1) when d = 2. Here, we recall that Ω = (0, π ) × (0, π ), x = (x1, x2) is a
2-dimensional variable. The value of ϕ at n1 × n2 grid points

xk1,k2 = (Xk1 ,Xk2 ) =

(
2k1 − 1
2n1

π,
2k2 − 1
2n2

π

)
, k1 = 1, 2, . . . , n1, k2 = 1, 2, . . . , n2,

are contaminated by the observed data Φobs
k1,k2

as in the model

Φobs
k1,k2 = ϕ(xk1,k2 ) + εk1,k2Wk1,k2 , (10)

where Wk1,k2 are mutually independent random variables, Wk1,k2 ∼ N (0, 1) and 0 < εk1,k2 ≤ εmax.
Our main aim is to show that the problem is not well-posed and then to construct an approximate regularized solution

using the Fourier truncation method.

4.1. Estimator for the final value data ϕ

It should be noted that the final data ϕ on the whole space Ω is not available. Therefore, we now establish an
approximate function for ϕ based on the observations and then estimate the error between them.

Lemma 4.1. Let N1 = N1(n1), N2 = N2(n2) be natural numbers less than n1, n2 respectively. Assume that there exists a
constant θ > 2 such that ϕ ∈ Hθ (Ω). Approximate ϕ by the following function

ϕ̃N1,N2 :=

N1∑
j1=1

N2∑
j2=1

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

Φobs
k1,k2ξj1,j2 (xk1,k2 )

)
ξj1,j2 . (11)

Then, we have

E
ϕ̃N1,N2 − ϕ

2
L2(Ω) ≤

(
2π2ε2max + 2C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2
+ 2

[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥ϕ∥

2
Hθ (Ω) ,

where C0 is a positive constant (see (17)).

Remark 4.1. If we choose N1 = N1(n1),N2 = N2(n2) satisfying

lim
n1→∞

N1 = lim
n2→∞

N2 = ∞, lim
n1,n2→∞

N1N2

n1n2
= 0,

then E
ϕ̃N1,N2 − ϕ

2
L2(Ω) tends to zero as n1, n2 tend to infinity.

The following Lemma is useful for proving Lemma 4.1:

Lemma 4.2. Let m1,m2 be natural numbers less than n1, n2 respectively. Set

Cj1,j2,m1,m2 :=

n1∑
k1=1

n2∑
k2=1

ξj1,j2 (xk1,k2 )ξm1,m2 (xk1,k2 ).

Then, we have

Cj1,j2,m1,m2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)l1+l2

π2 n1n2, if (j1,m1) = ±(j2,m2) + (2l1n1, 2l2n2),

−
(−1)l1+l2

π2 n1n2, if (j1,m1) = ±(−j2,m2) + (2l1n1, 2l2n2),

0, otherwise.
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Proof of Lemma 4.2. This Lemma can be proved using the method in [48], page 145. □

Proof of Lemma 4.1. Recall that ϕj1,j2 =
⟨
ϕ, ξj1,j2

⟩
, for j1, j2 ∈ Z+. Using (11) and the fact that

ϕ(x) =

∞∑
j1=1

∞∑
j2=1

ϕj1,j2ξj1,j2 (x),

we haveϕ̃N1,N2 − ϕ
2
L2(Ω) =

N1∑
j1=1

N2∑
j2=1

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

Φobs
k1,k2ξj1,j2 (xk1,k2 ) − ϕj1,j2

)2

+

N1∑
j1=1

∞∑
j2=N2+1

ϕ2
j1,j2 +

∞∑
j1=N1+1

N2∑
j2=1

ϕ2
j1,j2 +

∞∑
j1=N1+1

∞∑
j2=N2+1

ϕ2
j1,j2

=: E1 + E2,1 + E2,2 + E2,3. (12)

Part A (Estimating E1). Construct estimators for the coefficients ϕj1,j2 , for j1 ≤ N1, j2 ≤ N2, as follows

ϕj1,j2 ≈
π2

n1n2

n1∑
k1=1

n2∑
k2=1

ϕ(xk1,k2 )ξj1,j2 (xk1,k2 ),

and set

Υj1,j2 :=
π2

n1n2

n1∑
k1=1

n2∑
k2=1

ϕ(xk1,k2 )ξj1,j2 (xk1,k2 ) − ϕj1,j2 . (13)

Then, we get

E1 =

N1∑
j1=1

N2∑
j2=1

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

εk1,k2Wk1,k2ξj1,j2 (xk1,k2 ) + Υj1,j2

)2

≤ 2
N1∑

j1=1

N2∑
j2=1

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

εk1,k2Wk1,k2ξj1,j2 (xk1,k2 )

)2

+ 2
N1∑

j1=1

N2∑
j2=1

Υ 2
j1,j2 .

=: E1,1 + E1,2.

The first quantity can be estimated as follows

EE1,1 ≤
2π4

n2
1n

2
2
ε2max

N1∑
j1=1

N2∑
j2=1

E

( n1∑
k1=1

n2∑
k2=1

Wk1,k2ξj1,j2 (xk1,k2 )

)2

.

Using the properties E
(
Wk1,k2Wl1,l2

)
= δk1 l1δk2 l2 and

∑n1
k1=1

∑n2
k2=1 ξ

2
j1,j2

(xk1,k2 ) = Cj1,j2,j1,j2 = π−2n1n2 (see Lemma 4.2),
we obtain

EE1,1 ≤
2π4

n2
1n

2
2
ε2max

N1∑
j1=1

N2∑
j2=1

( n1∑
k1=1

n2∑
k2=1

EW2
k1,k2ξ

2
j1,j2 (xk1,k2 )

)
=

2π2N1N2

n1n2
ε2max.

In order to estimate the term EE1,2, we need to undergo some steps as follows:

Step 1 (Finding an explicit form for the error Υj1,j2 ). In this step, we will prove that

Υj1,j2 =

∞∑
l2=1

(−1)l2ϕj1,2l2n2±j2 +

∞∑
l1=1

(−1)l1ϕ2l1n1±j1,j2 +

∞∑
l1=1

∞∑
l2=1

(−1)l1+l2ϕj1,2l2n2±j2 , (14)

where we define

ϕ2l1n1±j1,j2 := ϕ2l1n1+j1,j2 − ϕ2l1n1−j1,j2 , ϕj1,2l2n2±j2 := ϕj1,2l2n2+j2 − ϕj1,2l2n2−j2 , (15)

and

ϕ2l1n1±j1,2l2n2±j2 := ϕ2l1n1+j1,2l2n2+j2 − ϕ2l1n1+j1,2l2n2−j2

+ ϕ2l1n1−j1,2l2n2−j2 − ϕ2l1n1−j1,2l2n2+j2 . (16)
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Indeed, since ϕ(xk1,k2 ) =
∑

∞

m1=1
∑

∞

m2=1 ϕm1,m2ξm1,m2 (xk1,k2 ), we have

n1∑
k1=1

n2∑
k2=1

ϕ(xk1,k2 )ξj1,j2 (xk1,k2 ) =

∞∑
m1=1

∞∑
m2=1

ϕm1,m2

[ n1∑
k1=1

n2∑
k2=1

ξm1,m2 (xk1,k2 )ξj1,j2 (xk1,k2 )

]
=

∑
m1<n1

∑
m2<n2

ϕm1,m2Cj1,j2,m1,m2 +

∑
m1<n1

∑
m2≥n2

ϕm1,m2Cj1,j2,m1,m2

+

∑
m1≥n1

∑
m2<n2

ϕm1,m2Cj1,j2,m1,m2 +

∑
m1≥n1

∑
m2≥n2

ϕm1,m2Cj1,j2,m1,m2 .

Applying Lemma 4.2, we get

π2

n1n2

n1∑
k1=1

n2∑
k2=1

ϕ(xk1,k2 )ξj1,j2 (xk1,k2 ) = ϕj1,j2 +

∞∑
l2=1

(−1)l2ϕj1,2l2n2±j2

+

∞∑
l1=1

(−1)l1ϕ2l1n1±j1,j2 +

∞∑
l1=1

∞∑
l2=1

(−1)l1+l2ϕj1,2l2n2±j2 ,

which gives us formula (14).

Step 2 (Estimating E1,2). From (14), we see⏐⏐Υj1,j2

⏐⏐ ≤

∞∑
l2=1

⏐⏐ϕj1,2l2n2±j2

⏐⏐+ ∞∑
l1=1

⏐⏐ϕ2l1n1±j1,j2

⏐⏐+ ∞∑
l1=1

∞∑
l2=1

⏐⏐ϕj1,2l2n2±j2

⏐⏐ , j1 ≤ N1, j2 ≤ N2.

Since ϕ ∈ Hθ (Ω), we have λ
θ
2
j1,j2

⏐⏐ϕj1,j2 ⏐⏐ ≤ ∥ϕ∥Hθ (Ω) for j1, j2 ∈ Z+. It follows that⏐⏐ϕj1,2l2n2±j2

⏐⏐ ≤
2(

j21 + (2l2n2 − j2)2
) θ

2
∥ϕ∥Hθ (Ω) ≤ 2l−θ2 n−θ

2 ∥ϕ∥Hθ (Ω) .

Similarly, one gets⏐⏐ϕ2l1n1±j1,j2

⏐⏐ ≤ 2l−θ1 n−θ
1 ∥ϕ∥Hθ (Ω) ,

⏐⏐ϕj1,2l2n2±j2

⏐⏐ ≤ 4
(
l21n

2
1 + l22n

2
2

)− θ
2 ∥ϕ∥Hθ (Ω) .

Hence

⏐⏐Υj1,j2

⏐⏐ ≤

⎛⎝2n−θ
2

∞∑
l2=1

l−θ2 + 2n−θ
1

∞∑
l1=1

l−θ1 + 4(n−θ
1 + n−θ

2 )
∞∑

l1=1

∞∑
l2=1

l
−
θ
2

1 l
−
θ
2

2

⎞⎠ ∥ϕ∥Hθ (Ω) .

Put

C0 := 2
∞∑

l1=1

l−θ1 + 4
∞∑

l1=1

∞∑
l2=1

l
−
θ
2

1 l
−
θ
2

2 . (17)

Then, one has

E1,2 = 2
N1∑

j1=1

N2∑
j1=2

Υ 2
j1,j2 ≤

2C2
0N1N2

n1n2
∥ϕ∥

2
Hθ (Ω) ,

for n1, n2 large enough. Now, we conclude that

EE1 ≤ EE1,1 + E1,2 ≤

(
2π2ε2max + 2C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2
. (18)

Part B (Estimating E2,1 to E2,3). From the definition of E2,1, one can see that

E2,1 =

N1∑
j1=1

∞∑
j2=N2+1

(
j21 + j22

)−θ
λθj1,j2ϕ

2
j1,j2 ≤ (N2 + 1)−2θ

∥ϕ∥
2
Hθ (Ω) .

Similarly, one obtains

E2,2 ≤ (N1 + 1)−2θ
∥ϕ∥

2
Hθ (Ω) , E2,3 ≤

[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥ϕ∥

2
Hθ (Ω) .
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This leads to

E2,1 + E2,2 + E2,3 ≤ 2
[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥ϕ∥

2
Hθ (Ω) . (19)

Now, from (12), (18) and (19), we deduce that

E
ϕ̃N1,N2 − ϕ

2
L2(Ω) ≤

(
2π2ε2max + 2C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2
+ 2

[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥ϕ∥

2
Hθ (Ω) .

This completes the proof. □

4.2. The ill-posedness of problem with discrete data

This subsection is aimed to demonstrate that the solution of the present problem is not stable, which follows that our
problem is not well-posed. The solution of our problem is called stable if for any sequence ϕn1,n2 , we have

lim
n1,n2→∞

E
ϕn1,n2 − ϕ

2
L2(Ω) = 0, (20)

implies

lim
n1,n2→∞

un1,n2 − u

XT

= 0, (21)

in which un1,n2 satisfies the system⎧⎪⎪⎨⎪⎪⎩
∂

∂t
un1,n2 (t, x) −

∂1−α

∂t
∆un1,n2 (t, x) = f (t, x, un1,n2 (t, x)), (t, x) ∈ (0, T ) ×Ω,

un1,n2 (t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

un1,n2 (T , x) = ϕn1,n2 (x), x ∈ Ω.

(22)

Now, we give an example showing that there exists a sequence ϕn1,n2 such that (20) holds but (21) does not:

Example 4.1. Let 0 < α < 1
2 , ϕ = 0, f (t, x, u(t, x)) = Ku(t, x) with

K = K (α, T ) =
M1

2M2T

√
1 − 2α

(1 − 2α) + M2
2
,

and the observed discrete data is Φobs
k1,k2

=
1

4√n1n2
Wk1,k2 . Based on the idea in Section 4.1, we construct the sequence

{ϕn1,n2} as follows

ϕn1,n2 =

n1−1∑
j1=1

n2−1∑
j2=1

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

Φobs
k1,k2ξj1,j2 (xk1,k2 )

)
ξj1,j2 . (23)

By a similar calculation as in Section 4.1, one can check that

E
ϕn1,n2 − ϕ

2
L2(Ω) = E

[ n1−1∑
j1=1

n2−1∑
j2=1

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

Φobs
k1,k2ξj1,j2 (xk1,k2 )

)2 ]
=
π2(n1 − 1)(n2 − 1)

n3/2
1 n3/2

2

, (24)

which implies that E ∥ϕn1,n2 − ϕ∥
2
L2(Ω) tends to zero as n1, n2 → ∞.

Next, we show that ∥un1,n2 − u∥XT tends to infinity as n1, n2 → ∞. To do this, we first prove that E ∥u(t, ·)∥2
L2(Ω) = 0,

which implies that u ≡ 0. Indeed, from (9) and ϕ = 0, one has

u(t, x) =

∫ t

0
B(t − s)f (s, x, u(s, x))ds −

∫ T

0
D(t, T − s)f (s, x, u(s, x))ds. (25)

From the inequality (a + b)2 ≤ 2(a2 + b2), for a, b ∈ R, and Hölder’s inequality, one can see that

E ∥u(t, ·)∥2
L2(Ω)

≤ 2E
[∫ t

0
∥B(t − s)f (s, ·, u(s, ·))∥L2(Ω) ds

]2
+ 2E

[∫ T

0
∥D(t, T − s)f (s, ·, u(s, ·))∥L2(Ω) ds

]2
≤ 2t

∫ t

0
E ∥B(t − s)f (s, ·, u(s, ·))∥2

L2(Ω) ds + 2T
∫ T

0
E ∥D(t, T − s)f (s, ·, u(s, ·))∥2

L2(Ω) ds. (26)
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Using Lemma 3.2 and the fact that f (s, x, u(s, x)) = Ku(s, x), one gets

∥B(t − s)f (s, ·, u(s, ·))∥2
L2(Ω) = K2

∥B(t − s)u(s, ·)∥2
L2(Ω) ≤ K2

M
2
2 ∥u(s, ·)∥2

L2(Ω) ,

and

∥D(t, T − s)f (s, ·, u(s, ·))∥2
L2(Ω) = K2

∥D(t, T − s)u(s, ·)∥2
L2(Ω) ≤ K2

(
M2

2T
α

M1(T − s)α

)2

∥u(s, ·)∥2
L2(Ω) .

Hence, we deduce that

E ∥u(t, ·)∥2
L2(Ω) ≤ 2K2

M
2
2t
∫ t

0
E ∥u(s, ·)∥2

L2(Ω) ds + 2K2
(
M2

2

M1

)2

T
∫ T

0

T 2α

(T − s)2α
E ∥u(s, ·)∥2

L2(Ω) ds

≤ 2K2
M

2
2T

2
(
1 +

M2
2

(1 − 2α)M2
1

)
sup

t∈[0,T ]

E ∥u(t, ·)∥2
L2(Ω) .

Since 2K2M2
2T

2
(
1 +

M2
2

(1−2α)M2
1

)
=

1
2 , we conclude that u ≡ 0.

Now, we are ready to estimate the error ∥un1,n2 − u∥XT . Applying the result in Section 3 (see (9)), one has

un1,n2 (0, x) = A(0)ϕn1,n2 (x) −

∫ T

0
D(0, T − s)f (s, x, un1,n2 (s, x))ds.

Since
⟨
ϕn1,n2 , ξj1,j2

⟩
= 0 for j1 ≥ n1 or j2 ≥ n2 and Eα,1(0) = 1, one can see that

A(0)ϕn1,n2 =

n1−1∑
j1=1

n2−1∑
j2=1

⟨
ϕn1,n2 , ξj1,j2

⟩
Eα,1

(
−λj1,j2T

α
)ξj1,j2 .

It follows that

2
un1,n2 (0, ·)

2
L2(Ω)

≥
A(0)ϕn1,n2

2
L2(Ω) − 2

∫ T

0
D(0, T − s)f (s, ·, un1,n2 (s, ·))ds

2
L2(Ω)

≥

n1−1∑
j1=1

n2−1∑
j2=1

⟨
ϕn1,n2 , ξj1,j2

⟩2
E2
α,1

(
−λj1,j2T

α
) − 2K2

[∫ T

0

D(0, T − s)un1,n2 (s, ·)

L2(Ω) ds

]2

≥

n1−1∑
j1=1

n2−1∑
j2=1

λ2j1,j2T
2α

M2
2

⟨
ϕn1,n2 , ξj1,j2

⟩2
− 2K2T

∫ T

0

D(0, T − s)un1,n2 (s, ·)
2
L2(Ω) ds. (27)

By a similar calculation as in (24), we have

E
⟨
ϕn1,n2 , ξj1,j2

⟩2
= E

(
π2

n1n2

n1∑
k1=1

n2∑
k2=1

Φobs
k1,k2ξj1,j2 (xk1,k2 )

)2

=
π2

n3/2
1 n3/2

2

. (28)

On the other hand

2K2T
∫ T

0
E
D(0, T − s)un1,n2 (s, ·)

2
L2(Ω) ds ≤ 2K2

(
M2

2

M1

)2

T
∫ T

0

T 2α

(T − s)2α
E ∥u(s, ·)∥2

L2(Ω) ds

≤ 2K2T 2 M4
2

(1 − 2α)M2
1

sup
t∈[0,T ]

E ∥u(t, ·)∥2
L2(Ω) . (29)

Combining (27)–(29), we deduce that

2E
un1,n2 (0, ·)

2
L2(Ω) ≥

π2T 2α

M2
2

λ2n1−1,n2−1

n3/2
1 n3/2

2

− 2K2T 2 M4
2

(1 − 2α)M2
1

sup
t∈[0,T ]

E ∥u(t, ·)∥2
L2(Ω) .

Since 2K2T 2 M4
2

(1−2α)M2
1

≤
1
2 and λj1,j2 = j21 + j22, we obtain

3
2

sup
t∈[0,T ]

E
un1,n2 (t, ·)

2
L2(Ω) ≥

π2T 2α

M2
2

(n1 − 1)2 + (n2 − 1)2

n3/2
1 n3/2

2

.
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Using the fact thatun1,n2 − u

XT

=
un1,n2


XT

= sup
t∈[0,T ]

√
E ∥un1,n2 (t, ·)∥2

L2(Ω) ≥

√
sup

t∈[0,T ]

E ∥un1,n2 (t, ·)∥2
L2(Ω),

we conclude that ∥un1,n2 − u∥XT tends to infinity as n1, n2 → ∞.

4.3. Fourier truncated method and regularized solution

For N1,N2 are as in Lemma 4.1 and the function g ∈ L2(Ω), we set

AN1,N2 (t)g :=

N1∑
j1=1

N2∑
j2=1

(
Eα,1

(
−λj1,j2 t

α
)

Eα,1
(
−λj1,j2T

α
) ⟨g, ξj1,j2 ⟩

)
ξj1,j2 ,

BN1,N2 (t)g :=

N1∑
j1=1

N2∑
j2=1

(
Eα,1

(
−λj1,j2 t

α
) ⟨
g, ξj1,j2

⟩)
ξj1,j2 ,

and DN1,N2 (t, s)g := AN1,N2 (t)BN1,N2 (s)g , which are truncated series of A(t)g,B(t)g and D(t, s)g respectively. Based on the
approximate function for ϕ constructed as in Lemma 4.1 (denote by ϕ̃N1,N2 ), we give the regularized solution as follows

ũN1,N2 (t, x) = AN1,N2 (t)ϕN1,N2 (x) +

∫ t

0
BN1,N2 (t − s)f (s, x, ũN1,N2 (s, x))ds

−

∫ T

0
DN1,N2 (t, T − s)f (s, x, ũN1,N2 (s, x))ds. (30)

Before presenting the convergence rate between ũN1,N2 and the solution u of (1) of the two-dimensional, we show the
existence and uniqueness of the solution ũN1,N2 :

Lemma 4.3. Assume that f satisfies the globally Lipschitz property, i.e. there exists a positive constant K such that

∥f (t, ·, u1(t, ·)) − f (t, ·, u2(t, ·))∥L2(Ω) ≤ K ∥u1(t, ·) − u2(t, ·)∥L2(Ω) , u1, u2 ∈ L2(Ω). (31)

Assume further that K ∈
(
0,Q−1

α,T
)
where

Qα,T =

2M2T
√
2
(
M2

1(1 − α)2 + M2
2

)
M1(1 − α)

. (32)

Then, the integral equation (66) has a unique solution ũN1,N2 ∈ XT .

Proof. Put

F(v(t, x)) := AN1,N2 (t)ϕN1,N2 (x) +

∫ t

0
BN1,N2 (t − s)f (s, x, v(s, x))ds

−

∫ T

0
DN1,N2 (t, T − s)f (s, x, v(s, x))ds.

We will show that ∥F(v1) − F(v2)∥XT ≤
KQα,T

2
∥v1 − v2∥XT , which implies that F is a contraction and thus Eq. (66) has

a unique solution. We first have

∥F(v1(t, ·)) − F(v2(t, ·))∥L2(Ω) ≤

∫ t

0

BN1,N2 (t − s)
(
f (s, ·, v1(s, ·)) − f (s, ·, v2(s, ·))

)
L2(Ω) ds

+

∫ T

0

DN1,N2 (t, T − s)
(
f (s, ·, v1(s, ·)) − f (s, ·, v2(s, ·))

)
L2(Ω) ds.

Using Lemma 3.2 and assumption (31), we get

∥F(v1(t, ·)) − F(v2(t, ·))∥L2(Ω) ≤ KM2

∫ t

0
∥v1(s, ·) − v2(s, ·)∥L2(Ω) ds

+ K
M2

2

M1
T α
∫ T

0
(T − s)−α ∥v1(s, ·) − v2(s, ·)∥L2(Ω) ds.
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By Hölder’s inequality and (a + b)2 ≤ 2(a2 + b2), for a, b ∈ R, we obtain

E
F(v1(t, ·)) − F(v2(t, ·))

2
L2(Ω) ≤ 2K 2

M
2
2t
∫ t

0
E∥v1(t, ·) − v2(t, ·)∥2

L2(Ω)ds

+ 2K 2M
4
2

M2
1
T 2α

∫ T

0
(T − s)−αds

∫ T

0
(T − s)−αE∥v1(t, ·) − v2(t, ·)∥2

L2(Ω)ds.

It follows that

E
F(v1(t, ·)) − F(v2(t, ·))

2
L2(Ω) ≤ 2K 2

M
2
2T

2 sup
t∈[0,T ]

E∥v1(t, ·) − v2(t, ·)∥2
L2(Ω)

+ 2K 2M
4
2

M2
1

T 2

(1 − α)2
sup

t∈[0,T ]

E∥v1(t, ·) − v2(t, ·)∥2
L2(Ω).

Thus

∥F(v1) − F(v2)∥2
XT

≤ 2K 2
M

2
2T

2
(
1 +

M2
2

M2
1(1 − α)2

)
sup

t∈[0,T ]

E ∥v1(t, ·) − v2(t, ·)∥2
L2(Ω)

=

(
KQα,T

2

)2

sup
t∈[0,T ]

E ∥v1(t, ·) − v2(t, ·)∥2
L2(Ω) .

We conclude that ∥F(v1) − F(v2)∥XT ≤
KQα,T

2
∥v1 − v2∥XT . This completes the proof. □

Note in the above result we could assume K ∈
(
0, 2Q−1

α,T
)
. However K ∈

(
0,Q−1

α,T
)
is needed in our next result.

4.4. Convergence result

Now, we are ready to state the main result of the present section in the following theorem:

Theorem 4.1. Let N1 = N1(n1), N2 = N2(n2) be natural numbers less than n1, n2 respectively and satisfy

lim
n1→∞

N1 = lim
n2→∞

N2 = ∞, lim
n1,n2→∞

N1N2λ
2
N1,N2

n1n2
= 0. (33)

Assume the conditions of Lemmas 4.1, 4.3 hold and u ∈ L∞(0, T ;Hθ (Ω)). Then, the error
̃uN1,N2 − u

2
XT

is of order

max
{
N1N2

n1n2
(N4

1 + N4
2 ),N

−2θ
1 ,N−2θ

2

}
.

Remark 4.2. If we choose

(N1,N2) = (⌊n1/5
1 ⌋, ⌊n1/5

2 ⌋) or (N1,N2) = (⌊log n1⌋, ⌊log n2⌋),

where we denote ⌊p⌋ the greatest natural number less than p, then N1,N2 satisfy (33).

Proof. Let

vN1,N2 (t, x) = AN1,N2 (t)ϕ(x) +

∫ t

0
BN1,N2 (t − s)f (s, x, u(s, x))ds

−

∫ T

0
DN1,N2 (t, T − s)f (s, x, u(s, x))ds, (34)

which is the truncated series of u. Then, we have
1
2

̃uN1,N2 (t, ·) − u(t, ·)
2
L2(Ω) ≤

̃uN1,N2 (t, ·) − vN1,N2 (t, ·)
2
L2(Ω) +

vN1,N2 (t, ·) − u(t, ·)
2
L2(Ω) .

Step 1 (Estimating the error between ũN1,N2 and vN1,N2 ). From (66) and (34), one can see that̃uN1,N2 (t, ·) − vN1,N2 (t, ·)

L2(Ω) ≤

AN1,N2 (t)
(̃
ϕN1,N2 − ϕ

)
L2(Ω)

+

∫ t

0

BN1,N2 (t − s)
(
f (s, ·, ũN1,N2 (s, ·)) − f (s, ·, u(s, ·))

)
L2(Ω) ds

+

∫ T

0

DN1,N2 (t, T − s)
(
f (s, ·, ũN1,N2 (s, ·)) − f (s, ·, u(s, ·))

)
L2(Ω) ds

=: I1 + I2 + I3. (35)
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For g ∈ L2(Ω), we haveAN1,N2 (t)g
2
L2(Ω) ≤

N1∑
j1=1

N2∑
j2=1

(
M2(1 + λj1,j2T

α)
M1

)2 ⟨
g, ξj1,j2

⟩2
≤

(
M2(1 + λN1,N2T

α)
M1

)2 N1∑
j1=1

N2∑
j2=1

⟨
g, ξj1,j2

⟩2
,

and recall that (see (12) and (18))

EE1 = E

[ N1∑
j1=1

N2∑
j2=1

(⟨̃
ϕN1,N2 , ξj1,j2

⟩
− ϕj1,j2

)2]
≤

(
2π2ε2max + 2C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2
,

Hence

EI2
1 ≤

(
M2(1 + λN1,N2T

α)
M1

)2

EE1 ≤

(
M2(1 + λN1,N2T

α)
M1

)2
(
2π2ε2max + 2C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2
. (36)

For the term I2 + I3, by a similar technique as in the proof of Lemma 4.3, one arrives at

E (I2 + I3)
2

≤ 2K 2
M

2
2T

2
(
1 +

M2
2

M2
1(1 − α)2

)
sup

t∈[0,T ]

E
̃uN1,N2 (t, ·) − u(t, ·)

2
L2(Ω) . (37)

Combining (35)–(37), one obtains

E
̃uN1,N2 (t, ·) − vN1,N2 (t, ·)

2
≤ 4

(
M2(1 + λN1,N2T

α)
M1

)2
(
π2ε2max + C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2

+ 4K 2
M

2
2T

2
(
1 +

M2
2

M2
1(1 − α)2

)̃uN1,N2 − u
2
XT
.

Step 2 (Estimating the error between vN1,N2 and u). From (9) and (34), one can see thatvN1,N2 (t, ·) − u(t, ·)
2
L2(Ω) =

N1∑
j1=1

∞∑
j2=N2+1

u2
j1,j2 (t) +

∞∑
j1=N1+1

N2∑
j2=1

u2
j1,j2 (t) +

∞∑
j1=N1+1

∞∑
j2=N2+1

u2
j1,j2 (t).

The quantity above can be estimated in exactly the same way as in Part B in the proof of Lemma 4.1. In this way, one
gets vN1,N2 − u

2
L2(Ω) ≤ 2

[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥u(t, ·)∥2

Hθ (Ω)

≤ 2
[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥u∥2

L∞(0,T ;Hθ (Ω)) .

Now, using the results of the two steps, we deduce that

1
2
E
̃uN1,N2 (t, ·) − u(t, ·)

2
L2(Ω) ≤ 4

(
M2(1 + λN1,N2T

α)
M1

)2
(
π2ε2max + C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2

+ 4K 2
M

2
2T

2
(
1 +

M2
2

M2
1(1 − α)2

)̃uN1,N2 − u
2
XT

+ 2
[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥u∥2

L∞(0,T ;Hθ (Ω)) ,

which gives us

1 − K 2Q2
α,T

2

̃uN1,N2 − u
2
XT

≤ 4
(
M2(1 + λN1,N2T

α)
M1

)2
(
π2ε2max + C2

0 ∥ϕ∥
2
Hθ (Ω)

)
N1N2

n1n2

+ 2
[
(N1 + 1)−2θ

+ (N2 + 1)−2θ ]
∥u∥2

L∞(0,T ;Hθ (Ω)) .

Hence, we conclude that
̃uN1,N2 − u

2
XT

is of order

max
{
N1N2

n1n2
(N4

1 + N4
2 ),N

−2θ
1 ,N−2θ

2

}
. □
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5. Backward problem in the multi-dimensional case

Based on Section 4.2, we claim that the multi-dimensional backward problem (1) with discrete data is not well-posed.
Thus, a regularized method is required to construct a stable approximate solution. To do this, in next subsection, we
establish an approximation for the final data ϕ.

5.1. Estimator for ϕ in the multi-dimensional case

For any positive constant γn = γn1,n2,...,nd depending on n = (n1, n2, . . . , nd), we define

Wγn =

{
j = (j1, j2, . . . , jd) ∈ Nd

: |j|2 =

d∑
i=1

j2i ≤ γn

}
. (38)

For γn satisfying lim|n|→∞ γn = ∞, we define an approximation for ϕ as follows

ϕ̂γn =

∑
j∈Wγn

[
πd∏d
i=1 ni

n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

Φobs
k ξj(xk)

]
ξj. (39)

Theorem 5.1. Let µ = (µ1, µ2, . . . , µd) ∈ Rd in which µk >
1
2 for any k = 1, 2, . . . , d and µ◦ ∈ R+ such that

µ◦ ≥ dmax (µ1, µ2, . . . , µd). Then we have

(a) Error estimate in L2(Ω) (see Theorem 2.1 of [49]). If ϕ ∈ Hµ◦ (Ω) then

E ∥ϕ̂γn − ϕ∥
2
L2(Ω) ≤ C(µ, ϕ)γ d/2

n

d∏
i=1

n−4µi
i + 4γ−µ◦

n ∥ϕ∥
2
Hµ0 (Ω) ,

where

C(µ, ϕ) = 8πdε2max
2π

d
2

dΓ
( d
2

) +
16 C2(µ)π

d
2

dΓ
( d
2

) ∥ϕ∥
2
Hµ◦ (Ω) ,

with

C(µ) = d
−max(µ1,...,µd)

2
∑

l∈Nd,|l|̸=0

d∏
i=1

(2li − 1)−2µi .

(b) Error estimate in Hσ (Ω). If there exists a constant σ > 0 such that ϕ ∈ Hµ◦+σ (Ω) then

E
ϕ̂γn − ϕ

2
Hσ (Ω) ≤ C(µ, ϕ)

γ
σ+

d
2

n

4

d∏
i=1

(ni)−4µi + γ−µ◦

n ∥ϕ∥
2
Hµ◦+σ (Ω) .

Proof of Part (b). First, by Lemma 2.3 of [49], we have

ϕj =
πd∏d
i=1 ni

n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

ϕ(xk)ξj(xk) −

j∈Nd,l21+···+l2d ̸=0∑
p=2l·n±j

ϕp.

Thus, we get

ϕ̂γn (x) − ϕ(x)

=

∑
j∈Wγn

[
πd∏d
i=1 ni

n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

Φobs
k ξj(xk) − ϕj

]
ξj(x) −

∑
j/∈Wγn

ϕjξj(x)

=

∑
j∈Wγn

[
πd∏d
i=1 ni

n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

εkWkϕj(xk) +

j∈Nd,l21+···+l2d ̸=0∑
p=2l·n±j

ϕp

]
ξj(x) −

∑
j/∈Wγn

ϕjξj(x).
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It follows thatϕ̂γn − ϕ
2
Hσ (Ω)

=

∑
j∈Wγn

λσj

[
πd∏d
i=1 ni

n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

εkWkϕj(xk) +

j∈Nd,l21+···+l2d ̸=0∑
p=2l·n±j

ϕp

]2

+

∑
j/∈Wγn

λσj ϕ
2
j

≤ 2
∑
j∈Wγn

λσj

[
πd∏d
i=1 ni

n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

εkWkϕj(xk)

]2

+ 2
∑
j∈Wγn

λσj

[j∈Nd,l21+···+l2d ̸=0∑
p=2l·n±j

ϕp

]2

+

∑
j/∈Wγn

λσj ϕ
2
j

=: CI + CII + CIII . (40)

From Lemma 2.2 of [49] and the property of Wk, the first term can be estimated as follows

ECI ≤ 2
∑
j∈Wγn

γ σn
π2d(∏d
i=1 ni

)2E
[ n1∑

k1=1

n2∑
k2=1

. . .

nd∑
kd=1

εkWkϕj(xk)

]2

≤
2π2d(∏d
i=1 ni

)2 γ σn ε2maxcard
(
Wγn

) n1∑
k1=1

n2∑
k2=1

. . .

nd∑
kd=1

ϕ2
j (xk)

=
2πd∏d
i=1 ni

γ σn ε
2
maxcard

(
Wγn

)
.

In addition, using the inequality (2.30) of [49] that card
(
Wγn

)
≤

2π
d
2

dΓ
(
π

d
2
)γ d

2
n , we deduce that

ECI ≤ ε2max
4π

3d
2

dΓ
(
π

d
2
)∏d

i=1 ni

γ
σ+

d
2

n . (41)

From (2.37) of [49], the second term can be estimated as follows

CII = 2
∑
j∈Wγn

λσj

[j∈Nd,l21+···+l2d ̸=0∑
p=2l·n±j

ϕp

]2

≤ 2γ σn C2(µ) ∥ϕ∥
2
Hµ◦ (Ω)

d∏
i=1

(ni)−4µicard(Wγn ) ≤ 2γ
σ+

d
2

n C2(µ) ∥ϕ∥
2
Hµ◦ (Ω)

2π
d
2

dΓ
(
π

d
2
) d∏

i=1

(ni)−4µi . (42)

For the last term, it is clear that

CIII =

∑
j/∈Wγn

λ
−µ◦

j λ
µ◦+σ

j ϕ2
j ≤ γ−µ◦

n ∥ϕ∥
2
Hµ◦+σ (Ω) . (43)

Combining (40)–(43), we conclude that

E
ϕ̂γn − ϕ

2
Hσ (Ω) ≤ ε2max

4π
3d
2

dΓ
(
π

d
2
)∏d

i=1 ni

γ
σ+

d
2

n + γ−µ◦

n ∥ϕ∥
2
Hµ◦+σ (Ω)

+ 2γ
σ+

d
2

n C2(µ) ∥ϕ∥
2
Hµ◦ (Ω)

2π
d
2

dΓ
(
π

d
2
) d∏

i=1

(ni)−4µi

≤ C(µ, ϕ)
γ
σ+

d
2

n

4

d∏
i=1

(ni)−4µi + γ−µ◦

n ∥ϕ∥
2
Hµ◦+σ (Ω) ,

which shows that E
ϕ̂γn − ϕ

2
Hσ (Ω) is of order max

(
γ
σ+

d
2

n
∏d

i=1(ni)−4µi , γ
−µ◦

n

)
. □
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5.2. Quasi-boundary value method and regularized solution

Using the estimator for ϕ as in (39), we give the regularized problem as follows⎧⎪⎪⎨⎪⎪⎩
∂

∂t
ûγn,ϑn (t, x) +

∂1−α

∂t
∆̂uγn,ϑn (t, x) = f

(
t, x, ûγn,ϑn (t, x)

)
, (t, x) ∈ (0, T ) ×Ω,

ûγn,ϑn (t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

ûγn,ϑn (T , x) + ϑn̂u
γn,ϑn (0, x) = ϕ̂γn (x), x ∈ Ω,

(44)

where ϑn > 0 depends on n = (n1, n2, . . . , nd) and satisfies lim|n|→∞ ϑn = 0, γn fulfills Theorem 5.1. Here, the basic idea
is to replace the final value data ϕ by its approximation ϕ̂γn and add the quantity ϑn̂u

γn,ϑn (0, x) into the left-hand side of
the last equation. Then, using the result (5), one has

û
γn,ϑn
j (t) = Eα,1

(
−λjtα

)̂
u
γn,ϑn
j (0) +

∫ t

0
Eα,1

(
−λj(t − s)α

)
fj (̂uγn,ϑn )(s)ds,

where we denote û
γn,ϑn
j (t) =

⟨̂
uγn,ϑn , ξj

⟩
. On the other hand, the last equation of (44) gives us

û
γn,ϑn
j (T ) + ϑn̂u

γn,ϑn
j (0) = ϕ̂

γn
j ,

where ϕ̂γnj :=
⟨̂
ϕγn , ξj

⟩
. From the two latter equations, one can see that

û
γn,ϑn
j (t) =

Eα,1
(
−λjtα

)
ϑn + Eα,1

(
−λjT α

) ϕ̂γnj +

∫ t

0
Eα,1

(
−λj(t − s)α

)
fj (̂uγn,ϑn )(s)ds

−

∫ T

0

Eα,1
(
−λjtα

)
Eα,1

(
−λj(T − s)α

)
ϑn + Eα,1

(
−λjT α

) fj (̂uγn,ϑn )(s)ds.

For convenience, we define

Âϑn (t)g :=

∑
j∈Nd

(
Eα,1

(
−λjtα

)
ϑn + Eα,1

(
−λjT α

) ⟨g, ξj⟩)ξj, (45)

and D̂ϑn (t, s)g := Âϑn (t)B(s)g , for t, s ∈ [0, T ]. Then, ûγn,ϑn (called regularized solution) satisfies the equation

ûγn,ϑn (t, x) = Âϑn (t )̂ϕ
γn (x) +

∫ t

0
B(t − s)f (s, x, ûγn,ϑn (s, x))ds

−

∫ T

0
D̂ϑn (t, T − s)f (s, x, ûγn,ϑn (s, x))ds. (46)

5.3. Convergence results

We now estimate the error between the regularized solution ûγn,ϑn and the sought solution u in two different cases
of space under the following assumptions:

(H1) f satisfies the globally Lipschitz property, i.e., there exists a positive constant K such that

∥f (t, ·, u1(t, ·)) − f (t, ·, u2(t, ·))∥L2(Ω) ≤ K ∥u1(t, ·) − u2(t, ·)∥L2(Ω) , u1, u2 ∈ L2(Ω).

(H2) K ∈
(
0,Q−1

α,T
)
in which Q−1

α,T is defined in (32).

Part A (Convergence rate in XT ). In this part, we give the error estimate in the space XT :

Theorem 5.2. Let γn, ϑn, with n = (n1, . . . , nd) ∈ Nd, satisfying

lim
|n|→∞

γn = ∞, lim
|n|→∞

ϑn = 0, and lim
|n|→∞

γ
d/2
n

ϑ2
n

d∏
i=1

n−4µi
i = lim

|n|→∞

γ
−µ◦

n

ϑ2
n

= 0.

Assume that u(0, ·) ∈ H1(Ω), ϕ ∈ Hµ◦ (Ω) with µ◦ is as in Theorem 5.1 and the assumptions (H1), (H2) are satisfied. Then,̃uN1,N2 − u
2
XT

is of order

max

{
γ

d/2
n

ϑ2
n

d∏
i=1

n−4µi
i ,

γ
−µ◦

n

ϑ2
n
, ϑn

}
.
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In order to prove the theorem above, we first give some properties for the operators appearing in Eq. (46).

Lemma 5.1. Let g be a function in L2(Ω). ThenÂϑn (t)g

L2(Ω) ≤

M2

ϑn
∥g∥L2(Ω) , for 0 ≤ t ≤ T ,

and D̂ϑn (t, s)gL2(Ω) ≤
M2

2T
α

M1sα
∥g∥L2(Ω) , for 0 ≤ t ≤ T , 0 < s ≤ T .

Proof. Since

Eα,1
(
−λjtα

)
ϑn + Eα,1

(
−λjT α

) ≤
Eα,1

(
−λjtα

)
ϑn

≤
M2

ϑn
,

and

Eα,1(−λjtα)
ϑn + Eα,1(−λjT α)

Eα,1(−λjsα) ≤
Eα,1(−λjtα)
Eα,1(−λjT α)

Eα,1(−λjsα) ≤
M2

2T
α

M1sα
,

we haveÂϑn (t)g
2
L2(Ω) ≤

M2
2

ϑ2
n

∑
j∈Nd

⟨
g, ξj

⟩2
=

M2
2

ϑ2
n

∥g∥
2
L2(Ω) , and

D̂ϑn (t, s)gL2(Ω) ≤
M2

2T
α

M1sα
∥g∥

2
L2(Ω) .

This completes the proof. □

Under assumptions (H1) and (H2), one can check that the integral equation (46) has a unique solution ûγn,ϑn ∈ XT
using Lemma 3.2, Lemma 5.1 and a similar method as in Lemma 4.3. Now, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let

vϑn (t, x) = Âϑn (t)ϕ(x) +

∫ t

0
B(t − s)f (s, x, u(s, x))ds −

∫ T

0
D̂ϑn (t, T − s)f (s, x, u(s, x))ds. (47)

Then, we have̂uγn,ϑn (t, ·) − u(t, ·)

L2(Ω) ≤

̂uγn,ϑn (t, ·) − vϑn (t, ·)

L2(Ω) +

vϑn (t, ·) − u(t, ·)

L2(Ω) . (48)

Step 1 (Estimate the first term of (48)). It follows from (46) and (47) that̂uγn,ϑn (t, ·) − vϑn (t, ·)

L2(Ω)

≤
Âϑn (t) (̂ϕ

γn − ϕ)

L2(Ω) +

∫ t

0

B(t − s)
(
f (s, ·, ûγn,ϑn (s, ·)) − f (s, ·, u(s, ·))

)
L2(Ω) ds

+

∫ T

0

D̂ϑn (t, T − s)
(
f (s, ·, ûγn,ϑn (s, ·)) − f (s, ·, u(s, ·))

)
L2(Ω) ds

=: Θ1 +Θ2 +Θ3.

From Lemma 5.1, one gets

EΘ2
1 = E

Âϑn (t) (̂ϕ
γn − ϕ)

2
L2(Ω) ≤

M2
2

ϑ2
n
E ∥ϕ̂γn − ϕ∥

2
L2(Ω) .

For the terms Θ2 and Θ3, by a similar technique as in (37), one arrives at

E (Θ2 +Θ3)
2

≤ 2K 2
M

2
2T

2
(
1 +

M2
2

M2
1(1 − α)2

)
sup

t∈[0,T ]

E
̂uγn,ϑn (t, ·) − u(t, ·)

2
L2(Ω) .

Hence

E
̂uγn,ϑn (t, ·) − vϑn (t, ·)

2
L2(Ω) ≤ 2EΘ2

2 + 2E (Θ2 +Θ3)
2

≤ 2
M2

2

ϑ2
n
E ∥ϕ̂γn − ϕ∥

2
L2(Ω) +

Q2
α,T

2

̂uγn,ϑn − u
2
XT
. (49)
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Step 2 (Estimate the second term of (48)). It follows from (9) and (47) thatvϑn (t, ·) − u(t, ·)
2
L2(Ω)

=

Âϑn (t)ϕ − A(t)ϕ −

∫ T

0

(
D̂ϑn (t, T − s)f (s, ·, u(s, ·)) − D(t, T − s)f (s, ·, u(s, ·))

)
ds


2

L2(Ω)

=

∑
j∈Nd

ϑnEα,1
(
−λjtα

)
ϑn + Eα,1

(
−λjT α

) ϕj − ∫ T
0 Eα,1

(
−λj(T − s)α

)
fj(u)(s)

Eα,1
(
−λjT α

) ξj


2

L2(Ω)

.

In addition uj(0) =
ϕj −

∫ T
0 Eα,1

(
−λj(T − s)α

)
fj(u)(s)

Eα,1
(
−λjT α

) , and

ϑ2
nE

2
α,1

(
−λjtα

)(
ϑn + Eα,1

(
−λjT α

))2 ≤
ϑnM

2
2

4Eα,1
(
−λjT α

) ≤
ϑnM

2
2

4M1
(1 + T α) λj.

Hence vϑn (t, ·) − u(t, ·)
2
L2(Ω) =

∑
j∈Nd

ϑ2
nE

2
α,1

(
−λjtα

)(
ϑn + Eα,1

(
−λjT α

))2 u2
j (0) ≤

ϑnM
2
2

4M1
(1 + T α) ∥u(0, ·)∥2

H1(Ω) . (50)

Combining (48)–(50), we deduce that

E
̂uγn,ϑn (t, ·) − u(t, ·)

2
L2(Ω)

≤ 4
M2

2

ϑ2
n
E ∥ϕ̂γn − ϕ∥

2
L2(Ω) + Q2

α,T

̂uγn,ϑn − u
2
XT

+
ϑnM

2
2

2M1
(1 + T α) ∥u(0, ·)∥2

H1(Ω) ,

which follows that

(1 − Q2
α,T )

̂uγn,ϑn − u
2
XT

≤ 4
M2

2

ϑ2
n
E ∥ϕ̂γn − ϕ∥

2
L2(Ω) +

ϑnM
2
2

2M1
(1 + T α) ∥u(0, ·)∥2

H1(Ω) .

Now, using Part (a) of Theorem 5.1, we conclude that

(1 − Q2
α,T )

̂uγn,ϑn − u
2
XT

≤ 4
M2

2

ϑ2
n

[
C(µ, ϕ)γ d/2

n

d∏
i=1

n−4µi
i + 4γ−µ◦

n ∥ϕ∥
2
Hµ0 (Ω)

]

+
ϑnM

2
2

2M1
(1 + T α) ∥u(0, ·)∥2

H1(Ω) ,

which implies that
̂uγn,ϑn − u

2
XT

is of order

max

{
γ

d/2
n

ϑ2
n

d∏
i=1

n−4µi
i ,

γ
−µ◦

n

ϑ2
n
, ϑn

}
. □

Part B (Convergence rate in Sσ ,T ). The following theorem gives the error estimate in the space Sσ ,T :

Theorem 5.3. Let γn, ϑn, with n = (n1, . . . , nd) ∈ Nd, satisfying

lim
|n|→∞

γn = ∞, lim
|n|→∞

ϑn = 0, and lim
|n|→∞

γ
σ+d/2
n

ϑ2
n

d∏
i=1

n−4µi
i = lim

|n|→∞

γ
−µ◦

n

ϑ2
n

= 0.

Assume that there exists a positive constant σ > 0 such that u(0, ·) ∈ Hσ+1(Ω), ϕ ∈ Hµ◦+σ (Ω) with µ◦ is as in Theorem 5.1
and assumptions (H1), (H2) are satisfied. Then,

̃uN1,N2 − u
2
Sσ ,T

is of order

max

{
γ
σ+d/2
n

ϑ2
n

d∏
i=1

n−4µi
i ,

γ
−µ◦

n

ϑ2
n
, ϑn

}
.

Proof. In order to prove the theorem above, we first give a similar estimate as in Lemma 5.1:Âϑn (t)g

Hσ (Ω) ≤

M2

ϑn
∥g∥Hσ (Ω) , ∥B(t)g∥Hσ (Ω) ≤ M2 ∥g∥Hσ (Ω) , for 0 ≤ t ≤ T , (51)
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and D̂ϑn (t, s)gHσ (Ω) ≤
M2

2T
α

M1sα
∥g∥Hσ (Ω) , for 0 ≤ t ≤ T , 0 < s ≤ T . (52)

Under assumptions (H1) and (H2), one can check that the integral equation (46) has a unique solution ûγn,ϑn ∈ Sσ ,T using
(51)–(52) and a similar method as in Lemma 4.3. Next, we will prove Theorem 5.3 using a similar technique as in Part A.
In this way, we arrive at

E
̂uγn,ϑn (t, ·) − vϑn (t, ·)

2
Hσ (Ω) ≤ 2

M2
2

ϑ2
n
E ∥ϕ̂γn − ϕ∥

2
Hσ (Ω) +

Q2
α,T

2

̂uγn,ϑn − u
2
Sσ ,T

,

and vϑn (t, ·) − u(t, ·)
2
Hσ (Ω) ≤

ϑnM
2
2

4M1
(1 + T α) ∥u(0, ·)∥2

Hσ+1(Ω) ,

which gives us

(1 − Q2
α,T )

̂uγn,ϑn − u
2
Sσ ,T

≤ 4
M2

2

ϑ2
n
E ∥ϕ̂γn − ϕ∥

2
Hσ (Ω) +

ϑnM
2
2

2M1
(1 + T α) ∥u(0, ·)∥2

Hσ+1(Ω) .

Finally, using Part (b) of Theorem 5.1, we conclude that

(1 − Q2
α,T )

̂uγn,ϑn − u
2
Sσ ,T

≤ 4
M2

2

ϑ2
n

[
C(µ, ϕ)γ σ+d/2

n

d∏
i=1

n−4µi
i + 4γ−µ◦

n ∥ϕ∥
2
Hσ+µ0 (Ω)

]

+
ϑnM

2
2

2M1
(1 + T α) ∥u(0, ·)∥2

Hσ+1(Ω) ,

which implies that
̂uγn,ϑn − u

2
Sσ ,T

is of order

max

{
γ
σ+d/2
n

ϑ2
n

d∏
i=1

n−4µi
i ,

γ
−µ◦

n

ϑ2
n
, ϑn

}
. □

Remark 5.1. The truncation method in this paper is similar to the method in [46,50]. The quasi-boundary value method
in this section is more effective and useful than the one in [45]. The advantage of this method is that it allows us to
estimate the norm on the Hilbert scales Hσ (Ω). As is known, estimates on higher Sobolev spaces such as Hσ (Ω) are not
an easy task.

5.4. A general filter method in the multi-dimensional case

Now, we introduce one more regularization method, called a general filter method. The main idea is to replace the
quantity Eα,1(−λjtα )

Eα,1(−λjT α ) by a new one Lj(ϑn)
Eα,1(−λjtα )
Eα,1(−λjT α ) ,with Lj(ϑn) chosen as in Theorem 5.4. In this way, regularized solutions

w̃γn,ϑn are obtained as follows

w̃γn,ϑn (t, x) = Ãϑn (t )̂ϕ
γn (x) +

∫ t

0
B(t − s)f (s, x, w̃γn,ϑn (s, x))ds

−

∫ T

0
D̃ϑn (t, T − s)f (s, x, w̃γn,ϑn (s, x))ds, (53)

where γn, ϑn satisfy lim|n|→∞ γn = ∞, lim|n|→∞ ϑn = 0 and

Ãϑn (t)g :=

∑
j∈Nd

(
Lj(ϑn)

Eα,1
(
−λjtα

)
Eα,1

(
−λjT α

) ⟨g, ξj⟩)ξj, D̃ϑn (t, s)g := Ãϑn (t)B(s)g. (54)

Theorem 5.4 (Error Estimate Obtained by General Filter Method). Let Lj(ϑn) satisfies the following conditions

Lj(ϑn)
Eα,1(−λjtα)
Eα,1(−λjT α)

≤ C†(ϑn), 0 ≤ 1 − Lj(ϑn) ≤ C‡(ϑn)λ
q
j , for some q > 0, (55)

where C†(ϑn), C‡(ϑn) satisfy

lim
|n|→∞

C‡(ϑn) = lim
|n|→∞

C2
† (ϑn)γ σ+d/2

n

d∏
i=1

n−4µi
i = lim

|n|→∞

C2
† (ϑn)γ−µ◦

n = 0.
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Assume that there exists a positive constant σ > 0 such that u(0, ·) ∈ Hσ+2q(Ω), ϕ ∈ Hµ◦+σ (Ω) with µ◦ is as in Theorem 5.1
and assumptions (H1), (H2) are satisfied. Then,

̂uγn,ϑn − u
2
Sσ ,T

is of order

max

{
C2
† (ϑn)γ σ+d/2

n

d∏
i=1

n−4µi
i , C2

† (ϑn)γ−µ◦

n , C2
‡ (ϑn)

}
.

Proof. Let

ṽϑn (t, x) = Ãϑn (t)ϕ(x) +

∫ t

0
B(t − s)f (s, x, u(s, x))ds −

∫ T

0
D̃ϑn (t, T − s)f (s, x, u(s, x))ds. (56)

From the definition (54), the following estimates hold for 0 ≤ t ≤ T , 0 < s ≤ TÃϑn (t)gHσ (Ω) ≤ C†(ϑn) ∥g∥Hσ (Ω) ,
D̃ϑn (t, s)gHσ (Ω) ≤

M2
2T

α

M1sα
∥g∥Hσ (Ω) , g ∈ Hσ (Ω).

By similar techniques as in the proof of Theorem 5.3 and noting that
[
1 − Lj(ϑn)

]
Eα,1(−λjtα) ≤ C‡(ϑn)M2λ

q
j , one can

check that

E
w̃γn,ϑn (t, ·) − ṽϑn (t, ·)

2
Hσ (Ω) ≤ 2C2

† (ϑn)E ∥ϕ̂γn − ϕ∥
2
Hσ (Ω) +

Q2
α,T

2

̂uγn,ϑn − u
2
Sσ ,T

, (57)

and that̃vϑn (t, ·) − u(t, ·)
2
L2(Ω) =

∑
j∈Nd

[
1 − Lj(ϑn)

]2 E2
α,1(−λjt

α)u2
j (0) ≤ M

2
2C

2
‡ (ϑn) ∥u(0, ·)∥2

H2q(Ω) , (58)

where Qα,T is defined as in (32). From (57)–(58), one arrives at

(1 − Q2
α,T )

̂uγn,ϑn − u
2
Sσ ,T

≤ 4C2
† (ϑn)

[
C(µ, ϕ)γ σ+d/2

n

d∏
i=1

n−4µi
i + 4γ−µ◦

n ∥ϕ∥
2
Hσ+µ0 (Ω)

]
+ M

2
2C

2
‡ (ϑn) ∥u(0, ·)∥2

Hσ+2q(Ω) ,

which implies that
̂uγn,ϑn − u

2
Sσ ,T

is of order

max

{
C2
† (ϑn)γ σ+d/2

n

d∏
i=1

n−4µi
i , C2

† (ϑn)γ−µ◦

n , C2
‡ (ϑn)

}
.

This completes the proof. □

Remark 5.2. Our problem is restricted to a rectangular geometry for which the eigenvalues and eigenfunctions of the
Laplacian are readily available. The analysis here comes from the trigonometric functions (sine, the cosine function) of
eigenfunctions. Lemma 3.1 gives the representations of the exact solution which is given by trigonometric functions.
However, if we let an arbitrary domain Ω with a C2-boundary, the analysis in this paper is not applied and such problem
is more difficult. This challenge and open problem may be addressed in future works.

6. Numerical example

In this section, we describe the Fourier truncated method applied to some examples of finding the function u = u(t, x)
satisfying the following conditions

∂

∂t
u(t, x) −

∂1−α

∂t
∆u(t, x) = f (t, x, u(t, x)), (t, x) ∈ (0, 1) ×Ωd, (59)

u(t, x) = 0, (t, x) ∈ (0, 1) × ∂Ωd, (60)

u(T , x) = ϕ(x), x ∈ Ωd, (61)

where α ∈ (0, 1), t ∈ (0, 1) is time variable, x ∈ Ωd = (0, π )d and x = (x1, x2, . . . , xd) is d-dimensional variable.
The discrete form of the problem (59)–(61) is as follows: We divide the domain (0, T )×Ωd into Nd and Nt subintervals

of equal length hd and ht , where hd =
π

Nd
and ht =

1
Nt

, respectively, where Nd is chosen satisfies the random model as

follows:
The data ϕ is measured at n1 × n2 × · · · × nd grid points xk = xk1,k2,...,kd ∈ Ω , k = (k1, k2, . . . , kd) ∈ Nd, as follows

xk = (Xk1 ,Xk2 , . . . ,Xkd ) =

(
2k1 − 1
2n1

π,
2k2 − 1
2n2

π, . . . ,
2kd − 1
2nd

π

)
,
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Table 1
An example of the function randn(8).
−2.2207 0.7366 1.0446 1.4055 0.7041 0.9410 0.2901 2.1140
−0.2391 0.9553 −0.8073 1.5757 −2.3110 0.4566 0.1594 −0.0590
0.0687 1.9295 0.2059 −1.1114 1.8256 0.3717 −1.1562 1.9949

−2.0202 −0.7453 −0.9646 −2.1935 0.4909 −0.2571 0.3421 0.3080
−0.3641 −0.8984 −1.5254 0.1623 −0.0380 −0.0990 0.1795 −0.1571
−0.0813 −3.2625 0.0904 −0.7056 0.5892 1.3230 0.4859 0.7204
−1.9797 −0.0300 −0.4829 0.3841 0.6980 1.9087 −1.4602 −0.3344
0.7882 0.6134 1.2883 −0.4194 −0.3295 0.4929 0.2335 −0.4638

where ki = 1, 2, . . . , ni, i = 1, 2, . . . , d. Furthermore, the value of ϕ at each point xk is contaminated by the observation
Φobs

k

ϕ(xk) = ϕ
(
Xk1 ,Xk2 , . . . ,Xkd

)
≈ Φobs

k1,k2,...,kd = Φobs
k .

The relationship between two kinds of data is described by the random model

Φobs
k = ϕ(xk) + εkWk, (62)

where Wk = Wk1,k2,...,kd are mutually independent random variables, Wk ∼ N (0, 1) and εk = εk1,k2,...,kd are positive
constants bounded by a positive constant εmax.

The function randnmay be used to generate a random number drawn from the N(0, 1) distribution in Matlab software.
In order to simulate a state of randomness, the command randn(’state’,n) is used. As an example, one could use
randn(8) to generate a fixed set of random numbers then we get a matrix 8 × 8 with the average of the elements is
zero (see Table 1).

In the following, we discuss two examples to illustrate our results.

6.1. Case 1: d = 1, α = 0.3

In first case, the source function f and the data ϕ are chosen as

f := − sin(x)
[

10t0.3

3Γ (0.3)
+ 1

]
, ϕ = sin(x), Φobs

= ϕ(x) + 1%W, (63)

so that the exact solution of the problem (59)–(61) is given by u(t, x) = t sin(x).
The eigenvalues

{
λj1
}
and the eigenvectors

{
ξj1
}
are given by

λj1 = j12, ξj1 =

√
2
π

sin(j1x), for j1 = 1, 2 . . . .

According to (66), we have the regularized solution as follows

ũN1 (t, x) = AN1 (t)ϕN1 (x) +

∫ t

0
BN1 (t − s)f (s, x)ds −

∫ T

0
DN1 (t, T − s)f (s, x)ds, (64)

where

AN1 (t)g :=

N1∑
j1=1

(
Eα,1

(
−λj1 t

α
)

Eα,1
(
−λj1T

α
) ⟨g, ξj1 ⟩

)
ξj1 ,

BN1 (t)g :=

N1∑
j1=1

(
Eα,1

(
−λj1 t

α
) ⟨
g, ξj1

⟩)
ξj1 ,

and DN1 (t, s)g := AN1 (t)BN1 (s)g .
Before presenting the results of this subsection, we present an approximate method to support the calculation as

follows
In numerical analysis, Simpson’s rule is a method for numerical integration. Let θ ∈ L2(0, π ), we have the following

approximation∫ π

0
θ (z)dz ≈ ∆z

(
1
3
θ (z1) +

2
3

(Nz+1)/2−1∑
l=1

θ (z2l) +
4
3

(Nz+1)/2∑
l=1

θ (z2l−1) +
1
3
θ (zNz+1)

)
.
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Fig. 1. The exact solution u, the regularized solution ũN1 and errors at t = 0.3, n1 = 50.

Fig. 2. The exact solution and the regularized solution with (t, x) ∈ (0, 1) × (0, π ), n1 = 50.

Then the errors are estimated by

ErrN1
n1 (t) =

√ 1
n1

n1∑
i=1

[̃
uN1 (t, xi) − u(t, xi)

]2
,

where we choose N1 equal to greatest natural numbers less than log n1.
Figs. 1(a) and 3(a) show the exact and regularized solutions of the problem (59)–(61) with conditions (63) at t = 0.3,

n1 = 50 and n1 = 100, respectively. In addition, the error between the exact and regularized solutions is shown in
Figs. 1(b) and 3(b). Moreover, we also present the solutions on (t, x) ∈ (0, 1) × (0, π ) in Figs. 2 (for n1 = 50) and 4 (for
n1 = 100).

6.2. Case 2: d = 2, α = 0.5

In second case, the model concerned subjects to the following source function and final data

f = −2 sin(x1) sin(x2)
[
1 +

2t1/2

Γ (0.5)

]
, ϕ(x1,2) = sin(x1) sin(x2), Φobs

1,2 = ϕ(x1,2) + 1.5%W1,2, (65)

In order to obtain the solution u(t, x) = t sin(x1) sin(x2) of our problem in this case, we employ the conditions given by
Eq. (65).

The eigenvalues
{
λj1,j2

}
and the eigenvectors

{
ξj1,j2

}
are given by

λj1,j2 = j12 + j22, ξj1,j2 =
2
π

sin(j1x1) sin(j2x2), for j1, j2 = 1, 2 . . . .
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Fig. 3. The exact solution u, the regularized solution ũN1 and errors at t = 0.3, n1 = 100.

Fig. 4. The exact solution and the regularized solution with (t, x) ∈ (0, 1) × (0, π ), n1 = 100.

According to (66), we have the regularized solution as follows

ũN1,N2 (t, x) = AN1,N2 (t)ϕN1,N2 (x) +

∫ t

0
BN1,N2 (t − s)f (s, x)ds −

∫ T

0
DN1,N2 (t, T − s)f (s, x)ds, (66)

where

AN1,N2 (t)g :=

N1∑
j1=1

N2∑
j2=1

(
Eα,1

(
−λj1,j2 t

α
)

Eα,1
(
−λj1,j2T

α
) ⟨g, ξj1,j2 ⟩

)
ξj1,j2 ,

BN1,N2 (t)g :=

N1∑
j1=1

N2∑
j2=1

(
Eα,1

(
−λj1,j2 t

α
) ⟨
g, ξj1,j2

⟩)
ξj1,j2 ,

and DN1,N2 (t, s)g := AN1,N2 (t)BN1,N2 (s)g .
Then we have the errors estimated by

Err(t) := ErrN1,N2
n1,n2 (t) =

√ 1
n1n2

n1∑
j1=1

n2∑
j2=1

[̃
uN1,N2 (xj1 , xj2 , t) − u(xj1 , xj2 , t)

]2
,

where we choose N1 and N2 equal to greatest natural numbers less than log n1 and log n2, respectively.
In this case, we show the results about the regularized solution (see Fig. 5-b) at t = 0.3, n1 = n2 = 50. We can

compare the exact (see Fig. 5-a) and regularized solutions thanks to the error of these solutions by the contour graph (see
Fig. 5-c). In Table 2, we show the comparison of errors between theoretical method and numerical method for the cases
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Fig. 5. The exact solution and the regularized solution with (t, x) ∈ {0.3} × (0, π ) × (0, π ).

Table 2
The error between the exact and regularized solutions at t ∈ {0.3, 0.5, 0.8}.

Err(t) 1D (n1 = 50) 2D (n1 = n2 = 50)

Numerical method Theoretical method Numerical method Theoretical method

Err(0.3) 0.011025586961961 0.010118040520960 0.024935435226306 0.054647006945596
Err(0.5) 0.010580529848833 0.020919970167952 0.029741170367171 0.030198892384940
Err(0.8) 0.009010268605417 0.010238297159259 0.040756196453124 0.031748168670840

1D and 2D with t ∈ {0.3, 0.5, 0.8}. From this table, it shows that errors by the numerical method give better results than
errors by the theoretical method. From the aforementioned evidence, we can conclude that the method that we propose
is acceptable.
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