
Journal of Computational and Applied Mathematics 36 (1991) 209-226
North-Holland

209

A parallel alternating direction implicit
preconditioning method *

Hong Jiang and Yau Shu Wong
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2GI

Received 25 May 1990
Revised 3 December 1990

Abstract

Jiang, H. and Y.S. Wong, A parallel alternating direction implicit preconditioning method, Journal of
Computational and Applied Mathematics 36 (1991) 209-226.

The alternating direction implicit (ADI) iterative method is an efficient iterative method to solve systems of
linear equations due to its extremely fast convergence. The AD1 method has also been used successfully as a
preconditioner in some other iterative methods, such as the preconditioned conjugate gradient. In this paper a
parallel algorithm for the AD1 preconditioning is proposed. In this algorithm, several steps of the AD1 iteration
are computed simultaneously. This means that several tridiagonal systems that are traditionally solved sequen-
tially are now solved concurrently. The high performance of this algorithm is achieved by increasing the degree
of parallelism and reducing memory contention. The algorithm can easily be implemented in a multiprocessor
architecture. Experiments have been conducted on the Myrias SPS-2 computer with 64 processors and good
performance of this algorithm is observed.

Keywork AD1 methods, preconditioners, parallel iterative methods.

1. Introduction

The alternating direction implicit (ADI) iterative method, due to Peaceman and Rachford [27]
and Douglas and Rachford [9], is an efficient iterative technique to solve systems of linear
equations resulting from discretizations of partial differential equations. For some model
problems, an extremely rapid convergence rate can be realized by the proper choice of iteration
parameters. Over the past thirty-five years, theoretical and experimental results have demon-
strated that AD1 is also an effective method for solving a large class of elliptic problems. Dyksen
[11,12] applied Tensor Product Generalized AD1 (TPGADI) methods to an entire class of
separable elliptic problems. The AD1 method, when used as a preconditioner in conjunction with
another outer iterative scheme, has also been proved to be effective for solving more general
problems. It has been shown [7,25] that an arbitrary second-order self-adjoint elliptic partial

* The research was supported by the Natural Sciences and Engineering Research Council of Canada.

0377-0427/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland)

210 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

differential equation can be preconditioned by the Laplacian on the same grid with appropriate
boundary conditions. Thus the solution of the preconditioned system involves solutions of
equations with the Laplace operator. The latter can be solved rapidly by the ADI method. The
first published discussion of combining several iterations of AD1 with an outer iterative method
was [lo]. Wachspress [33] used the AD1 applied to a model problem as a preconditioner for
conjugate gradients (CG) applied to diffusion equations with variable diffusion coefficients.
Subsequently, the AD1 preconditioned CG has been applied to a variety of problems, cf.
[2,14,16-181. Adams [l] analyzed convergence rates of the preconditioned CG method where the
preconditioners are based on several iterations of some iterative methods.

One step of the AD1 iteration involves two sweeps of mesh in the coordinate directions. In the
case of using finite differences, each sweep corresponds to solving a tridiagonal system. A
difficulty in parallelizing the AD1 method is that classical algorithms for solving tridiagonal
systems are sequential in nature and are unsatisfactory for parallel computations. There has been
a considerable amount of work to solve tridiagonal systems on parallel computers, see, for
example, [23,26,28,29,31]. Another potential problem in parallel computers is to arrange the
storage so that transfers between sweeps are minimized. Since each sweep of AD1 constitutes a
set of independent tridiagonal systems, the solution is parallelizable. However, the transfers
between sweeps involve expensive data communications, which causes storage contention and
access conflicts on many parallel architectures [22,26]. Johnsson et al. [22] proposed a few
implementations of the AD1 method on multiprocessors. They described some data structures
and algorithms that efficiently use some multiprocessor configurations. Their complexity analysis
shows that the AD1 method can be made highly efficient on parallel architectures by using some
parallel algorithms for solving tridiagonal systems.

Although parallelism is introduced in each step of the AD1 method, the successive steps are
computed sequentially. The fact that the next step can only be computed when the previous step
is completed constitutes a severe bottleneck in achieving high performance on parallel architec-
tures. This is reflected in the large overhead cost for initializing parallel process and excessive
memory references. Some degree of parallelism can be achieved by pipelining techniques where
the next iteration can begin as soon as some subsets of the unknowns from the previous iteration
are computed. To achieve maximum performance on parallel architectures, however, it is
desirable to perform several iterative steps of the AD1 iteration simultaneously so as to increase
the degree of parallelism and reduce the memory contention. Chronopoulos and Gear [4,5] are
the first to introduce the concept of s-step iterative methods in which s consecutive steps of a
one-step method are performed simultaneously. In [4,5] they derived s-step conjugate gradient
methods for symmetric and positive definite linear systems.

In this paper, we propose an algorithm for the AD1 method where k step consecutive
iterations are computed simultaneously. For example, the k tridiagonal systems that are
traditionally solved consecutively are now solved concurrently. We will show by complexity
analysis and experiments that the new algorithm can achieve high performance on parallel
computers. We note that the present algorithm is different from the m-step preconditioners of
Adams [l]. In the latter, m steps of some stationary iterative methods are concerned.

We consider the solution of the partial differential equation

-qz(x, y)g)-+, Y)~)=/(x~ YL ax (XT Y)EQ,

L4 = 0, (x, Y) E afi,

H. Jiang, Y.S. Wong / A paralleI ADI preconditioner 211

where a > 0, b > 0 and 52 = [0, l] X [0, 11. The numerical solution of the problem may be
obtained by the usual procedure of placing a set of mesh points on Ic2. This results in a system of
linear equations

Au=(H+ I+=f. (1.1)

For separable problems, it is possible to write H and V in the tensor product form

H=A, @BB,, V= B, @A,, (1.2)

where A,, A,, B,, B2 are matrices of order n X n, and u, f are column vectors of size n2. We
assume that A is positive definite, and, furthermore, A,‘, A;’ exist and A,‘B, and A;‘B, are
also positive definite. For example, when a = b = constant, the 5-point scheme results in

A, =A,=I, B,=B,=trid(-+,l, -;),

and the 9-point scheme yields

0.3)

A, = A, = trid(&, 1, &), B,=B,=trid(-+,l, -$). (1.4)

In this paper, we will consider (1.1) in the tensor product form. The tensor product form,
which was first studied for the AD1 method in [24] and recently in [ll], has advantages in both
analysis and applications. A detailed discussion of tensor products of linear spaces and operators
can be found in [19] and a summary of some properties of tensor products of matrices which are
useful in the analysis of the AD1 method is given in [ll].

An efficient way to solve (1.1) is to apply an iterative method to the system

M-‘Au = M-‘f, (I-5)

in which M- ’ is a preconditioner. A k-term AD1 preconditioner is obtained if M- ’ = ML ’ is
defined as the k-iteration AD1 operator applied to (l.l), i.e., for any f, uk = M;‘f is the kth
approximation of the solution of (1.1) by the AD1 method.

We describe an algorithm to compute the preconditioning operator ML1 so that the maximum
degree of parallelism is achieved. We will not be concerned with outer iterations, i.e., the iterative
methods for solution of (1.2), although in our experiments the conjugate gradient method is used.
Discussions of implementations of the CG method on parallel computers can be found in [5,6].

2. The AD1 iterative methods

The Peaceman-Rachford alternating direction implicit iterative method applied to (1.1) is the
implicit process defined by

(H+ Pj+Jb
j+*/* = f - (V- pj+ll)uj, (2.1)

(v+ Pj+1G
i+l=f- (H_pj+l~)ui+l/2, (2.2)

where u” is an arbitrary initial vector, and { p,}, j = 1, 2,. . . , is a set of positive acceleration
parameters. If H, V commute, it is possible to express the error of the k th iteration of the AD1

212 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

process in terms of eigenvalues and eigenvectors of H and V. Let ek = uk - u * be the error of
the kth iteration; then the norm of ek satisfies

II ek II d x FFH)
k (A,-P,h-Pj) I

I*:=w
,Q (hj+Pj)(p;+Pj) /peU”, (2.3)

where a(H), u(V) are spectra of H and V, respectively.
The symmetric formulas (2.1) and (2.2) are suitable for analysis, but they are not computation-

ally efficient. Formulas (2.1) and (2.2) can be rewritten so that the multiplications by V and H

on the right-hand side are not necessary. Solving for u j+’ from (2.1) and (2.2), the result is

ui+’ = (I/+ pj+J-lj f- (H - P,+~ I)[(H+ ~j+ll)-~[f- (v- Pj+l’)Uj]])*

From this, it follows that

Ui+l=(Y+~~+,l)-‘((V-~j+ll)U’+ [fp(v-Pj+~l)uj]

-(HePj+l’)[(H+P,+, I)-l[f- (v- Pj+ll)u’]])

= (v+ Pj+l’)e’((v-Pj+ll) .j+ [I- (H-pj+,l)(H+pj+,l)-l]

x [f- (‘- Pj+l’)‘j])

=(v+ Pj+~l)-l((v-Pj+ll)uj

+ (H+p,+,l)(H+qj+~')-l-(H-p,+,')(H+p,+,l)-l]
[

x[.f- ('- P,+ll)uj]}

=
(V+Pj+,')-l((V-Pj+l')u'+

2p,,l(H+p,+~')-'[f-('-p,,,')uj]},

which we can write as

&+I = v+
c P,+,W1(ii’ + 2pj+,(H + P,+~I)-~(f- ii’)}:

where

ii’= (v- pJ+lI)uj.

Moreover, note that

ii’=(V-pj+,l)u’

= (I/-- p,+J)(V+ p,l))l

X (~-~J~)uj-1+2~j(H+~j~)-1[f--(‘-_p,l)uj-’])
t

H. Jiang, Y.S. Wong / A paraNe1 ADI preconditioner 213

= (v- pj+ll)(v+pjl)-l(fij-’ +2pj(H+pjl)-'(f- iq

=[(~+~~l)-(~j+*+~j)l](V+~jl)-1(Li’-1+2~j(H+P~~)~1(f-‘j-1))

= I- (P,+, I +pj)(V+pjl)-1](ii-'+2p,(H+pj~)-1(f-fi'-')).

Thus the k th iteration uk can be computed by the following algorithm.

Algorithm 2.1. Set ii0 = (V - pll)uo. For j = 1,. . . , k - 1, compute

iij= I- (p,,, I
+pj)(V+p,l)-1][ii’-‘+2p,(N+pjl)-1(f-ii-1)].

Set uk = (V+ pkl)-‘[Gk-’ + 2p,(H+ PkI)-i(f- iik-‘)I.

In general, H, I/ as defined in (1.2) may not commute, but (1.1) can be recast into a system
where the commutativity holds. We assume that A, and A, are nonsingular. When (1.1) is
multiplied by Al-’ 8 A;’ from the left, the result is

(ti+ l+=fl, (2 -4)

where

ti= I~AA,‘B,, F= A~-~B, 8 I, (2.5)

and f”= (A,’ @ A;‘)f. It is clear that J?, p defined in (2.5) commute. The result of applying
Algorithm 2.1 to (2.4) is the next algorithm.

Algorithm 2.2. Set Go = (A,‘B, @ I - pll) u”. For j = 1,. . . , k - 1, compute

k’= I- (p,,,
[

+ p,)(A;‘B, @ I + p,lj-‘1

X II’-‘+2p,(I@~A,‘B,+p~Ij-~(j-li’-’)]. [(2.6)

Set uk = (A,-‘B, 8 I + pkl)-‘[iike’ + 2p,(I @ A;‘B, + p,l)-‘(fl ii”-‘)].

In the above formulas fl= (A, 8 A,)-‘f.
Each iteration in (2.6) can be computed in the following steps:

(1) r = f”- fij-1, (2.7a)

(2) d=(m~;~~,+p,lj-‘r, (2.7b)

(3) r = ii’-’ + 2pjd, (2.7~)

(4) d=(A;‘B,@I+pjIj-*r, (2.7d)

(5) ii’=r- (p,,, +p,)d. (2.7e)

Mathematically, Algorithm 2.2 is equivalent to the tensor product generalized AD1 (TPGADI)
of [ll]:

iAl @ CB2+ Pj+lA*)lu j+l” = f - [(B, - P,+~A,) 8 AZ] uj, (2.8)

[(B, + P~+~A~) @ A2] ui+l = f - [A, @ (B, - p,+,A,)] u’+“‘. (2.9)

214 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

If the AD1 method is used as a preconditioner, then only the last iteration uk is needed. In this
case, Algorithm 2.2 is computationally more efficient than (2.8) and (2.9) for the following
reasons. First, each half step in (2.8) or (2.9) requires matrix by vector multiplications on the
right-hand side, while only vector updates are involved in (2.7). Second, though both methods
require the solution of tridiagonal systems at each half step, (2.7b) or (2.7d) require less
computation work. To see this, (2.7b) is written as

or

[I@ (4 + P,+V%)]d= (IQ%)r. (2.10)

This requires computing a matrix by vector multiplication and solving one tridiagonal system.
On the other hand, (2.8) involves solving the system

[A,@(B,+p,+,A,)]u=h or [A,~‘][‘o(‘,+PJ+,‘,)]~=‘,

which requires solving two tridiagonal systems. This clearly shows that Algorithm 2.2 not only
has fewer computational operations but also is more suitable for parallel computers than (2.8)
and (2.9) because the solution of tridiagonal systems is more difficult for parallel computations
than the matrix by vector multiplications.

The steps in (2.7) can be efficiently implemented on parallel computers; for details we refer to
[20,22]. It was shown in those papers that the computations of (2.7) can be made highly efficient
on parallel architectures by using pipelining and variations of the classical Gaussian elimination
algorithm for solving tridiagonal systems.

3. A parallel ADI preconditioner

When the k-term AD1 iterative method is used as a preconditioner, the preconditioning
operator M = Mk is defined in the following way.

For any given vector f, the action of Mkl on f is defined as

M,‘f = 2,

where uk is the kth iteration of the AD1 method given in Algorithm 2.2 applied to the system

(A, @&+B, cL4A2)U=f.

The operator Mk thus defined is clearly dependent upon the parameters { p,} and the initial u’,
as well as k. At first glance, in order to compute uk = M;‘f, the vectors

iP, ii’)...) ijk-‘, Uk
must be computed sequentially, which is done in the traditional AD1 method.

These sequential computations can be avoided if we assume p, f pj for all i Zj and u” = 0 as
we will see in the following theorem.

Theorem 3.1. If p, # pi for all i #j and u” = 0, then

Al;‘= ; [I@(B,+p,A,)]-l i:~~D1[(B,+piA,)~I]-l,
j=l 1=1

H. Jiang, Y.S. Wong / A parallel ADI preconditioner 215

where yiqD* = Y;:~‘(p) are some parameters defined in the following. Let yil = 2p,. Forp = 2, . . . , k,
compute

lGj<p,

p-l p-l

1+2p, c c (p _;;;; _p_) .
i=l j=l P 1 P J 1

(3.1)

Let yjTD* = y[, 1 < i, j < k.

Proof. From Algorithm 2.2, it can be shown that

Uk=2pk(~+pkI)-1(~+pkI)-1~

+(f+p&l(f?+pk~)-l(~-p,~)(E?-p,l)uk-l,

where fj = 1~ A;‘B,, f= A,‘B;’ 8 I and f-= (Alp’ 8 A;‘) f. By using the commutativity Of fi

and v, we obtain

By the assumption that u” = 0, it is easy to see that uk is a linear combination of vectors of the
form

JJ(~+pjl)-l~(fi+p;I)-lfl
j i

Furthermore, since p, # pj if i f j, we have

for some constants ci and cl. A similar result holds for g. This shows that

uk= i (I@A,lB,+pjl)-l ;y;~D1(A;ll?l@I+Pi~)-lf:
j=l i=l

(3.2)

The formula for y,TD’ can be obtained by induction. It is easy to verify that (3.2) is equivalent to

uk= 5 [I@(B,+P~A~)]-~ ~yi:D1[(B,+pjA,)oI]-lf. (3 *3)
j=l i=l

This completes the proof. q

216 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

In general, for any given sets of { yjj} and { p,}, pj > 0, we can define a k-term AD1
preconditioning operator as

(3.4)

With this definition, the classical AD1 method of Peaceman and Rachford is a special case of
(3.4) with A, = A, = I and some particular choice of { yij}.

When (3.4) is used in computing uk = M;‘f, the maximum degree of parallelism can be
achieved. If we assume memory space for k vectors d,, d,, . . . , d, is available, then It4; ‘f can be
computed in the following algorithm.

Algorithm 3.2.
(1) Compute in parallel for i = 1,. . . , k,

d, = [(B, + p/II) @ I] -If.

(2) Compute in parallel for j = 1,. . . , k,

dj + ,$, Yijd,*

(3) Compute in parallel for j = 1,. . . , k,

dj+- [I@(BZ+pjAz)]-ldj.

(4) Compute
k

uk = c d,.

Note that the work in each of the formulas (3.5a)-(3.5d) can also be carried out in parallel.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

We compare Algorithm 3.2 with Algorithm 2.2. To compute Mi’f in Algorithm 2.2, roughly k
repeated executions of (2.7a)-(2.7e) are needed. The work in computing M;‘f is therefore 2k
tridiagonal systems and 3k vector additions. The work in Algorithm 3.2 is dominated by 2k
tridiagonal systems and k(k + 1) vector additions. Thus the extra work for Algorithm 3.2, which
is represented in (3.5b), is 2(k(k - 2)N) floating-point operations, where N is the size of the
vectors. The detailed operation counts are given in Table 1. This extra work is a small price paid
to improve the parallel properties of the AD1 method. The advantages of (3.5) over (2.7) in
parallel computations are obvious. Not only the k executions of solving tridiagonal systems can

Table 1
Operation counts for computing Mi’f

Operations r+r+pd* r 6 (I@A)r r 4- (lc3B)-‘r

Algorithm 2.2 5k-1 2k 2k
Algorithm 3.2 k2+3k 0 2k

* Including B + pA, where A, B are fi X fi matrices.

H. Jiang, Y.S. Wong / A paraNel ADI preconditioner 217

be done simultaneously, but also the vector updates in (2.7) are replaced by linear combinations.
Linear combinations of the form (3.5b) or (3.5d) have lower cache-miss ratio than the vector
updates of the form (2.7a), (2.7~) or (2.7e) [4,5,15]. Operations with lower cache-miss ratio
require fewer memory references, reducing memory contentions. The extra work in (3.5b) is not
significant if a large number of processors are available, because the linear combination (3.5b)
has an arithmetic complexity of O(log,k).

In the case where A, # I, or A, # I, as in the 9-point scheme for the Laplace equation, (2.7)
requires even more computational work. In (2.7b), the solution is obtained by solving the system
(2.10). Solving (2.10) is more costly than solving (3.5~) because of an additional matrix by vector
multiplication on the right-hand side of (2.10). In fact, when (3.5) is used, the work to compute
M;‘f for the 5- point scheme and the 9-point scheme are about the same, because the operations
for computing B, + p,A, may be regarded as the same whether A, is the identity or a tridiagonal
matrix.

Instead of a preconditioner, Algorithm 3.2 can also be regarded as a k-term AD1 iterative
method to apply directly to (1.1). In other words, ML1 can be applied to (1.1) repetitively to
yield successive approximations urn = (ML ‘)“f. This amounts to restarting the AD1 algorithm
after every k steps.

4. Acceleration parameters

The set of optimum parameters { p, }, j = 1,. . . , k, for the AD1 method (2.1) and (2.2), or
equivalently Algorithm 2.2, can be obtained by minimizing the bound of error ek of (2.3). Let a,
b be the lower and upper bounds of a(A,‘&) and a(A;‘B,), i.e., assume

+t-‘B,) = [a, b], a(A,‘B,) c [a, b].

Then the optimum parameters { p,} are determined by minimizing the expression

k CA-Pj)(P-Pj) I
max

n (‘+Pj)(P+Pj) 1 XE[U,b] j=i
s~la*bl

P-1)

Wachspress [32] described a procedure to solve this minimax problem in which the unique
optimum parameters { p?} are found in terms of elliptic functions.

Now we consider the acceleration parameters { y,,} and { p,} in (3.4). One criterion of
determining these parameters is that the preconditioned system (1.5) is better conditioned than
(l.l), which in general means I(M;*A - III 2 is small. If ML1 is given by (3.4), we have

M;lA= ; ~:Y,~[~~(B,+~~A,)]-~[(B,+~~A,)~I~-’[A,~B,+B,~A,~
J=l i=l

If X E a(&‘B,) and p E a(A;‘&), then an eigenvalue of MklA is given by

(4.2)

218 H. Jiang, Y.S. Wong / A paraIIe1 ADI precondilioner

k k

It follows that 11 Mi’A - 111 2 is bounded by

and the condition number of MilA is bounded by

1 + Wk

1 - Wk ’

(4.3)

(4.4)

if wk < 1. Thus the optimum parameters { yjj } , { p, } should be chosen to minimize the expression
(4.4). We assume these optimum parameters exist, and they are denoted by { yiT }, { pi* }, i.e.,

wk(Y*Y P*) G wk(Y? P)? for a11 {Yfj}? {Pj}* (4.5)

Finding these optimum parameters amounts to solving a nonlinear minimax problem, and
efficient numerical methods such as the Remez algorithms [3,34] are available. However, the
solution of nonlinear best approximations are more difficult than linear approximations from
both theoretic and practical viewpoint. A linear problem results if { p,} are held fixed and the

optimum parameters { yGp} = { yGp(p)} are sought such that

wk(Yop(P), P> G Ok Y, P (), for all {Y,j>.

Clearly, for any { p,}, with pj > 0, pi # pj if i #j, the following inequalities hold:

%(Y*, P*> G wk(Yop(P), P) G Uk(YAD’(P), P), (4-6)

where { yi;,*} are given by (3.1). In general, for a given set {pi}, { y;p(p)} need to be computed
by the Remez algorithm. However, the following result shows that if { pj } = { p,““}, the { yGp(pop)}
can easily be computed from (3.1).

Theorem

Proof. In

To prove

where

4.1. If { py } are the optimum parameters which minimize the expression (4.1), then

~k(yop(pop), pop) = @,(yAD’(PoP), Pop)-

view of (4.6), we need to show

~k(~AD1(~op), pop) G wk(y, pop), for all {vii>. (4.7)

this, we note that

i: 2 Y:“‘(P”“)
x+cL k (A- PT)(V PYP)

;=I ;=, (x+ppp)(p+p$ -‘=,C1 (x+py)(p+p;p) =P(x)P(dy

(4.8)

H. Jiang, Y.S. Wong / A paraNel ADI preconditioner 219

k h-pTp
P(h) = I-I ~

j=l x + PT.

It is shown in [32] that P(h) has alternance properties, i.e., P(A) assumes its maximum
magnitude with alternating sign k + 1 times in [a, b].

For a given pLo E [a, b], the function

h+CLo x + PO g(N=? ~Y.tD1(h+pop)(po+p~p) --I= liTp~-l
r=l j=l I I I=1

= mP(Po)
also has the alternance properties, where

jT;:i”” =
i Y.4D’po:p~.
j=l

Let us consider the system

x+po x+/Jo X+PO ~ ~
x + p’IP ’ h + p;p ’ . . . ’ x + pi* .

(4.9)

(4.10)

Since pTp > 0 and py* # p:P if i #j, (4.10) is a Chebyshev system on [a, b] (see [3, p.721). Thus
the minimum of the expression

max 2 7.X - I
h=la,hl r=l ‘At- pyp

is achieved by the function which has the alternance properties. This function must be g of (4.9).
Therefore

Since (4.11) holds for all p. E [a, b], we have

which is exactly the same as (4.7). 0

3 for all { yii } ,

(4.11)

(4.12)

In some preconditioned iterative methods, such as the preconditioned conjugate gradient
method, it is required that the preconditioner Mk be positive definite. The positive definiteness
of Mk is guaranteed by the following theorem.

220 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

Theorem 4.2. Mk defined in (3.4) is positive definite when the parameters { y,,}, { pj} satisfy one of
the following conditions:

(1) PJ ’ 0, pi#pj ifi#j, Y;j = Vi;“‘(P)>

(2) Pj’ O, PI+ Pj ifi+_i, Yij=Y~“(P)>

(3) Pj = P;” > Y, j = YiT ’

Proof. It follows from (4.3) and (4.4) that the eigenvalues of MilA are bounded below by

Therefore, if wk < 1, then the eigenvalues of iV&*A are all positive. Since A is positive definite,
we conclude that It4i1, hence Mk, is positive definite if wk < 1.

Let { p,} be such that pj > 0 and pi # pj. For this set of { p,}, the AD1 method of Algorithm
2.2 is equivalent to (3.4) if y,, = yiTD’(p). It is easy to verify that

k k
h+P

c =D1(P)(X+pi)(p+pj) -l

k (A- Pj)(cL- Pj)

;=I j=* ,Ql (X+p,)(p+p,) .
(4.13)

The right-hand side of (4.13) is clearly less than 1. Thus we have

4YAD1(PL P) < 1,

and the rest of the proof follows from the inequalities (4.6). 0

Finally, if { p,} is given such that pj > 0 and pi # pj if i #j, the parameters { yi;,‘(p)} can be
computed from Theorem 3.1. However, we note that (3.1) is not numerically stable. The severity
of the instability is dependent upon the choices of parameters { p,}. Our numerical results show
that for practical problems where k is not very large and pj = pTp, the instability is negligible.

5. Implementations on a parallel computer

It is often believed that any discussion of parallel numerical algorithms is considered
incomplete if issues of architecture/algorithm mapping are not addressed. In this section we
discuss some implementations of Algorithm 3.2 on the Myrias multiprocessor architecture.
Algorithm 3.2 can also be implemented on hypercube architectures. With data structures similar
to those described in [13,20,22] this algorithm is expected to perform well on hypercube
architecture.

The Myrias parallel computer is a newly developed massively-parallel computer system.
Myrias Parallel Fortran provides access to parallelism and dynamic array allocation. When a
“parent” task starts a parallel process, a collection of “child” tasks is created, and the parent
task is suspended until all of the child tasks have finished executing. Child tasks inherit identical
copies of the parent task’s memory state. Each task then executes independently. When all of the
child tasks have completed, their memory images are merged together to form a new memory

H. Jiang, Y.S. Wong / A parallel ADI preconditioner 221

image for the parent, and the parent task resumes execution [30]. Under this programming
model, the way the memory is arranged physically in the machine is different from the way the
memory is viewed by a user. The user sees a flat address space and does not have control over
where data are actually stored in physical memory. The assignment of child tasks to processors,
and the management of the memory spaces of tasks are transparent to the user.

To implement Algorithm 3.2 on the Myrias parallel computer, we first note that step (1) of
this algorithm constitutes a set of k independent tridiagonal systems

[(B,+p,A)@I]d,=f, j=l,..., k. (5.1)

Using the matrix representation for vectors [ll], (5.1) can be written as

(B,+p,A,)$r=f=, j=l,..., k, (5 -2)

where d, and f are represented by n X n matrices. Let

dJ’= [df, d”: ,..., $1, fT= [f7,...Jy (5.3)

where a:, f-l, i = 1, 2,. . . , n, are column vectors of size n. Then (5.2) consists of n independent
tridiagonal systems of size n:

(B,+p,A,)d;==fl’, i=l,..., n,

for each j = 1, 2,. . . , k.

(5 *4)

Step (1) of Algorithm 3.2, consisting of kn independent systems, can be performed by p tasks,
each solving kn/p systems of the form (5.4) by the Gaussian elimination algorithm. The memory
storage required for the solution of (5.4) by the Gaussian elimination algorithm, other than f, d
and p, is created dynamically within the fast local memory, and destroyed after the task is
completed. A potential problem in solving (5.4) is that the vector f’ is not stored in consecutive
memory locations because of the transpose in (5.3). However, in the Gaussian elimination
process only one read of data from the task’s own copy of f is required and f needs not be
updated when merging takes place at the end of the parallel process. In the merging procedure,
only the locations of dj are updated. The updating is performed with good locality of reference
because each task addresses the consecutive memory locations of d,. Note that for each fixed j,
d, stores dj’, not d,.

After step (1) is completed, d,, can be partitioned as

-v d P
J’

v=l ,..., K, whereu=-.
k

This partition is to balance the work load of the processors, and may not necessarily be the same
form as (5.3). Then in step (2) each of the p tasks proceeds to compute

for a fixed j= l,..., k, and v= l,..., K. The size of the vectors in (5.5) is I = kn2/p.
Steps (3) and (4) are performed similarly as steps (1) and (2) with appropriate partitions of the

vectors.

222 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

6. Experimental results

Experiments were conducted on a Myrias SPS-2 with 64 processors. The Laplace equation
with Dirichlet boundary conditions over a square domain is discretized using a uniform mesh

The resulting system is

Au=(A,@BB,+B,&4A,)u=f, (6.1)

where Aj, B,, j = 1, 2, are given by (1.3) for the 5-point approximation and by (1.4) for the
9-point approximation. The number of equations in (6.1) is N = n2.

Equation (6.1) is solved by the preconditioned conjugate gradient method. The following
algorithm, which is a modification of the original PCG algorithm [8], was proposed in [4] for
parallel computations.

A parallel PCG algorithm.
choose u,,
ro=f-Au o, p. = d, = M-‘r,
compute and store Ad,,

a, = (do, ro)/(Ado, doI, b_, = 0
For i = 0, 1, . . . until convergence do
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

pi = di + b;-IPi-
Api = Ad, + bi_lApi_,

‘i+l = ui + aipi

:;+ll
= ri - aiAp,
= M-‘ri+,

compute and store Adi+l

compute (di+l, C+l), (Ad,+,, di+l>
b, = (d,+l, <+l)/(di, 5)
‘i+l = (di+l, C+,)/[(Adi+l, di+,) - (bi/ai)(di+,, C+l)l

In the above, M is a preconditioner. We will consider the preconditioners of the AD1 methods
given by Algorithms 2.2 and 3.2. For simplicity, we denote by TADI the PCG algorithm when
the preconditioner is given by Algorithm 2.2, and by PAD1 the method when the preconditioner
is given by Algorithm 3.2.

The eigenvalues of A,‘B, = A;‘B, are given by

[sin2(2(nn: 1,)
for 5-point,

‘j=

I

sin2(2(z 1)) j=ly 2y*..y n.

1 + : cos ! * 1

9 for 9 point 7

223 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

Thus the bounds for a(A,‘B,) = a(A,-‘B,) can be found to be

‘sin2(2(,“t 1)), for 5-point,

for9_point
>

‘sin’(2(tJ I,), for 5-point,

for 9_point

The parameters {pi} are chosen to be the Peaceman-Rachford parameters according to [35,
p.5251 for both TAD1 and PADI:

a (2i- i)/2k
pj=b b

(i 3 j=1,2 k. >-*-,

This set of parameters approximates the optimum parameters
expression (4.1). The parameters { y,, } are chosen as { y$,‘(p))
choices, TADI and PADI are mathematically equivalent.

Implementation of PAD1 was discussed in Section 5, and each

{ p;P} which minimize the
given by (3.1). With these

iteration of TADI, given by
(2.7), is implemented similarly as for the PAD1 with k = 1. In other words, the TAD1 is a
parallel implementation of Algorithm 2.2. Thus all 64 processors are used in both the TAD1 and
PAD1 methods.

All the computations are performed in double precision. The iteration process is terminated if
the /,-norm of the residual ((r I(m < 10e8. As an initial guess for the PCG outer iteration, we
take a vector whose elements are random numbers uniformly distributed in [0, 11.

Table 2 compares the CPU-times required for convergence of the two methods with different
numbers of terms in the preconditioners. The speedup in the CPU-time of PAD1 over TAD1
increases with k. This is due to the fact that TAD1 requires more overhead cost and more
memory references as k is increased.

Table 2
CPU-time in seconds for convergence with n = 100

k 2 4 8 10 16 20 21

TADI 112.8 85.4 74.8 68.5 69.3 84.9 88.9
PADI 82.1 42.4 23.4 18.3 14.9 16.4 16.9

Speedup 1.37 2.01 3.02 3.74 4.65 5.18 5.26

224

Table 3

H. Jiang, Y.S. Wong / A parallel ADI preconditioner

CPU-time in seconds for computing M;‘r with n =lOO

k 2 4 8 10 16 20 21

TADI 4.4 8.4 16.5 20.5 32.4 40.2 42.4
PAD1 2.7 3.1 3.5 3.8 4.8 5.7 6.0

Speedup 1.63 2.71 4.71 5.39 6.75 7.05 7.07

Table 4
CPU-time in seconds for convergence with different n, k = 16

n 60 100 120 150 200

TAD1 47.5 69.3 94.0 162.0 234.2
PADI 11.0 14.9 17.0 33.2 49.6

Speedup 4.3 4.7 5.5 4.9 4.7

Table 5
CPU-time in seconds for convergence with different n, k = 20

n 60 100 120

TAD1 57.9 84.9 115.3
PAD1 11.7 16.4 19.9

Speedup 4.9 5.2 5.8

150 200

133.5 193.5
26.3 40.3

5.1 4.8

In Table 3 we report the CPU-time required to compute M;‘Y in step (5) of the PCG
algorithm. As expected, the CPU-time is approximately a linear function of k in the TAD1
method because the k-term TAD1 preconditioner roughly repeats k times of the l-term TAD1
preconditioner. On the other hand, the CPU-time increases slowly with k in the PAD1 method.

The results for different numbers of equations are reported in Tables 4 and 5. From these
results, we observe that the best speedup in the CPU-time of PAD1 over TAD1 appears to occur
at n = 120, but we do not fully understand this behavior.

Finally, Table 6 compares the results of the 5-point scheme and the 9-point scheme by using
the PAD1 method. As we pointed out earlier, the extra
negligible.

Table 6
Comparison of CPU-time in seconds for the 5- and 9-point schemes

work in solving a 9-point system is

5-point
9-noint

k=16

n =lOO

14.9
15.0

n=200

49.6
49.9

k = 20

n =lOO

16.4
16.4

n = 200

40.1
40.3

H. Jiang, Y.S. Wong / A paralleI ADI preconditioner 225

In the computations for the PAD1 method, the parameters { yjTD1} were computed from the
formulas given in Theorem 3.1. Instability was not observed for k up to 21 and for n ranging
from 60 to 300. The computed solutions from both the TAD1 and the PAD1 methods agree
within the accepted accuracy.

7. Conclusions

We have proposed a parallel algorithm for the ADI preconditioning in tensor product
formulations. In this algorithm, several steps of the AD1 iteration are computed simultaneously.
This results in improvements of both the degree of parallelism and the data locality over classical
AD1 algorithms. However the new algorithm also introduces some additional computational
work. The preliminary experimental results on a parallel computer demonstrate that this
algorithm can be implemented efficiently in parallel and good performance is observed. We have
also discussed the selection of acceleration parameters and the conditions for the preconditioner
to be positive definite. The practical value of this algorithm for implementing the AD1 scheme
directly, not as a preconditioner, has yet to be investigated.

Acknowledgements

We thank the Myrias Research Corporation for providing computing environment on the
Myrias SPS-2 computer. We are also indebted to Dr. M. Walker, Dr. B. Joe and Mr. F. Carlacci
for their helps in the course of preparing this paper. We thank the referees for their comments
leading to the improvement of this paper.

References

[l] L. Adams, m-step preconditioned conjugate gradient methods, SIAM J. Sci. Statist. Comput. 6 (2) (1985)
452-463.

[2] 0. Axelsson, A class of iterative methods for finite element equations, Comput. Methods Appl. Mech. Engrg. 9 (2)
(1976) 123-137.

[3] E.W. Cheney, Introduction to Approximation Theory (McGraw-Hill, New York, 1966).
[4] A.T. Chronopoulos and C.W. Gear, s-step iterative methods for symmetric linear systems, J. Comput. Appl.

Math. 25 (2) (1989) 153-168.
[5] A.T. Chronopoulos and C.W. Gear, On the efficient implementation of preconditioned s-step conjugate gradient

methods on multiprocessors with memory hierarchy, Parallel Comput. 11 (1) (1989) 37-53.
[6] B. Codenotti and M. Leoncini, Parallelism and fast solution of linear systems, Comput. Math. Appl. 19 (1990)

1-18.
[7] P. Concus and G.H. Golub, Use of fast direct methods for the efficient numerical solution of nonseparable

elliptic equations, SIAM J. Numer. Anal. 10 (1973) 1103-1120.
[8] P. Concus, G.H. Golub and D.P. O’Leary, A generalized conjugate gradient method for the numerical solution of

elliptic partial differential equations, in: J.R. Bunch and D.J. Rose, Eds., Sparse Matrix Computations (Academic
Press, New York, 1976) 309-332.

(91 J. Douglas Jr and H.H. Rachford Jr, On the numerical solution of heat conduction problems in two or three space
variables, Trans. Amer. Math. Sot. 82 (1956) 421-439.

226 H. Jiang, Y.S. Wong / A parallel ADI preconditioner

[lo] E.G. D’Yakonov, An iteration method for solving systems of finite difference equations, Soviet Math. Dokl. 2
(1961) 647-650.

[ll] W.R. Dyksen, Tensor product generalized AD1 methods for separable elliptic problems, SIAM J. Numer. Anal.
24 (1987) 59-76.

[12] W.R. Dyksen, A tensor product generalized ADI method for elliptic problems on cylindrical domains with holes,
J. Compur. Appl. Math. 16 (1) (1986) 43-58.

[13] 0. Egecioglu, C.K. Koc and A.J. Laub, A recursive doubling algorithm for solution of tridiagonal systems on
hypercube multiprocessors, J. Comput. Appl. Math. 27 (l&2) (1989) 95-108.

[14] D.J. Evans and C.R. Gane, Alternating direction preconditioning methods for partial differential equations, in:
D.J. Evans, Ed., Precondition Methods, Theory and Applications (Gordon and Breach, New York, 1983) 81-114.

[15] K.A. Gallivan, R.J. Plemnons and A.H. Sameh, Parallel algorithms for dense linear algebra computations, SIAM
Rev. 32 (1990) 54-135.

[16] G.H. Golub and D.P. O’Leary, Some history of the conjugate gradient and Lanczos algorithms: 1948-1976,
SIAM Rev. 31 (1989) 50-102.

[17] J.E. Gunn, The numerical solution of V. avu = f by a semi-explicit alternating-direction iterative technique,
Numer. Math. 6 (1964) 181-184.

[18] J.E. Gunn, The solution of elliptic difference equations by semi-explicit iterative techniques, SIAM J. Numer.
Anal. 2 (B) (1965) 24-45.

[19] P.R. Halmos, Finite-dimensional Vector Spaces (Van Nostrand, Princeton, NJ, 2nd ed., 1959).
[20] C.T. Ho and S.L. Johnsson, Optimizing tridiagonal solvers for alternating direction methods on Boolean cube

multiprocessors, SZAM J. Sci. Statist. Comput. 11 (1990) 563-592.
[21] B.P. Il’in, Some estimates for conjugate gradient methods, U.S.S.R. Comput. Math. and Math. Phys. 16 (1976)

22-30.
[22] S.L. Johnsson, Y. Saad and M.H. Schultz, Alternating direction methods on multiprocessors, SIAM J. Sci.

Statist. Comput. 8 (1987) 686-700.
[23] J.J. Lambiotte and R.G. Voigt, The solution of tridiagonal linear systems on the CDC STAR-100 computer,

ACM Trans. Math. Software 1 (1975) 308-329.
[24] R.E. Lynch, J.R. Rice and D.H. Thomas, Tensor product analysis of alternating direction implicit methods, J.

Sot. Indust Appl. Math. 13 (1965) 995-1006.
[25] T. Manteuffel and S. Parter, Preconditioning and boundary conditions, SIAM J. Numer. Anal. 27 (1990)

656-694.
[26] J.M. Ortega and R.G. Voigt, Solution of partial differential equations on vector and parallel computers, SIAM

Rev. 27 (1985) 149-240.
[27] D.W. Peaceman and H.H. Rachford Jr, The numerical solution of parabolic and elliptic differential equations, J.

Sot. Indust. Appl. Math. 3 (1955) 28-41.
[28] A.H. Sameh, S.C. Chen and D.J. Kuck, Parallel Poisson and biharmonic solvers, Computing 17 (1976) 219-230.
[29] H.S. Stone, An efficient parallel algorithm for the solution of a tridagonal linear system of equations, J. Assoc.

Comput. Mach. 20 (1) (1973) 27-38.
[30] T. Stone, B. Joe, A. Behie and M. London, Solution of linear systems on a MIMD parallel computer, presented at

Supercomputing Symposium ‘90, Montreal, 1990.
[31] H.A. van der Vorst, Analysis of a parallel solution method for tridiagonal linear systems, Parallel Comput. 5 (3)

(1987) 303-311.
[32] E.L. Wachspress, Optimum alternating-direction-implicit iteration parameters for a model problem, J. Sot.

Indust. Appl. Math. 10 (1962) 339-350.
[33] E.L. Wachspress, Extended application of alternating direction implicit iteration model problem theory, J. SOC.

Indust. Appl. Math. 11 (1963) 994-1016.
[34] G.A. Watson, Approximation Theory and Numerical Methods (Wiley, New York, 1980).
[35] D.M. Young, Iterative Solution of Large Linear Systems (Academic Press, New York, 1971).

