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Abstract 

Jiang, H. and Y.S. Wong, A parallel alternating direction implicit preconditioning method, Journal of 
Computational and Applied Mathematics 36 (1991) 209-226. 

The alternating direction implicit (ADI) iterative method is an efficient iterative method to solve systems of 
linear equations due to its extremely fast convergence. The AD1 method has also been used successfully as a 
preconditioner in some other iterative methods, such as the preconditioned conjugate gradient. In this paper a 
parallel algorithm for the AD1 preconditioning is proposed. In this algorithm, several steps of the AD1 iteration 
are computed simultaneously. This means that several tridiagonal systems that are traditionally solved sequen- 
tially are now solved concurrently. The high performance of this algorithm is achieved by increasing the degree 
of parallelism and reducing memory contention. The algorithm can easily be implemented in a multiprocessor 
architecture. Experiments have been conducted on the Myrias SPS-2 computer with 64 processors and good 
performance of this algorithm is observed. 

Keywork AD1 methods, preconditioners, parallel iterative methods. 

1. Introduction 

The alternating direction implicit (ADI) iterative method, due to Peaceman and Rachford [27] 
and Douglas and Rachford [9], is an efficient iterative technique to solve systems of linear 
equations resulting from discretizations of partial differential equations. For some model 
problems, an extremely rapid convergence rate can be realized by the proper choice of iteration 
parameters. Over the past thirty-five years, theoretical and experimental results have demon- 
strated that AD1 is also an effective method for solving a large class of elliptic problems. Dyksen 
[11,12] applied Tensor Product Generalized AD1 (TPGADI) methods to an entire class of 
separable elliptic problems. The AD1 method, when used as a preconditioner in conjunction with 
another outer iterative scheme, has also been proved to be effective for solving more general 
problems. It has been shown [7,25] that an arbitrary second-order self-adjoint elliptic partial 
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differential equation can be preconditioned by the Laplacian on the same grid with appropriate 
boundary conditions. Thus the solution of the preconditioned system involves solutions of 
equations with the Laplace operator. The latter can be solved rapidly by the ADI method. The 
first published discussion of combining several iterations of AD1 with an outer iterative method 
was [lo]. Wachspress [33] used the AD1 applied to a model problem as a preconditioner for 
conjugate gradients (CG) applied to diffusion equations with variable diffusion coefficients. 
Subsequently, the AD1 preconditioned CG has been applied to a variety of problems, cf. 
[2,14,16-181. Adams [l] analyzed convergence rates of the preconditioned CG method where the 
preconditioners are based on several iterations of some iterative methods. 

One step of the AD1 iteration involves two sweeps of mesh in the coordinate directions. In the 
case of using finite differences, each sweep corresponds to solving a tridiagonal system. A 
difficulty in parallelizing the AD1 method is that classical algorithms for solving tridiagonal 
systems are sequential in nature and are unsatisfactory for parallel computations. There has been 
a considerable amount of work to solve tridiagonal systems on parallel computers, see, for 
example, [23,26,28,29,31]. Another potential problem in parallel computers is to arrange the 
storage so that transfers between sweeps are minimized. Since each sweep of AD1 constitutes a 
set of independent tridiagonal systems, the solution is parallelizable. However, the transfers 
between sweeps involve expensive data communications, which causes storage contention and 
access conflicts on many parallel architectures [22,26]. Johnsson et al. [22] proposed a few 
implementations of the AD1 method on multiprocessors. They described some data structures 
and algorithms that efficiently use some multiprocessor configurations. Their complexity analysis 
shows that the AD1 method can be made highly efficient on parallel architectures by using some 
parallel algorithms for solving tridiagonal systems. 

Although parallelism is introduced in each step of the AD1 method, the successive steps are 
computed sequentially. The fact that the next step can only be computed when the previous step 
is completed constitutes a severe bottleneck in achieving high performance on parallel architec- 
tures. This is reflected in the large overhead cost for initializing parallel process and excessive 
memory references. Some degree of parallelism can be achieved by pipelining techniques where 
the next iteration can begin as soon as some subsets of the unknowns from the previous iteration 
are computed. To achieve maximum performance on parallel architectures, however, it is 
desirable to perform several iterative steps of the AD1 iteration simultaneously so as to increase 
the degree of parallelism and reduce the memory contention. Chronopoulos and Gear [4,5] are 
the first to introduce the concept of s-step iterative methods in which s consecutive steps of a 
one-step method are performed simultaneously. In [4,5] they derived s-step conjugate gradient 
methods for symmetric and positive definite linear systems. 

In this paper, we propose an algorithm for the AD1 method where k step consecutive 
iterations are computed simultaneously. For example, the k tridiagonal systems that are 
traditionally solved consecutively are now solved concurrently. We will show by complexity 
analysis and experiments that the new algorithm can achieve high performance on parallel 
computers. We note that the present algorithm is different from the m-step preconditioners of 
Adams [l]. In the latter, m steps of some stationary iterative methods are concerned. 

We consider the solution of the partial differential equation 

-qz(x, y)g)-+, Y)~)=/(x~ YL ax (XT Y)EQ, 

L4 = 0, (x, Y) E afi, 
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where a > 0, b > 0 and 52 = [0, l] X [0, 11. The numerical solution of the problem may be 
obtained by the usual procedure of placing a set of mesh points on Ic2. This results in a system of 
linear equations 

Au=(H+ I+=f. (1.1) 

For separable problems, it is possible to write H and V in the tensor product form 

H=A, @BB,, V= B, @A,, (1.2) 

where A,, A,, B,, B2 are matrices of order n X n, and u, f are column vectors of size n2. We 
assume that A is positive definite, and, furthermore, A,‘, A;’ exist and A,‘B, and A;‘B, are 
also positive definite. For example, when a = b = constant, the 5-point scheme results in 

A, =A,=I, B,=B,=trid(-+,l, -;), 

and the 9-point scheme yields 

0.3) 

A, = A, = trid(&, 1, &), B,=B,=trid(-+,l, -$). (1.4) 

In this paper, we will consider (1.1) in the tensor product form. The tensor product form, 
which was first studied for the AD1 method in [24] and recently in [ll], has advantages in both 
analysis and applications. A detailed discussion of tensor products of linear spaces and operators 
can be found in [19] and a summary of some properties of tensor products of matrices which are 
useful in the analysis of the AD1 method is given in [ll]. 

An efficient way to solve (1.1) is to apply an iterative method to the system 

M-‘Au = M-‘f, (I-5) 

in which M- ’ is a preconditioner. A k-term AD1 preconditioner is obtained if M- ’ = ML ’ is 
defined as the k-iteration AD1 operator applied to (l.l), i.e., for any f, uk = M;‘f is the kth 
approximation of the solution of (1.1) by the AD1 method. 

We describe an algorithm to compute the preconditioning operator ML1 so that the maximum 
degree of parallelism is achieved. We will not be concerned with outer iterations, i.e., the iterative 
methods for solution of (1.2), although in our experiments the conjugate gradient method is used. 
Discussions of implementations of the CG method on parallel computers can be found in [5,6]. 

2. The AD1 iterative methods 

The Peaceman-Rachford alternating direction implicit iterative method applied to (1.1) is the 
implicit process defined by 

(H+ Pj+Jb 
j+*/* = f - (V- pj+ll)uj, (2.1) 

(v+ Pj+1G 
i+l=f- (H_pj+l~)ui+l/2, (2.2) 

where u” is an arbitrary initial vector, and { p,}, j = 1, 2,. . . , is a set of positive acceleration 
parameters. If H, V commute, it is possible to express the error of the k th iteration of the AD1 
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process in terms of eigenvalues and eigenvectors of H and V. Let ek = uk - u * be the error of 
the kth iteration; then the norm of ek satisfies 

II ek II d x FFH) 
k (A,-P,h-Pj) I 

I*:=w 
,Q (hj+Pj)(p;+Pj) /peU”, (2.3) 

where a(H), u(V) are spectra of H and V, respectively. 
The symmetric formulas (2.1) and (2.2) are suitable for analysis, but they are not computation- 

ally efficient. Formulas (2.1) and (2.2) can be rewritten so that the multiplications by V and H 

on the right-hand side are not necessary. Solving for u j+’ from (2.1) and (2.2), the result is 

ui+’ = (I/+ pj+J-lj f- (H - P,+~ I)[(H+ ~j+ll)-~[ f- (v- Pj+l’)Uj]])* 

From this, it follows that 

Ui+l=(Y+~~+,l)-‘((V-~j+ll)U’+ [fp(v-Pj+~l)uj] 

-(HePj+l’)[(H+P,+, I)-l[ f- (v- Pj+ll)u’]]) 

= (v+ Pj+l’)e’((v-Pj+ll) .j+ [I- (H-pj+,l)(H+pj+,l)-l] 

x [f- (‘- Pj+l’)‘j]) 

=(v+ Pj+~l)-l((v-Pj+ll)uj 

+ (H+p,+,l)(H+qj+~')-l-(H-p,+,')(H+p,+,l)-l] 
[ 

x[.f- ('- P,+ll)uj]} 

= 
(V+Pj+,')-l((V-Pj+l')u'+ 

2p,,l(H+p,+~')-'[f-('-p,,,')uj]}, 

which we can write as 

&+I = v+ 
c P,+,W1( ii’ + 2pj+,( H + P,+~I)-~( f- ii’)}: 

where 

ii’= (v- pJ+lI)uj. 

Moreover, note that 

ii’=(V-pj+,l)u’ 

= (I/-- p,+J)( V+ p,l))l 

X (~-~J~)uj-1+2~j(H+~j~)-1[f--(‘-_p,l)uj-’]) 
t 
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= (v- pj+ll)(v+pjl)-l(fij-’ +2pj(H+pjl)-'(f- iq 

=[(~+~~l)-(~j+*+~j)l](V+~jl)-1(Li’-1+2~j(H+P~~)~1(f-‘j-1)) 

= I- (P,+, I +pj)(V+pjl)-1](ii-'+2p,(H+pj~)-1(f-fi'-')). 

Thus the k th iteration uk can be computed by the following algorithm. 

Algorithm 2.1. Set ii0 = (V - pll)uo. For j = 1,. . . , k - 1, compute 

iij= I- (p,,, I 
+pj)(V+p,l)-1][ii’-‘+2p,(N+pjl)-1(f-ii-1)]. 

Set uk = (V+ pkl)-‘[Gk-’ + 2p,(H+ PkI)-i(f- iik-‘)I. 

In general, H, I/ as defined in (1.2) may not commute, but (1.1) can be recast into a system 
where the commutativity holds. We assume that A, and A, are nonsingular. When (1.1) is 
multiplied by Al-’ 8 A;’ from the left, the result is 

(ti+ l+=fl, (2 -4) 

where 

ti= I~AA,‘B,, F= A~-~B, 8 I, (2.5) 

and f”= (A,’ @ A;‘)f. It is clear that J?, p defined in (2.5) commute. The result of applying 
Algorithm 2.1 to (2.4) is the next algorithm. 

Algorithm 2.2. Set Go = (A,‘B, @ I - pll) u”. For j = 1,. . . , k - 1, compute 

k’= I- (p,,, 
[ 

+ p,)( A;‘B, @ I + p,lj-‘1 

X II’-‘+2p,(I@~A,‘B,+p~Ij-~(j-li’-’)]. [ (2.6) 

Set uk = (A,-‘B, 8 I + pkl)-‘[iike’ + 2p,(I @ A;‘B, + p,l)-‘(fl ii”-‘)]. 

In the above formulas fl= (A, 8 A,)-‘f. 
Each iteration in (2.6) can be computed in the following steps: 

(1) r = f”- fij-1, (2.7a) 

(2) d=(m~;~~,+p,lj-‘r, (2.7b) 

(3) r = ii’-’ + 2pjd, (2.7~) 

(4) d=(A;‘B,@I+pjIj-*r, (2.7d) 

(5) ii’=r- (p,,, +p,)d. (2.7e) 

Mathematically, Algorithm 2.2 is equivalent to the tensor product generalized AD1 (TPGADI) 
of [ll]: 

iAl @ CB2+ Pj+lA*)lu j+l” = f - [(B, - P,+~A,) 8 AZ] uj, (2.8) 

[(B, + P~+~A~) @ A2] ui+l = f - [A, @ (B, - p,+,A,)] u’+“‘. (2.9) 
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If the AD1 method is used as a preconditioner, then only the last iteration uk is needed. In this 
case, Algorithm 2.2 is computationally more efficient than (2.8) and (2.9) for the following 
reasons. First, each half step in (2.8) or (2.9) requires matrix by vector multiplications on the 
right-hand side, while only vector updates are involved in (2.7). Second, though both methods 
require the solution of tridiagonal systems at each half step, (2.7b) or (2.7d) require less 
computation work. To see this, (2.7b) is written as 

or 

[I@ (4 + P,+V%)]d= (IQ%)r. (2.10) 

This requires computing a matrix by vector multiplication and solving one tridiagonal system. 
On the other hand, (2.8) involves solving the system 

[A,@(B,+p,+,A,)]u=h or [A,~‘][‘o(‘,+PJ+,‘,)]~=‘, 

which requires solving two tridiagonal systems. This clearly shows that Algorithm 2.2 not only 
has fewer computational operations but also is more suitable for parallel computers than (2.8) 
and (2.9) because the solution of tridiagonal systems is more difficult for parallel computations 
than the matrix by vector multiplications. 

The steps in (2.7) can be efficiently implemented on parallel computers; for details we refer to 
[20,22]. It was shown in those papers that the computations of (2.7) can be made highly efficient 
on parallel architectures by using pipelining and variations of the classical Gaussian elimination 
algorithm for solving tridiagonal systems. 

3. A parallel ADI preconditioner 

When the k-term AD1 iterative method is used as a preconditioner, the preconditioning 
operator M = Mk is defined in the following way. 

For any given vector f, the action of Mkl on f is defined as 

M,‘f = 2, 

where uk is the kth iteration of the AD1 method given in Algorithm 2.2 applied to the system 

(A, @&+B, cL4A2)U=f. 

The operator Mk thus defined is clearly dependent upon the parameters { p,} and the initial u’, 
as well as k. At first glance, in order to compute uk = M;‘f, the vectors 

iP, ii’)...) ijk-‘, Uk 
must be computed sequentially, which is done in the traditional AD1 method. 

These sequential computations can be avoided if we assume p, f pj for all i Zj and u” = 0 as 
we will see in the following theorem. 

Theorem 3.1. If p, # pi for all i #j and u” = 0, then 

Al;‘= ; [I@(B,+p,A,)]-l i:~~D1[(B,+piA,)~I]-l, 
j=l 1=1 
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where yiqD* = Y;:~‘( p) are some parameters defined in the following. Let yil = 2p,. Forp = 2, . . . , k, 
compute 

lGj<p, 

p-l p-l 

1+2p, c c (p _;;;; _p_) . 
i=l j=l P 1 P J 1 

(3.1) 

Let yjTD* = y[, 1 < i, j < k. 

Proof. From Algorithm 2.2, it can be shown that 

Uk=2pk(~+pkI)-1(~+pkI)-1~ 

+(f+p&l(f?+pk~)-l(~-p,~)(E?-p,l)uk-l, 

where fj = 1~ A;‘B,, f= A,‘B;’ 8 I and f-= (Alp’ 8 A;‘) f. By using the commutativity Of fi 

and v, we obtain 

By the assumption that u” = 0, it is easy to see that uk is a linear combination of vectors of the 
form 

JJ(~+pjl)-l~(fi+p;I)-lfl 
j i 

Furthermore, since p, # pj if i f j, we have 

for some constants ci and cl. A similar result holds for g. This shows that 

uk= i (I@A,lB,+pjl)-l ;y;~D1(A;ll?l@I+Pi~)-lf: 
j=l i=l 

(3.2) 

The formula for y,TD’ can be obtained by induction. It is easy to verify that (3.2) is equivalent to 

uk= 5 [I@(B,+P~A~)]-~ ~yi:D1[(B,+pjA,)oI]-lf. (3 *3) 
j=l i=l 

This completes the proof. q 
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In general, for any given sets of { yjj} and { p,}, pj > 0, we can define a k-term AD1 
preconditioning operator as 

(3.4) 

With this definition, the classical AD1 method of Peaceman and Rachford is a special case of 
(3.4) with A, = A, = I and some particular choice of { yij}. 

When (3.4) is used in computing uk = M;‘f, the maximum degree of parallelism can be 
achieved. If we assume memory space for k vectors d,, d,, . . . , d, is available, then It4; ‘f can be 
computed in the following algorithm. 

Algorithm 3.2. 
(1) Compute in parallel for i = 1,. . . , k, 

d, = [(B, + p/II) @ I] -If. 

(2) Compute in parallel for j = 1,. . . , k, 

dj + ,$, Yijd,* 

(3) Compute in parallel for j = 1,. . . , k, 

dj+- [I@(BZ+pjAz)]-ldj. 

(4) Compute 
k 

uk = c d,. 

Note that the work in each of the formulas (3.5a)-(3.5d) can also be carried out in parallel. 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

We compare Algorithm 3.2 with Algorithm 2.2. To compute Mi’f in Algorithm 2.2, roughly k 
repeated executions of (2.7a)-(2.7e) are needed. The work in computing M;‘f is therefore 2k 
tridiagonal systems and 3k vector additions. The work in Algorithm 3.2 is dominated by 2k 
tridiagonal systems and k( k + 1) vector additions. Thus the extra work for Algorithm 3.2, which 
is represented in (3.5b), is 2( k( k - 2)N) floating-point operations, where N is the size of the 
vectors. The detailed operation counts are given in Table 1. This extra work is a small price paid 
to improve the parallel properties of the AD1 method. The advantages of (3.5) over (2.7) in 
parallel computations are obvious. Not only the k executions of solving tridiagonal systems can 

Table 1 
Operation counts for computing Mi’f 

Operations r+r+pd* r 6 (I@A)r r 4- (lc3B)-‘r 

Algorithm 2.2 5k-1 2k 2k 
Algorithm 3.2 k2+3k 0 2k 

* Including B + pA, where A, B are fi X fi matrices. 
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be done simultaneously, but also the vector updates in (2.7) are replaced by linear combinations. 
Linear combinations of the form (3.5b) or (3.5d) have lower cache-miss ratio than the vector 
updates of the form (2.7a), (2.7~) or (2.7e) [4,5,15]. Operations with lower cache-miss ratio 
require fewer memory references, reducing memory contentions. The extra work in (3.5b) is not 
significant if a large number of processors are available, because the linear combination (3.5b) 
has an arithmetic complexity of O(log,k). 

In the case where A, # I, or A, # I, as in the 9-point scheme for the Laplace equation, (2.7) 
requires even more computational work. In (2.7b), the solution is obtained by solving the system 
(2.10). Solving (2.10) is more costly than solving (3.5~) because of an additional matrix by vector 
multiplication on the right-hand side of (2.10). In fact, when (3.5) is used, the work to compute 
M;‘f for the 5- point scheme and the 9-point scheme are about the same, because the operations 
for computing B, + p,A, may be regarded as the same whether A, is the identity or a tridiagonal 
matrix. 

Instead of a preconditioner, Algorithm 3.2 can also be regarded as a k-term AD1 iterative 
method to apply directly to (1.1). In other words, ML1 can be applied to (1.1) repetitively to 
yield successive approximations urn = (ML ‘)“f. This amounts to restarting the AD1 algorithm 
after every k steps. 

4. Acceleration parameters 

The set of optimum parameters { p, }, j = 1,. . . , k, for the AD1 method (2.1) and (2.2), or 
equivalently Algorithm 2.2, can be obtained by minimizing the bound of error ek of (2.3). Let a, 
b be the lower and upper bounds of a( A,‘&) and a(A;‘B,), i.e., assume 

+t-‘B,) = [a, b], a(A,‘B,) c [a, b]. 

Then the optimum parameters { p,} are determined by minimizing the expression 

k CA-Pj)(P-Pj) I 
max 

n (‘+Pj)(P+Pj) 1 XE[U,b] j=i 
s~la*bl 

P-1) 

Wachspress [32] described a procedure to solve this minimax problem in which the unique 
optimum parameters { p?} are found in terms of elliptic functions. 

Now we consider the acceleration parameters { y,,} and { p,} in (3.4). One criterion of 
determining these parameters is that the preconditioned system (1.5) is better conditioned than 
(l.l), which in general means I( M;*A - III 2 is small. If ML1 is given by (3.4), we have 

M;lA= ; ~:Y,~[~~(B,+~~A,)]-~[(B,+~~A,)~I~-’[A,~B,+B,~A,~ 
J=l i=l 

If X E a(&‘B,) and p E a( A;‘&), then an eigenvalue of MklA is given by 

(4.2) 
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k k 

It follows that 11 Mi’A - 111 2 is bounded by 

and the condition number of MilA is bounded by 

1 + Wk 

1 - Wk ’ 

(4.3) 

(4.4) 

if wk < 1. Thus the optimum parameters { yjj } , { p, } should be chosen to minimize the expression 
(4.4). We assume these optimum parameters exist, and they are denoted by { yiT }, { pi* }, i.e., 

wk(Y*Y P*) G wk(Y? P)? for a11 {Yfj}? {Pj}* (4.5) 

Finding these optimum parameters amounts to solving a nonlinear minimax problem, and 
efficient numerical methods such as the Remez algorithms [3,34] are available. However, the 
solution of nonlinear best approximations are more difficult than linear approximations from 
both theoretic and practical viewpoint. A linear problem results if { p,} are held fixed and the 

optimum parameters { yGp} = { yGp(p)} are sought such that 

wk(Yop(P), P> G Ok Y, P ( ), for all {Y,j>. 

Clearly, for any { p,}, with pj > 0, pi # pj if i #j, the following inequalities hold: 

%(Y*, P*> G wk(Yop(P), P) G Uk(YAD’(P), P), (4-6) 

where { yi;,*} are given by (3.1). In general, for a given set {pi}, { y;p( p)} need to be computed 
by the Remez algorithm. However, the following result shows that if { pj } = { p,““}, the { yGp( pop)} 
can easily be computed from (3.1). 

Theorem 

Proof. In 

To prove 

where 

4.1. If { py } are the optimum parameters which minimize the expression (4.1), then 

~k(yop(pop), pop) = @,(yAD’(PoP), Pop)- 

view of (4.6), we need to show 

~k(~AD1(~op), pop) G wk(y, pop), for all {vii>. (4.7) 

this, we note that 

i: 2 Y:“‘(P”“) 
x+cL k (A- PT)(V PYP) 

;=I ;=, (x+ppp)(p+p$ -‘=,C1 (x+py)(p+p;p) =P(x)P(dy 

(4.8) 
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k h-pTp 
P(h) = I-I ~ 

j=l x + PT. 

It is shown in [32] that P(h) has alternance properties, i.e., P(A) assumes its maximum 
magnitude with alternating sign k + 1 times in [a, b]. 

For a given pLo E [a, b], the function 

h+CLo x + PO g(N=? ~Y.tD1(h+pop)(po+p~p) --I= liTp~-l 
r=l j=l I I I=1 

= mP(Po) 
also has the alternance properties, where 

jT;:i”” = 
i Y.4D’po:p~. 
j=l 

Let us consider the system 

x+po x+/Jo X+PO ~ ~ 
x + p’IP ’ h + p;p ’ . . . ’ x + pi* . 

(4.9) 

(4.10) 

Since pTp > 0 and py* # p:P if i #j, (4.10) is a Chebyshev system on [a, b] (see [3, p.721). Thus 
the minimum of the expression 

max 2 7.X - I 
h=la,hl r=l ‘At- pyp 

is achieved by the function which has the alternance properties. This function must be g of (4.9). 
Therefore 

Since (4.11) holds for all p. E [a, b], we have 

which is exactly the same as (4.7). 0 

3 for all { yii } , 

(4.11) 

(4.12) 

In some preconditioned iterative methods, such as the preconditioned conjugate gradient 
method, it is required that the preconditioner Mk be positive definite. The positive definiteness 
of Mk is guaranteed by the following theorem. 
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Theorem 4.2. Mk defined in (3.4) is positive definite when the parameters { y,,}, { pj} satisfy one of 
the following conditions: 

(1) PJ ’ 0, pi#pj ifi#j, Y;j = Vi;“‘(P)> 

(2) Pj’ O, PI+ Pj ifi+_i, Yij=Y~“(P)> 

(3) Pj = P;” > Y, j = YiT ’ 

Proof. It follows from (4.3) and (4.4) that the eigenvalues of MilA are bounded below by 

Therefore, if wk < 1, then the eigenvalues of iV&*A are all positive. Since A is positive definite, 
we conclude that It4i1, hence Mk, is positive definite if wk < 1. 

Let { p,} be such that pj > 0 and pi # pj. For this set of { p,}, the AD1 method of Algorithm 
2.2 is equivalent to (3.4) if y,, = yiTD’(p). It is easy to verify that 

k k 
h+P 

c =D1(P)(X+pi)(p+pj) -l 

k (A- Pj)(cL- Pj) 

;=I j=* ,Ql (X+p,)(p+p,) . 
(4.13) 

The right-hand side of (4.13) is clearly less than 1. Thus we have 

4YAD1(PL P) < 1, 

and the rest of the proof follows from the inequalities (4.6). 0 

Finally, if { p,} is given such that pj > 0 and pi # pj if i #j, the parameters { yi;,‘( p)} can be 
computed from Theorem 3.1. However, we note that (3.1) is not numerically stable. The severity 
of the instability is dependent upon the choices of parameters { p,}. Our numerical results show 
that for practical problems where k is not very large and pj = pTp, the instability is negligible. 

5. Implementations on a parallel computer 

It is often believed that any discussion of parallel numerical algorithms is considered 
incomplete if issues of architecture/algorithm mapping are not addressed. In this section we 
discuss some implementations of Algorithm 3.2 on the Myrias multiprocessor architecture. 
Algorithm 3.2 can also be implemented on hypercube architectures. With data structures similar 
to those described in [13,20,22] this algorithm is expected to perform well on hypercube 
architecture. 

The Myrias parallel computer is a newly developed massively-parallel computer system. 
Myrias Parallel Fortran provides access to parallelism and dynamic array allocation. When a 
“parent” task starts a parallel process, a collection of “child” tasks is created, and the parent 
task is suspended until all of the child tasks have finished executing. Child tasks inherit identical 
copies of the parent task’s memory state. Each task then executes independently. When all of the 
child tasks have completed, their memory images are merged together to form a new memory 
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image for the parent, and the parent task resumes execution [30]. Under this programming 
model, the way the memory is arranged physically in the machine is different from the way the 
memory is viewed by a user. The user sees a flat address space and does not have control over 
where data are actually stored in physical memory. The assignment of child tasks to processors, 
and the management of the memory spaces of tasks are transparent to the user. 

To implement Algorithm 3.2 on the Myrias parallel computer, we first note that step (1) of 
this algorithm constitutes a set of k independent tridiagonal systems 

[(B,+p,A)@I]d,=f, j=l,..., k. (5.1) 

Using the matrix representation for vectors [ll], (5.1) can be written as 

(B,+p,A,)$r=f=, j=l,..., k, (5 -2) 

where d, and f are represented by n X n matrices. Let 

dJ’= [df, d”: ,..., $1, fT= [f7,...Jy (5.3) 

where a:, f-l, i = 1, 2,. . . , n, are column vectors of size n. Then (5.2) consists of n independent 
tridiagonal systems of size n: 

(B,+p,A,)d;==fl’, i=l,..., n, 

for each j = 1, 2,. . . , k. 

(5 *4) 

Step (1) of Algorithm 3.2, consisting of kn independent systems, can be performed by p tasks, 
each solving kn/p systems of the form (5.4) by the Gaussian elimination algorithm. The memory 
storage required for the solution of (5.4) by the Gaussian elimination algorithm, other than f, d 
and p, is created dynamically within the fast local memory, and destroyed after the task is 
completed. A potential problem in solving (5.4) is that the vector f’ is not stored in consecutive 
memory locations because of the transpose in (5.3). However, in the Gaussian elimination 
process only one read of data from the task’s own copy of f is required and f needs not be 
updated when merging takes place at the end of the parallel process. In the merging procedure, 
only the locations of dj are updated. The updating is performed with good locality of reference 
because each task addresses the consecutive memory locations of d,. Note that for each fixed j, 
d, stores dj’, not d,. 

After step (1) is completed, d,, can be partitioned as 

-v d P 
J’ 

v=l ,..., K, whereu=-. 
k 

This partition is to balance the work load of the processors, and may not necessarily be the same 
form as (5.3). Then in step (2) each of the p tasks proceeds to compute 

for a fixed j= l,..., k, and v= l,..., K. The size of the vectors in (5.5) is I = kn2/p. 
Steps (3) and (4) are performed similarly as steps (1) and (2) with appropriate partitions of the 

vectors. 
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6. Experimental results 

Experiments were conducted on a Myrias SPS-2 with 64 processors. The Laplace equation 
with Dirichlet boundary conditions over a square domain is discretized using a uniform mesh 

The resulting system is 

Au=(A,@BB,+B,&4A,)u=f, (6.1) 

where Aj, B,, j = 1, 2, are given by (1.3) for the 5-point approximation and by (1.4) for the 
9-point approximation. The number of equations in (6.1) is N = n2. 

Equation (6.1) is solved by the preconditioned conjugate gradient method. The following 
algorithm, which is a modification of the original PCG algorithm [8], was proposed in [4] for 
parallel computations. 

A parallel PCG algorithm. 
choose u,, 
ro=f-Au o, p. = d, = M-‘r, 
compute and store Ad,, 

a, = (do, ro)/(Ado, doI, b_, = 0 
For i = 0, 1, . . . until convergence do 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

pi = di + b;-IPi- 
Api = Ad, + bi_lApi_, 

‘i+l = ui + aipi 

:;+ll 
= ri - aiAp, 
= M-‘ri+, 

compute and store Adi+l 

compute (di+l, C+l), (Ad,+,, di+l> 
b, = (d,+l, <+l)/(di, 5) 
‘i+l = (di+l, C+,)/[(Adi+l, di+,) - (bi/ai)(di+,, C+l)l 

In the above, M is a preconditioner. We will consider the preconditioners of the AD1 methods 
given by Algorithms 2.2 and 3.2. For simplicity, we denote by TADI the PCG algorithm when 
the preconditioner is given by Algorithm 2.2, and by PAD1 the method when the preconditioner 
is given by Algorithm 3.2. 

The eigenvalues of A,‘B, = A;‘B, are given by 

[sin2( 2(nn: 1,) 
for 5-point, 

‘j= 

I 

sin2( 2(z 1)) j=ly 2y*..y n. 

1 + : cos ! * 1 

9 for 9 point 7 
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Thus the bounds for a( A,‘B,) = a( A,-‘B,) can be found to be 

‘sin2( 2(,“t 1) ), for 5-point, 

for9_point 
> 

‘sin’( 2(tJ I,), for 5-point, 

for 9_point 

The parameters {pi} are chosen to be the Peaceman-Rachford parameters according to [35, 
p.5251 for both TAD1 and PADI: 

a (2i- i)/2k 
pj=b b 

( i 3 j=1,2 k. >-*-, 

This set of parameters approximates the optimum parameters 
expression (4.1). The parameters { y,, } are chosen as { y$,‘( p)) 
choices, TADI and PADI are mathematically equivalent. 

Implementation of PAD1 was discussed in Section 5, and each 

{ p;P} which minimize the 
given by (3.1). With these 

iteration of TADI, given by 
(2.7), is implemented similarly as for the PAD1 with k = 1. In other words, the TAD1 is a 
parallel implementation of Algorithm 2.2. Thus all 64 processors are used in both the TAD1 and 
PAD1 methods. 

All the computations are performed in double precision. The iteration process is terminated if 
the /,-norm of the residual (( r I( m < 10e8. As an initial guess for the PCG outer iteration, we 
take a vector whose elements are random numbers uniformly distributed in [0, 11. 

Table 2 compares the CPU-times required for convergence of the two methods with different 
numbers of terms in the preconditioners. The speedup in the CPU-time of PAD1 over TAD1 
increases with k. This is due to the fact that TAD1 requires more overhead cost and more 
memory references as k is increased. 

Table 2 
CPU-time in seconds for convergence with n = 100 

k 2 4 8 10 16 20 21 

TADI 112.8 85.4 74.8 68.5 69.3 84.9 88.9 
PADI 82.1 42.4 23.4 18.3 14.9 16.4 16.9 

Speedup 1.37 2.01 3.02 3.74 4.65 5.18 5.26 
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Table 3 
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CPU-time in seconds for computing M;‘r with n =lOO 

k 2 4 8 10 16 20 21 

TADI 4.4 8.4 16.5 20.5 32.4 40.2 42.4 
PAD1 2.7 3.1 3.5 3.8 4.8 5.7 6.0 

Speedup 1.63 2.71 4.71 5.39 6.75 7.05 7.07 

Table 4 
CPU-time in seconds for convergence with different n, k = 16 

n 60 100 120 150 200 

TAD1 47.5 69.3 94.0 162.0 234.2 
PADI 11.0 14.9 17.0 33.2 49.6 

Speedup 4.3 4.7 5.5 4.9 4.7 

Table 5 
CPU-time in seconds for convergence with different n, k = 20 

n 60 100 120 

TAD1 57.9 84.9 115.3 
PAD1 11.7 16.4 19.9 

Speedup 4.9 5.2 5.8 

150 200 

133.5 193.5 
26.3 40.3 

5.1 4.8 

In Table 3 we report the CPU-time required to compute M;‘Y in step (5) of the PCG 
algorithm. As expected, the CPU-time is approximately a linear function of k in the TAD1 
method because the k-term TAD1 preconditioner roughly repeats k times of the l-term TAD1 
preconditioner. On the other hand, the CPU-time increases slowly with k in the PAD1 method. 

The results for different numbers of equations are reported in Tables 4 and 5. From these 
results, we observe that the best speedup in the CPU-time of PAD1 over TAD1 appears to occur 
at n = 120, but we do not fully understand this behavior. 

Finally, Table 6 compares the results of the 5-point scheme and the 9-point scheme by using 
the PAD1 method. As we pointed out earlier, the extra 
negligible. 

Table 6 
Comparison of CPU-time in seconds for the 5- and 9-point schemes 

work in solving a 9-point system is 

5-point 
9-noint 

k=16 

n =lOO 

14.9 
15.0 

n=200 

49.6 
49.9 

k = 20 

n =lOO 

16.4 
16.4 

n = 200 

40.1 
40.3 
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In the computations for the PAD1 method, the parameters { yjTD1} were computed from the 
formulas given in Theorem 3.1. Instability was not observed for k up to 21 and for n ranging 
from 60 to 300. The computed solutions from both the TAD1 and the PAD1 methods agree 
within the accepted accuracy. 

7. Conclusions 

We have proposed a parallel algorithm for the ADI preconditioning in tensor product 
formulations. In this algorithm, several steps of the AD1 iteration are computed simultaneously. 
This results in improvements of both the degree of parallelism and the data locality over classical 
AD1 algorithms. However the new algorithm also introduces some additional computational 
work. The preliminary experimental results on a parallel computer demonstrate that this 
algorithm can be implemented efficiently in parallel and good performance is observed. We have 
also discussed the selection of acceleration parameters and the conditions for the preconditioner 
to be positive definite. The practical value of this algorithm for implementing the AD1 scheme 
directly, not as a preconditioner, has yet to be investigated. 
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