
ELSEVIER Journal of Computational and Applied Mathematics 87 (1997) 21-38 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

A semi-iterative method for real spectrum singular linear 
systems with an arbitrary index 

Joan-Josep Climent a'l, Michael Neumann b'*, Avram Sidi c 
a Departament de Tecnologia Informg~tica i Computaci6, Universitat d'Alacant, E-03071 Alacant, Spain 

b Department of  Mathematics, University of  Connecticut, Storrs, CT 06269-03009, USA 
~ Computer Science Department, Technion-Israel Institute of  Technology, Haifa 32000, Israel 

Received 14 February 1997; received in revised form 16 July 1997 

Abstract 

In this paper we develop a semi-iterative method for computing the Drazin-inverse solution of a singular linear system 
Ax = b, where the spectrum of A is real, but its index (i.e., the size of its largest Jordan block corresponding to the 
eigenvalue zero) is arbitrary. The method employs a set of polynomials that satisfy certain normalization conditions and 
minimize some well-defined least-squares norm. We develop an efficient recursive algorithm for implementing this method 
that has a fixed length independent of the index of A. Following that, we give a complete theory of convergence, in 
which we provide rates of convergence as well. We conclude with a numerical application to determine eigenprojections 
onto generalized eigenspaces. Our treatment extends the work of Hanke and Hochbruck (1993) that considers the case in 
which the index of A is 1. 

Keyword~: Singular systems; Iterative methods; Polynomial acceleration 

A M S  classification: 65F10; 65F20; 15A09 

I. Introduction 

Consider the linear system 

A x  = b, (1.1) 

where A E C"'" is singular and ind(A) = a is arbitrary. Here ind(.) denotes the index of  a matrix, 
namely, the size of  the largest Jordan block corresponding to its zero eigenvalue. The purpose of  
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this paper is to develop a semi-iterative method for computing the Drazin-inverse solution of  (1.1), 
namely, the vector AOb, where A D is the Drazin inverse of A, in an efficient manner. For the Drazin 
inverse and its properties, see, e.g., [1] or [2]. 

We shall assume that 

a(A)C_{O}U[c-d ,c+d] ,  O < d < c ,  (1.2) 

where a(.)  denotes the spectrum of a matrix. 
Our work here extends that of  Hanke and Hockbruck [8] which treats the case of  a = 1 and utilizes 

the general theory of Eiermann et al. [4] of  semi-iterative methods for computing the Drazin-inverse 
solution to singular systems. 

We begin with some essential background. Let x0 be an arbitrary initial vector and let r0 : b -Ax0 
be the corresponding residual vector. Then, beginning with x0, the mth iterate Xm is given by 

Xm =X0 + q~_l(A)ro = pm(A)xo q- qm-l(A )b, (1.3) 

where qm-l(2) is a polynomial of  degree at most m - 1 and Pm('~) is a polynomial of  degree at 
most m given by 

pro(2) = 1 -- )~qrn_l(/~). (1.4) 

We call pro(2) the mth residual polynomial. Note that 

pro(O) : 1. (1.5) 

As is shown by Eiermann et al. [4, Lemma 2], necessary and sufficient conditions for the convergence 
of  the sequence {Xm}m°°=O are that 

lim p~)(0)=0, i=  1,...,a, (1.6) 
m - - -¢ -o~  

and 

lim p~)(Ay)=0, i : O , . . . , k y -  1, (1.7) 
m - - - +  OO 

where 2j are the nonzero eigenvalues of  A and kj = ind(A - 2J ) .  
The conditions in (1.6) will, of  course, be satisfied if 

p(mi)(o) ---- O, i = l , . . . , a ,  f o r a l l m = O ,  1 , . . . .  (1.8) 

Polynomials pm(2) satisfying (1.8) and (1.7) were considered by Hanke and Hockbruck [8] for the 
case a = 1. We mention in passing that the polynomials that arise in connection with the extrapolation 
methods for the Drazin-inverse solution studied by Sidi [10] satisfy (1.8) and (1.7) for arbitrary a. 

The plan of  this paper is as follows: In Section 2, using a weight function w(2), we provide 
2 oo an integral norm II1" III and a set of  polynomials {Pm( )}m=0 satisfying (1.8) and (1.7) such that 

the norm of  pro(2) is minimal over the set of  all polynomials p(2)  of  degree at most m which 
satisfy p (0) - -  1 and p(i)(0)= 0, i = 1,... ,a. We use these polynomials to construct our semi-iterative 
method. Our work here extends directly the developments of  Hanke and Hockbruck [8] to the case 
a > l .  
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In Section 3 we develop a recursive algorithm for implementing the semi-iterative method defined 
by (1.3) and (1.4), pro(2) being the minimal polynomials of  Section 2. This algorithm involves only 
four successive iterates xm, independently of the index of  A. Here we make use of  the fact that the 
p,,(2) can be expressed in terms of  a set of  orthogonal polynomials that satisfy the usual 3-term 
recurrence relation. 

In Section 4 we prove the convergence of the method and provide error bounds and the corre- 
sponding rates of  convergence for the case in which 

1 
w ( 2 ) =  v/(2 _ c + d ) ( c + d  - 2)" (1.9) 

In particular, we show that if  A satisfies (1.2), then 

Ilxm - ADb - x011 = O(ma+stcm) as m --* 0% 

where )70 is that part of  x0 that lies in the null space of  A a, s is a nonnegative integer, and 

c -  v ~ - a  2 
tc= <1.  (1.10) 

d 

The asymptotic estimates that we give for the bounds on our residual polynomials in equation 
(4.17) of  Theorem 4.5 do not reach, except in the case of the index A being equal to 1, the near 
optimal rate achieved by the residuals of  Berstein (see [6]) which is displayed here in (4.24). 
But we believe that our short recurrence relation for computing the residuals makes up for this 
deficiency. 

In Section 5 we present several numerical examples in which we compute the projections onto the 
generalized eigenspaces o f  matrices whose spectrum is real and satisfies the condition of  (1.2). The 
algorithm does well when the transforming matrix of  A to its Jordan canonical form has a relatively 
low condition number. 

2. Minimal polynomials 

Let w(2) be a nonnegative weight function over the interval [ c -  d ,c  + d ]  and let f and g be 
functions defined on [ c - d , c + d ] .  Define the inner product (.,.) on [ c - d , c + d ]  by 

c+d 

( f  , g) = w ( 2 ) f ( 2 ) g ( 2 )  d2. 
dc--d 

Next define the norm l I I" III via 

'llflll2= (f, ~ f  ) • 
Let H,, denote the set of  all real polynomials of  degree at most m and define 

n ° = { p ~ / 7 m :  p ( 0 ) - -  1, p( ')(0) -- 0, i =  1 , . . . , a} .  

Note that pro(2)= 1 is the only member of  the se t /7  ° for m = 0 ,  1 , . . . ,a .  
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Theorem 2.1. Let  a be a positive integer. Then, for  m >i a + 1, the minimization problem 

min [[[p[[] (2.1) 
p~ nO 

admits a unique solution pro(2) which is characterized by 

(pm,AJ) = 0, j = l , . . . , m - a .  (2.2) 

Proof.  We start by noting that p E /7  ° implies that p (2)  = 1 - Aa+lu(A) with u E/7m-~-1. Thus, we 
have 

f c+d  [A_a_ 1 2 
I l lpl l l  2 = w ( 2 ) 2  °+2 - u (2 ) ]  d2.  ( 2 . 3 )  

,I c--d 

As w(A)A ~+2 is nonnegative on [ c -  d , c + d ] ,  there exists a unique polynomial u*(A) in /7m-~-1 
that minimizes the integral on the right-hand side o f  (2.3); u*(A) is the best approximation from 
H,~_~_I to A -a-1 in the norm induced by the inner product (.,2~+2.), see, e.g., [3]. Consequently, 
pm(2)--  1 - Aa+lu*(A) is the unique solution to (2.1). 

Consider the polynomial p (2)  = pro(A) + ~A ~+j, where ~ c ~ and j -- 1,. . .  ,m - a. Obviously, 
p C/70. Hence, 

[][pml[]2 ~ [][p[[12 = [[[pm[][2 + 2~(pm,2j)q_ ~221 [[)f+j[[[2. 

Since ~ has an arbitrary sign, this inequality holds if  and only if (2.2) holds. 
Conversely, assume that (2.2) holds for some p,, c /70 .  Let p E H °. Then p(A) - pro(2) has a 

zero o f  multiplicity at least a + 1 at A -- 0. Thus, 

v(2)---- p(A) - pm(A) . ,  Am_a)" Aa C span{A, ,~,2,.. 

Consequently, 

[[[p[[[2 = [[[Pmlll2 -k 2(pm, V) -k ][[)~av[[[2 z [llpmll[ 2 + tllA vlll =/> [llPm[[] z, 
since (pm, V)----0 by (2.2). This means that Pro(2) is the unique solution to (2.1). [] 

Now, let us define 

pro(2) - p,,+,(A) 
urn(2)--- A , m>,a. (2.4) 

Clearly, u,,(2) is a polynomial in span {2 a, 2~+1,... ,Am}. 

Theorem 2.2. The polynomials ).-aura(A), m ---- a ,  a + 1 . . . . .  are orthogonal with respect to the inner 
product (., 2a+2.). 

Proof. First, 2-aUra(2) is o f  degree precisely m - a. For any polynomial p (2)  in ~7m-a-l, with 
m >~ a + 1, we then have that 

(A--aura, Aa+2p) = (Urn, A2P) = (Pm -- Pro+l, ~P) = 0 

by (2.2). [] 
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From Theorem 2.2 we now have that the Urn(2 ) satisfy a 3-term recursion relation of the form 

Um(~)=(O, km~-~-~m)Um_l(2)-q-YmUm_2(2), m>>,a+ 1 (2.5) 

for some constants ~om, #m, and Vm, with va+t = 0. 
Let us denote by tin(2) the orthogonal polynomial of degree m with respect to the inner product 

(., .) and normalized such that t , , (0)= 1. As a result of this normalization, the t,,(2) satisfy a 3-term 
recursion relation of  the form 

tm+l(~)  = --  (Xm2tm(~.)q-(1 q-flm)tm(2) -- flmtm-,()L), m>~O 

with 

(2.6) 

t - l ( ) 0 = 0  and t 0 ( 2 ) = l ,  

for some constants 0~,n and tim. 

Theorem 2.3. For m >~ a, the polynomials p,,(2) can be expressed in terms of  the polynomials 6(2) 
as 

m+l 

2Pm(~)-~- E 7~m,jtj(~) ( 2 . 7 )  
j=m--a 

for some constants rcm,/ which satisfy the linear system 

m+l 

E ~m,j = O, 
j=m--a 

m+l 

Z =m'j''C(1)j ---- 1, ( 2 . 8 )  
j=ra--a 

m+l 

~ rCm,s.z(Os = 0 ,  i = 2 , 3 , . . . , a + 1 ,  
j=m--a 

- +  = where t/ 

Proof. Since 2pro(2) is in Hm+l, we have that 

But 

m+l 

2pro(2) = ~ Z~,,,/tj(2). 
j=O 

(2p,,,t/)=(pm,2tj)=O, j=O,  1 , . . . , m - - a - - 1 ,  

by (2.2). Therefore, rCm,j = 0 for j = 0, 1 , . . . ,  m - a - 1 .  This proves (2.7). The first of the equations in 
(2.8) follows by letting 2 = 0 in (2.7). The remaining equations in (2.8) can be obtained by taking 
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the ith derivative of  both sides of  (2.7), i =  1 , 2 , . . . , a +  1, noting that 

[2pm(2)] {0 = 2p~)(2) + ip~-1)(2),  i = 1 ,2 , . . . ,  

and letting 2 = 0 on both sides, and recalling that Pm E 17 °. [] 

We now show how the coefficients O,n, #m, and Vm in (2.5) can be determined from the constants 
Zrm,j in (2.7) and the coefficients am and tim in (2.6). 

Theorem 2.4. Let  

Ym :~- 7gm, m+l, (~m := ~m,m and em := 7~m,m--a" (2.9) 

Then the coefficients co,,, #m, and Vm o f (2 .5 )  can be computed f rom 

7 m +  1 
CO m - -  - -  O~m+l, 

Y,. 

1 I (Dm(~)m-l--(~m) ]~m+l(l+flm+l)] (2.10) 
# m  - -  ?m ~)m - -  (~m+l -~  0~m - -  , 

(Dm~m- l j~m-a-1 
V m 

O~m-a- 1 g'm- 2 

Proof. Using (2.7) in (2.4) we see that 

11 m+l 1 Um= ~ 7~m,m-atm-a'+ Z (7gm,J-- 7~m+l,j)tj-- 7~m+l,m+2tm+2 ' m>>.a, (2.11) 
j=m--a+l 

where we have written tj instead of  tj.(2) for short. 
Now, let m ~>a + 2. Substituting (2.11) in (2.5), and multiplying throughout by 22, we obtain that 

7~m,m-atm-a + 

- - 0 9  m 

--#m 

m V  m 

m + l  

E (7~m'J -- 7~m+l,j)tj -- 7~m+l'm+2tm+2 
j=m-a+ l 

[7~m-l,m-l-a2tm-l-a + .~-~ (7~m-l,j -- 7~m,j)~tj -- 7~m,m+12tm+l 
J=m--a 

[7~m-l,m-l-atm-l-a + ~ (Xm-l,j -- lgm,j)tj -- Tgm, m+ltm+l 
j=m-a 

[ m-i 1 rCm-2,m--2--atm--2-a + ~_~ ( ~ - 2 , j  -- rCm-lO)tj -- rCm--l,m2tm 
j=m--l--a 

= 0 .  (2.12) 
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Next, from (2.6) we know that 

2tj: ~jt j+l+ tj tj 1, j = O ,  1,.. 
as 

Substituting (2.13) in (2.12) yields that 

m+l 
7Zm, m - a t m - a  + Z (TZm,J --  7Zm+l'j)tj - -  7Zm+l,m+2tm+2 

j=m-a+ 1 

(2.13) 

( 1 1 -~- ~m--l--a 
--09 m 7~m_l,m_l_ a - -  tin_ a q- t in_l_  a 

O~m-- 1 --a O~m-- 1 --a 
f lm-  l - a  tm-  l - a  I 

j=m-a  • O~j ) 

--TCm,m+l 
( 1 1+ m+1 

--  - - t i n +  2 + - tm+ 1 --  t m 
O~m+ 1 O~m+ l O~m+ l 

- -~m [ 7~m--l,m--l--atm--l--a-~- ~ -~  (7~m--l,j --  7~m, j ) t j - -  7~m,m+ltm+l 1 
j=m--a 

- -V m 
m-1 1 

7~m--2"m--2--atm--2--a -~- Z (7~m--2'J - -  7~m-l ' j ) t j  - -  7~m--l,m~tm 
j=m-- l --a 

--0, 

r--~m+2 t which is of  the form ~..~j=m_a_21~m,j j ~ - 0  for some constants r/mj. Thus, we must have r/m,j = 0 for 
all j = m - a - 2, m - a - 1, . . . ,  m + 2. Now, from qm, m+2 = qm, m+l : qm,m--a-2 = 0, we obtain the 
expressions for COn, #m, and v,,, respectively, as given in (2.10). [] 

3. The algorithm 

We now return to the general framework of semi-iterative methods for computing the Drazin- 
inverse solution of  singular linear systems that was discussed in Section 1. We choose the polyno- 
mials Pm('~) that appear in (1.3) and (1.4) to be precisely those given in Theorem 2.1, the integer a 
in the latter being ind(A). As they are in/-/o, these pro(2) already satisfy (1.5) and (1.8). 

From (1.3), (1.4), and (2.4), the iterates Xm and xm+l of  the semi-iterative method satisfy 

Xm+ l - -  X m = u m ( A  ) r  O. (3.1) 

But the Urn(2) satisfy the 3-term recursion relation given in (2.5). Consequently, the Xm satisfy the 
4-term recursion relation 

Xm+ 1 =Xm-~-( .OmA(X m --  Xm_l ) -~-  ~m(X  m --  X m _ l ) ' ~ -  ~)m(Xm_l --  Xm_2)  , m >~a + 1, (3.2) 
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which is exactly of  the form given in [8] for the case a = 1. Note that this recursion relation has 
the same length independent of  a. 

As the recursion relation above is valid for m>>-a+ 1 and as Va+l = 0 ,  we see that in order to 
start the algorithm we need xa and Xa+1. Now because p a ( 2 ) =  1, we have that q a - l ( 2 ) =  0 so that 
xa =x0.  As for x~+l, we proceed as follows: First, we know that 

pa+l(2) = 1 - p2 a+l 

for some constant p that can be uniquely determined from the characterization property in (2.2). As 
(P~+1,2) = 0, we evidently have that 

(1,2) 
p - -  (1,)~a+2) • (3.3) 

Next, on recalling (2.4), we see that 

u~(2) = p2L (3.4) 

Finally, from (3.1) and (3.4) we have that 

Xa+l = X  a "~ pAaro ~---X a + pAa(b - Axo). (3.5) 

Assuming that the polynomials tin(2) and the constants am and tim in (2.6) are known, our algorithm 
now reads as follows: 

Step 0: Choose x0 and set x~ = x0. 
- 1  Set ~a,0 = t ~ ( 0 ~ '  n a ,  l = - -  ~a,0, and rca,j = 0  for j # 0, 1. 

Determine p from (3.3). 
Compute x~+l from (3.5). 

Step 1: For m -- a + 1, a + 2 , . . . ,  until convergence, do: 
Solve (2.8) for the rCm,j. 
Compute Ogre, #m, and Vm from (2.9) and (2.10). 
Compute Xm+j from (3.2). 

For the special case in which the weight function w(2)  is that defined by  (1.9), the polynomials 
tin(2) and the corresponding constants am and tim are given by 

Tm(z(J , ) )  C -- 
tin(2.) = T , , ( z ( O ) ) '  w i t h  z(,~) = d ' ( 3 . 6 )  

where Tin(z) are the Chebyshev polynomials o f  the first kind normalized so that T in( l )=  1, and 

1 
g o = - ,  flo----O, 

c 
2¢ 

R ! 
2 c : - d  2' ~l *, 

1 
~m = , tim = cam - 1, m ~> 2. 

C - -  ( l d ) 2 a m _ l  



J.-J. Climent et al./Journal of Computational and Applied Mathematics 87 (1997) 21-38 

In addition, the constant p in (3.3) is now given by 

1 
[9= ca+l~.~[a/2j+l fa+ Z] (Zk) "d'2k" 

29 

4. Error bounds and convergence analysis 

4.1. General preliminaries and error bounds 

Let us denote by 5 ~ the direct sum of the invariant subspaces of A corresponding to its nonzero 
eigenvalues 2j, and by 5 ~, its invariant subspace corresponding to its zero eigenvalue. Thus, 5 ~ = 

~(Aa), the range of  A a, and 5¢ = JIr(Aa), the nullspace of A ~. Every vector in C" can be written as 
the sum of  two unique vectors, one in 5P and the other in 5~. 

Resolve b =/~ +/9, where /9 C 5 ~ and/9 E 5 ~. Then ADb, the Drazin-inverse solution of Ax = b, is 
the unique vector in 5 ~ that satisfies the consistent linear system A x = b .  From (1.3) and (1.4) we 
see that 

xm - ADb = pm(A)xo + qm- l (A)(b  + b) - ADb 

= p,,(A)xo + qm_l(A)AA°b + qm-l (A)b  - A° b  

= p,,(A)(xo - A ° b )  + qm_~(A)b. (4.1) 

Decompose x0 = x0 + x0, where x0 C 5 ~ and 20 E 5 k. Then (4.1) becomes 

Xm - A°b  = pm(A)(YCo - ADb ) + pm(A)Yo + qm_~(A)b. (4.2) 

Because 

pm(2) = 1 - 2a+lu(2) (4.3) 

for some u E Hm-a-~, we have that 

Pm (A)Xo = fCo - u(A )A a+ l~ 0 = x0 (4.4) 

as 20 E g = ~'(A~). Similarly, q m - l ( 2 ) =  2"U(2) by (1.4) and (4.3), so that 

qm-~ (A)b = u(A )Aab = 0 (4.5) 

as b E 5~ = jV'(A a). 
Combining (4.4) and (4.5) in (4.2), we deduce the following result. 

Theorem 4.1. Le t  Xo =~0 +x0, where YCo E ~ and YCo E 5 k. Then 

Xm -- ADb = pm(A)(YCo - A ° b )  + 2o. (4.6) 

Now, as the vector ~0 - A  Db is in 5~, we observe that the behavior of  Xm - - A ° b  is determined by 
the action of  pro(A) on 5~. 
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Recall that, by ind(A - 2 j I ) =  kj, 2j E a(A)\{0}, the fact that J 0 -  Anbc ~ implies that 

pra(A)(S¢ o - ADb ) = Z (" rjiPm (J,j) 
~jc~(A)\{o} i=o 

(4.7) 

for some vectors rji that lie in the invariant subspace of  A corresponding to 2j. Thus, from (4.6) 
and (4.7), 

[[xra-ADb- Yc°ll =: llPra(A)(Sc°-ADb)ll<~C (~jc~(A)\(o)max o<~i<~kj-lmax Ip~)(2j)[) (4.8) 

for some positive constant C. Replacing the maximum over the 2j E g-(A)\{0} by the maximum over 
the interval [c - d, c + d], and using 

max Ip~)(2)l<<,Dim:'( max Ipra(A)l) for some Di>O, 
2E[c--d,c+d] \ 2E[c-d,c+d] 

which follows from one of  Markoff's inequalities, see. e.g., Meinardus [9, p. 67], (4.8) becomes 

Ilxra -ADb-~0[[ = IlPra(A)(~0--AOb)l[<~ Mm2k-2 ( max [pm(2)l ), 
\ 2E[c--d,c+d] 

(4.9) 

where M is a positive constant and 

/~ = max{kj: 2] e o'(A)\{O}}. (4.10) 

Hence, all we have to analyze is max,~6[c-d,c+d] Ipm(A)l. 
Before we go on, we observe from (4.6) and (4.7) that the conditions in (1.7) ensure the conver- 

gence of  {Xm}m°°__0 to ADb +x0, as guaranteed also by Eiermann et al. [4, Lemma 2]. Also, if  x0 = 0, 
which can be enforced by picking x0 = 0, then limra~ooXm =ADb under (1.7). 

4.2. Convergence analysis 

In the sequel, we analyze the case in which the weight function w(2) is that defined by (1.9). 
Obviously, we first need to know the behavior of the lrm,j in Theorem 2.3 for m ~ c~. For this we 
have to start with the behavior of  the t~)(0) for m ~ c~, as is obvious from (2.8). Recall that in 
this case tin(2) are as in (3.6). 

Lemma 4.2. Suppose that tm(2) are the polynomials given in (3.6). I f  2 E [ c -  d,c + d], then, for 
i = 0 , 1 , 2  . . . .  , 

era cosh- 1 z(~) ._~ e - m  cosh- l z(2) 

t~)(2) = P/(2, m) era c°sh-* z(O) _4_ e-m eosh-I z(O) 

era cosh- '  z(l) __ e-ra cosh- t z(2) 

+ N i ( 2 , m ) ~  -~ e_mcosh_, z(O), (4.11) 
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where Pi( 2, m) and N,-(2,m) are polynomials in m, whose coefficients are functions o f  2 and whose 
degree is dependent on the parity o f  i, given by 

P2,(2,m) = 
x/(C --  2 )  2 --  d 2 

2r 

m 2r + O ( m  2r-2) ,  

Nzr(2, m) ( 2 r - 1 ) 2 r  (c 2 ) [  1 ] 2~+1 - -  __ __ m 2 r - i  + O ( m 2 r - 3 ) ,  
2 v/(c - 2) 2 - d 2 

(4.12) 

with the t e r m s  O ( m  2r -2)  and O ( m  2r -3)  missing for  r = O, 1, and 

2r(2r  + 1)(c  - )0 
P2r+l(2, m) - 2 

N 2 r + l ( ~ , m  ) = 

2r+2 
1 m2 r x/(C _ ~)2 _ d 2 + O(m2r-2)' 

1 ] 2r+l 
• m2r+l O(m2r  -1 

v/(C - 2)2 - d 2 + ), 

(4.13) 

with the terms O(m 2r-2) and O(m 2r-1 ) missing for  r = O, 1, and r = O, respectively. 

Proof. The proof  is straightforward and proceeds by induction on i. [] 

Taking 2 = 0, (4.11 ) becomes 

( 2 )  
t~)(0) = Pi(O,m) + Ni(O,m) 1 x -2m + 1 ' (4.14) 

where x, defined by (1.10), satisfies also 

~¢ = e - cosh - '  z(0) 

Upon substituting (4.12) and (4.13) in (4.14), we now have the following result. 

Theorem 4.3. Suppose that tin(A) are the polynomials defined in (3.6). Then, for  i = 0, 1,2 . . . .  , 

= 

1, i = 0 ,  

(C 2 --  d2)1/2 
m + O(mtc2m), i = 1, 

1 i--1 

( -  1 )i ( c2 _ d2) i/2 m i + ~ rli, km k + O(mltg2m), 
k=0 

i>~2 

as m ~ oo, where ~l~,k are some constants and I = i -  1 i f  i is even, and l = i i f  i is odd. 
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Theorem 4.3 has the following implication. In order to solve the system in (2.8) for the lt,~,j, we 
first introduce the matrices B and E in C ~+2'a+2 and the vector h in C a÷2 as follow: 
• For i , j  = 0, 1 ,2 , . . . , a  + 1, set 

1, 1 

bi+l,j+l = - ( c  2 _-d2)l/i(m - a q-j) ,  
i--1 

( -  1 )i ldz)i/2 (m - a q. j)i  + ~ rli, k( m _ a + j)k, 
(C2 -- k=0 

with the r/~,k as in Theorem 4.3. 
• For j - -  0, 1 ,2 , . . . , a  + 1, set 

0, i = 0 ,  

ei+l,j+l = O(mlKZm) ' 1 <~i <~a + 1, 

where l is defined in Theorem 4.3, and observe that E ~ O as m ~ e~. 
• Introduce the vector h via 

i ~ 0 ,  

i = 1 ,  

2<.i<~a q, 1, 

0, i = 0 ,  

h i+l  = 1, i 1, 

O, 2<~i<~a+ 1. ' 

Then the linear system in (2.8) can be written as 

(B q, E)zt ---- h, (4.15) 

where ~zE C a+2 is the unknown vector whose ( j  + 1)th entry, O<~j<~a q, 1, is rCm, m--a+j. 
TO solve (4.15) for Tc we apply elementary row operations to obtain the equivalent system 

(B (2) + E(2) )~  _-- h(Z), 

where 

b(2) { 1, i ~- O, 
i+x, :+l----_(m_aq_j) i ,  l < ~ i < ~ a + l ,  

i.e., B (2) is a Vandermonde matrix, and 

0, i = 0 ,  

/,(2) - - (C 2 --  d 2 )  1/2, i ~- 1, i~i+ 1 z 

Ki(c  2 - d 2 )  1/2, 2 < . i < . a +  1, 

where Ki is a constant that depends only on the coefficients r/i,k. 
Now, using the algorithm to solve Vandermonde systems (see [7, p. 122]), we obtain the equivalent 

system 

(I + E ( 3 ) ) g  --~ h (3), 
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where 

h(3) ( ) ma4,0(ma-1) forO<.,.i<...a4.1 (4.16) 
a 4. 1 (c 2 - -  d 2 )  1/2 

( - l y  i+1 i a! 

and E (3) ~ O, as m ~ ec. Therefore, we have the following result. 

l,(3) where Theorem 4.4. For i = 0, 1 ,2 , . . . , a , a  + 1, the ~rn, m-a+i in (2.8) are given by 7~m,m_a+ i ----"i+l, 
h(3) defined in (4.16). i+l a r e  

We now combine Theorem 4.4 with the expansion of pro(J,) in Theorem 2.3 to derive an asymp- 
totically optimal upper bound on Ipm(, )l for 2 E [c - d,c + d]. 

Theorem 4.5. Consider the polynomials p,n(2) of  Theorem 2.1 with the weight function w(2) given 
by (1.9). Then 

max [p,,(2)l 20c -1 - x ) ( 1  4- x ) a - l  = mate "-a+l 4.0(ma-lt~ m) as m--~c~, (4.17) 
2E[c--d,c+d] a! 

where 1¢ is given by (1.10). 

Proof. For the weight function w(2) given by (1.9) we have that the polynomials t~(2) are defined 
by (3.6). 

For 2 E [ c -  d,c 4. d], it is easy to see that 

tm(,~) = 2Km~(s(2) m) 4- O(R7 3m) as m ~ oo, (4.18) 

where 

S(J 0 = e iarce°sz('O with Is( )l = 1 

and, therefore, 

2 -- c - dz(2) = c - d~(s(2)).  (4.19) 

Now, from (2.7), (3.6), Theorem 4.4, and (4.18), we obtain that for m ~ oc, 

1 a+i ( )  " +  1 

j=O J 

V ~ -  d 2 ma2Em-a+J~(s( ~ )m-a+j) 4- O(m a- 1Km ) 
a! 

2 -d2 
a!2 

mal£m-a+l ~ ( S( ~ )__~ -a - - [ 1  - ~cs(2)] a+l) 4- O(ma-l~"). 

On the other hand, from (1.10) we have that 

2v -d2 
2 c and ~c - l - ~ c -  t¢-1 + I¢ = d d 

(4.20) 

(4.21) 
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Now, using (4.19) and the fact that Is(2)] = 1, we conclude that 

2 = ½dx-l[1 - xs(2)][1 - xs(2)]. 

Inserting this expression into (4.20) and using (4.21), we obtain that 

pro(2) = 2 ( x - 1  - l~)malcm-a+l~ (S(~)m?a[l-~KS(~)]a~ 
• ~ I--K"S-(~) J +O(ma-lK, m) as m---~c~.  

Then 

1 ~ (S(2)m---~[1 -- KS(2)]a ~ 1 -- XS(~)) J m,,xm_~+~p,n(2)= (K -1 - - X ) ~ \  + O ( m  -~) as m---~cxD. (4.22) 

Next, using the facts that Is(2)[ = 1 and 11 - xs(2)[ = [1 - Ks(2)[, we conclude that 

S(2)m-~[1 - / ~ S ( ~ ) ]  a 
max = max 11 - xs(2)[ a-1 = (1 + to) ~-1 (4.23) 

~[c-a,c+al 1 - Ks(A) ~Etc-a,c+al 

and this maximum is attained at 2 = c + d  for which s ( 2 ) - - -  1. Finally, combining (4.23) and (4.22), 
we obtain that 

1 2 ( x  -1 - x ) ( 1  + ~c) a-1 
max Ipm(2)l = a! + O ( m  -1) as m---~o~, 

maK~ m-a+l 2E[c--d,c+d] 

from which (4.17) follows. [] 

Now, using (4.9) and (4.17), we have the following convergence result that is the main result o f  
this section. 

Corollary 4.6. With the same notation as in Theorem 4.5, we have 

I lXm - -  A D b  -  0ll = o(ma+2k-2Km) as m ~ e~, 

where Ic is as defined in (4.10). 

Theorem 4.5 implies that 

2(x -1 - x)(1 + x) a-I 
max ]pm(2)[ ~ maK, m-a+l. 

2E[c-d,c+d] a ! 

On the other hand, the Berstein result as applied by Eiermann and Starke to the polynomials {Pm) 
developed in their paper, see [6, p. 314], gives that their residual polynomials satisfy that 

[p (2)] "-" max m 

2E[c--d,c+d] 

NOW, 

2(K-I _ ~C)amaxm < 
a! 

20¢  -1 _ K)amalcm. (4.24) a! 

2(K - I  --  K ) ( I  + 1¢) a - !  maKm_a+l, 
a! 



J.-J. Climent et al./Journal of Computational and Applied Mathematics 87 (1997) 21-38 35 

because 1 > - x .  Therefore, our polynomials are not "near-optimal". However, the residual poly- 
nomials {p,,} constructed by Eiermann and Starke in [6] cannot be computed by means of  short 
recurrences as we have developed for the present residuals in Section 3. Such short recurrences 
make for the efficient implimentation of  semi-iterative methods. In this regard please see also the 
comments on Hanke and Hochbruck [8, pp. 90, 93]. 

5. Numerical examples 

In this section w e  use the algorithm developed in Section 3 to compute the eigenprojection 
ZA : = I -  AA D onto the eigenspace of A corresponding to the eigenvalue 0 of  three singular ma- 
trices whose index exceeds 1. 

If we take b = 0 in (1.1) then Corollary 4.6 implies 

l i m  x m = ~fo = (I - AAO)xo  . 
m - -+  o o  

Now, if we choose x0 as the ith column of  I, the above expression represents the ith column of  the 
eigenprojection ZA. 

First, consider the following singular M-matrix: 

AI- -  

1 - 1  0 0 0 0 

- 1  1 0 0 0 0 

- 1  - 1  1 - 1  0 0 

- 1  - 1  - 1  1 0 0 

- 1  - 1  - 1  0 2 - 1  

- 1  - 1  0 - 1  - 1  2 

Observe that tr(A1)= {0,0, 1,2,2,3} and a-~ 2. So we can choose c-~2 and d =  1 in (1.2). Using 
the algorithm of  Section 3, with the polynomials tm(2) defined by (3.6), and stopping when 

Ilxm÷l - xmll  

Ilxmll  
~<10 -15, 

we obtain, after 35 iterations, that 

zAI = 

0.50000000000001 0.49999999999999 

0.49999999999999 0.50000000000001 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 

0 0 0 0 

0.50000000000001 0.49999999999999 0 0 

0.49999999999999 0.50000000000001 0 0 

0.50000000000005 0.49999999999997 -0.00000000000004 0.00000000000002 

0.49999999999997 0.50000000000005 0.00000000000002 -0.00000000000004 
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The exact eigenprojection is given by 

0.5 0.5 0 0 0 0 

0.5 0.5 0 0 0 0 

0 0 0.5 0.5 0 0 

0 0 0.5 0.5 0 0 

0 0 0.5 0.5 0 0 

0 0 0.5 0.5 0 0 

As a second example, we again consider a singular M-matrix, this time of  index a = 4: 

A 2  z 

1.0 -1 .0  0 0 0 0 0 0 

-1 .0  1.0 0 0 0 0 0 0 

-1 .0  -1 .0  1.0 -1 .0  0 0 0 0 

-1 .0  -1 .0  -1 .0  1.0 0 0 0 0 

0 0 0 0 1.0 -1 .0  -1 .0  -1 .0  

0 0 0 0 -1 .0  1.0 -1 .0  -1 .0  

0 0 0 -1 .0  0 0 1.0 -1 .0  

0 0 0 0 0 0 -1 .0  1.0 

Here o-(A2)---{0,0,0,0,2,2,2,2}. With c = 2  and d =  1 in (1.2) we get using the algorithm in 
Section 3 that after 25 iterations for columns 1,2, 5, 6, and 7 and 45 iterations for columns 3 and 4 
that 

zA 2 - 

5.0000 X I0  1 5.0000 x I 0 -  I 0 0 0 0 0 0 

5.0000 x 10 - 1  5.0000 x 10 - I  0 0 0 0 0 0 

0 0 5.0000 x 10 - I  5.0000 x 10 - I  0 0 0 0 

0 0 5 . 0 0 0 0 ×  10 - ~  5 . 0 0 0 0 ×  10 - I  0 0 0 0 

0 0 1.2500 x 10 1 - -1 .2500  x 10 - 1  5.0000 x 10 - 1  5.0000 X 10 - I  0 0 

0 0 1.2500 × 10 - 1  1.2500 X 10 - I  5.0000 x 10 - I  5.0000 × 10 - 1  0 0 

- -1 .2500  x 10 - 1  1.2500 × 10 - 1  5.7858 × 10 - 1 2  2.5000 x 10 - I  0 0 5.0000 × 10 - I  5.0000 X 10 - I  

1.2500 × 10 - 1  1.2500 x 10 - I  - -2 .5000  X 10 - ~  5.3423 × 10 i i  0 0 5.0000 X 10 - I  5.0000 × 10 - I  

The exact eigenprojection is given here by 

0.5000 0.5000 0 0 0 0 0 0 

0.5000 0.5000 0 0 0 0 0 0 

0 0 0.5000 0.5000 0 0 0 0 

0 0 0.5000 0.5000 0 0 0 0 

0 0 0.1250 -0.1250 0.5000 0.5000 0 0 

0 0 0.1250 -0.1250 0.5000 0.5000 0 0 

-0.1250 -0.1250 0 0.2500 0 0 0.5000 0.5000 

0.1250 0.1250 -0.2500 0 0 0 0.5000 0.5000 
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Finally, we consider a singular matrix A with a = 3. 

5 -1  -1  - 1  - 1  0 -1  

1 3 - 1  - 1  - 1  0 -1  

0 0 3 - 1  - 1  0 -1  

0 0 1 1 -1  0 -1  

0 0 0 0 1 0 -1  

0 0 0 0 l 0 -1  

0 0 0 0 0 1 -1  

A 3 

37 

Here o ' (A3)=  {0,0,0,2,2,4,4}, so we can take c = 3 and d = 1. Then, using the algorithm in 
Section 3 we get, after 51 iterations for columns 1,2, 3 and 4, 29 iterations for column 5, and 6 
iterations for columns 6 and 7 that 

-0.3908 × 10 -12 0.1799 × 10 -12 0.0267 x 10 12 0.1909 × 10 -12 1.0000 0 0 

--0.1846 × 10 -12 --0.0252 × 10 -12 0.0270 × 10 -12 0.1909 × 10 -12 1.0000 0 0 

0 0 --0.1840× 10 X2 0.1909× 10 -12 1.0000 0 0 

0 0 --0.1890 X 10 -12 0.1970× 10 12 1.0000 0 0 

0 0 0 0 1.0000 0 0 

0 0 0 0 0 1.0000 0 

0 0 0 0 0 0 1.0000 

~A3 ~- 

1 0 0 

1 0 0 

1 0 0 

1 0 0 

1 0 0 

0 1 0 

0 0 1 

The exact value is 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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