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Abstract

In this paper the evaluation of particle size distribution using photon correlation spectroscopy according to the method of
regularization of first kind integral equation including Laplace transform by means of Bayesian strategy is presented. We
shall convert the Laplace transform to first kind integral equation of convolution type, which is an ill-posed problem. Then
we use the Bayesian regularization method to solve it. This type of problem plays an important role in the field of photon
correlation spectroscopy, fluorescent decay, sedimentation equilibrium, system theory and in other areas of physics and
applied mathematics. The method is applied to test problems taken from the literature and it gives a good approximation
to the true solution. (© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In photon correlation spectroscopy, the polydispersity effects of macromolecules in solution or
colloidal suspensions have been studied extensively. There have been many approaches to analyze
the autocorrelation function of quasielasticitically scattered light. In most experiments in the field of
photon correlation, the output of the experiment is the Laplace transform of an unknown distribu-
tion function ¢(¢). The Laplace transform is converted to an integral equation of the first kind of
convolution type and we study the regularization of integral equation by means of Bayesian technique
which is similar to Phillips—Tikhonov regularization for ill-posed problems.
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[ll-posed inverse problems have become a recurrent theme in modern sciences, for example, crys-
tallography [11], geophysics [1], medical electrocardiograms [9], meteorology [20], radio astronomy
[12], reservoir engineering [13] and tomography [24]. Corresponding to this broad spectrum of fields
of applications, there is a wide literature on different kinds of inversion algorithms for evaluating
the inverse problems.

The basic principle common to all such methods is as follows: seek a solution that is consistent
both with observed data and prior notions about the physical behavior of the phenomenon under
study. Different authors have employed different methods such as the method of regularization [22],
maximum entropy [12,16], quasi-reversibility [14] and cross-validation [25,15].

The problem of the recovery of a real function ¢(¢), >0, given its Laplace transform

| e di=gp) (L)
for real values of p, is an ill-posed problem and, therefore, affected by numerical instability. Regu-

larization methods have been discussed by Varah [23], Essa and Delves [8], Wahba [25], Eggermont
[7], Thompson [21], Ang [2], Rudolf [18], Beretro [3] and Brianzi [4].

2. Fredholm equation of convolution type

We shall convert the Laplace transform into the first kind integral equation of convolution type
with the following substitution in Eq. (1.1):

p=a* and t=a” wherea> 1. (2.1)
Then

g(a*) = / h log ae™" "p(a=")a" dy. (2.2)
Multiplying both sides of (2.2) by a*, we obtain the convolution equation

| K= »F() dy =6, —sosx<os, (23)
where

G(x)=a"g(a*) = pg(p),

K(x)=log aa“e™® =log ape™?,

F(y)=d¢(a™) = o). (2.4)

Eq. (2.3) occurs widely in applied sciences. K and G are known kernel and data functions, respec-
tively, and F is to be determined. We shall assume that G,K and F' lie in suitable function spaces,
such as L,(R) so that their Fourier transforms (FTs) exist.

Note: "~ denotes FTs and ~ denotes inverse FTs.
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3. Description of the proposed Bayesian method

We assume that the support of each function F, G and K is essentially finite and contained within
the interval [0, 7], where the period T = N/h, N is the number of grid points and % is the spacing.

Let Ty denote the space of trigonometric polynomials of degree at most N and period 7. Let G
and K be given at N equally spaced points x, =nh, n=0,1,2,...,N — 1 with spacing 2 = T/N.
Then G and K are interpolated by Gy and Ky € Ty where

N—-1

1 A .
Gy(x) = ¥ > Gy expliogx), (3.1)
q=0

. N—1
Gy = Z exp(—iwyx,)Gy(x,), (3.2)

n=0
G(xn):Gn :GN(xn) (33)

and
2ng
COq = T

Similar expressions as (3.1) and (3.2) can be obtained for Ky. In our procedure we have used
cardinal B-splines and worked in Fourier space to simplify the computation.
Let F' be approximated by

M—1

Fu(x) =Y a;B;(h;x), (3.4)

J=0

where B;(h;x) are periodic cubic cardinal B-splines with period 7'=Mh and knot spacing h. M is the
number of B-splines. The vector & = (o, o,...,0_1)" is to be determined. Following Schoenberg
[19], we have

Bi(hx)=0 (% - 2) , (3.5)
where
LS, (A
0 = g S0 () ot (36)

since By(h,x) is periodic on (0, 7). It has the Fourier series

1 . ,
Bo(h,x):? > Bogexp(io,x) (3.7)

g=—00
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and

T
By = / Bo(h, x) exp(—iw,x) dx
0

. [sin(hc?)q/Z)] )

(hd,/2) (3.8)
. 0y, 0<qg < N/2,
« =
! wy_g  1/2N<g<N —1.
Furthermore, since B;(h,x) is simply a translation of By(/4,x) by an amount jh, we have
B, = By exp(—iwgjh), q=0,+£1,42,..., j=0,1,2,....,M — 1. (3.9)
The spline in Eq. (3.4) has the Fourier series
I & - ,
Fi(x) = = > Fugexp(iogx) (3.10)
g=—00
with Fourier coefficients
A M_l A
FM,q: ZOCijq (311)
=0
Consider the smoothing functional
1 2
Cui ) = 1K)+ Fuol| + AR (3.12)
2
where || - || denotes the inner product norm on L,(0,7) and A is the regularization parameter to

be evaluated. Since Ky * Fy € Ty for any square integrable periodic function F), of period 7,
Plancherel’s theorem gives

1 2 r ¥ .
HG(KN *Fy — Gy)|| =5 > |RngEug — Gugl® (3.13)
2 4=0
and
; 1 & -
1FlP = = > @y F gl (3.14)
g=—00
where
Fagl> ~ o) as |g| — oo

The infinite series clearly converges.
Now to express functional (3.12) in a matrix form, we define the matrices

VT

P(N x N): TP, = Vg O ¢r=012,.N—1,
o

KN xN): Ky =Ky,0,, qr=0,1,2,...,N —1,
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B(M x N): B;, asinEq.(3.9), j=0,1,....M —1,

WION x M): W =K(B)",

1.
WON x M): WP = - @’ Bj;.
We can write (3.12) as
CFy; ) = C(o;2) = [P Vo = G)|fs + 217 D],
where || - ||2 denotes the vector 2-norm in C¥ and G = (G0, Gy.15
U=w"Pya,
w=wORBYwo,
and
V = w®Hp@
C(o; A) has a unique minimum at

a=W+iV)"'U.

4. Special properties of /7 and

It is easy to show that the rsth element of W is

T =, . .
W= N2g2 z; |KN,qBOq|2 exp(ioy(r —s)h), r,s=0,1,2,...,
-
N—1 . 21‘5( i
= a,exp| —(r —
q €Xp M s)gq
q=0
where
T o s
a;, = WU{N,(]BOA .

A T
ooy Gypo1) o1

M -1

81

(3.15)

(3.16)

(3.17)

(3.18)

4.1)

(4.2)

It follows that W is a circulant matrix. Since Wy = W, if j —k = (r —s)(mod M), and W is also

a hermitian matrix.
Similarly V' is a circulant hermitian matrix, with

N—-1

2
V=X byew( 37 iatr =),

q=0

where

1,
bq = ?|(,O;Boq‘2.

(4.3)

44)
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It is well known that the modal matrix { of any M x M circulant matrix has elements

1 27
hy = —— exp| —rs 4.5
Vo= (5 7) (*2)
under this normalization y is unitary,
Yyt =Yty =1 (4.6)

Thus if W and V have real eigenvalues p, and v,, respectively, and s =0,1,2,...,M — 1, we may
write

W =y Dy,
V =y Dyy",

where Dy = diag(yy), Dy = diag(vy).
We then have (W + AV)~! =y Ay where

/\ d1ag< +/1v> (4.8)

We now show that the eigenvalues u, and v, are simply related to the coefficients a, and b, defined
in Egs. (4.2) and (4.4). Consider the eigenvalue equation

4.7)

Z Wmn‘pm - MS ms- (4'9)

Using (4.1) the LHS is

M—-1N—-1

>3 exp | gtm - i

n=0 ¢=0

1 2mi
:ﬁ Z Zaq €xXp [;(Q(m —n))+ ”S}

:\/LM zq: {aq <exp(%Ei mq) Z exp(%i(s - q)ﬂ)) } :

since
M-l i M, j=0(mod M)
> exp | ] = .
— M 0, otherwise.

The LHS of (4.9) is

N-1
MZaql//mq = (Mzaq) mss

q=0
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where ¢ = s(mod M). Hence
N—1
s =M Z a;,, ¢q=s(modM),
q=0

N—1
Vs :Mqu, q = s(mod M).

g=0

5. Calculation of 4 and «

The rth element of vector U is

N-1 .
2mi
U. = — , =0,1,2,....,.M — 1, 5.1
;cqexp{Mqr} r (5.1)
where
T = A A
Cq = N—2oc2 KN,qGN,qBOq- (52)

We assume that «? is known a priori and may be estimated by

1 N—(/+1) R N
azzm > Gl /=7 (5.3)
q=C

It is clear that premultiplication of a CM vector by y! is equivalent to an M-dimensional DFT. We
may thus write & = Yo and U = y"'U. From Egs. (3.18) and (4.8), therefore, we have

a=A\U. (54)
Hence,
MU
g, = \/7— (5.5)
M(,uns + }VVS)
where
R N—1
U,=vM> ¢, q=s(modM). (5.6)
q=0

The regularization parameter A is (5.5) is to be determined. In order to evaluate the optimal value
of A, consider the a priori c.d.f.

P(G|2) = / P(G|2)P;(2) da. (5.7)

Bayes’ theorem then gives a posteriori c.d.f.

P(}|G) = Const. P(G|A)P(]) (5.8)
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in terms of an unknown a priori p.d.f. P(1) for 4. It can be shown that

1 4 1
P(G|A) = [det(ﬁ(P)z) detl AW (W + V)" '1"exp [— 3 C(4, ,1)” . (5.9)
Substituting this in Eq. (5.8), we find that a condition for a stationary point of P(1|G) is
d
4 [log P(1)] 4 Trace[W (W 4+ AV)~'1 — 28" Va=0. (5.10)

An optimal value of 1 maximizes P(A|G). Now if the unknown distribution P(1) is sufficiently
“narrow”, then the effect of the first term in (5.10) is neglected and we determine 4 by solving

Trace[W(W 4+ V) 11— 4" Va=0 (5.11)
which reduces to [21],
N—1 N—1 A
U |US‘ Vs
-2y /22— 5.12
; s + Ay ; (s + Avy)? (-12)

We obtain 4, the regularization parameter from (5.12). Knowing 4, o may then be calculated from
the inverse DFT of Eq. (5.5) as

=1y

1R

6. Calculation of solution vector F

We take M = N/2, the number of cardinal cubic B-splines is equal to half the number of grid
points. Then

Us = \/M(Cs + CMJrs)a
Hs = M(as + aM+s):

v =M(bs+ byrys), 0<s<M —1, s=¢g(modM)
and
Oy = y—1, Og =0y and oy = oy,

M—1
Fu(2j) = Z(O‘jfl + 4oy + 041)/6, (6.1)
j=0
M—1
Fu(2j+ 1) = (01 + 230 + 2301 + 0;12)/48.

J=0

7. The choice of M = N/2 is optimal

Natterer [17] has shown that if we discretize an integral equation of the first kind in a certain way
using a very specific mesh together with projection onto a suitable space of piecewise polynomials,
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then the same order of accuracy in the numerical solution may be obtained as that given by Tikhonov
regularization with an optimal choice of regularization parameter. Natterer’s method has become
known as “regularization by coarse discretization”. What is done in practice is to mix coarser
discretization with Tikhonov regularization. A certain amount of regularization is achieved from
the choice of mesh and the rest is obtained via filtering.

Since we are dealing with basis expansions, we must reduce the dimension of the spaces to coarsen
the discretization. Consider M < N, 41 =0. Let A(M) be the N x N matrix satisfying

GN,O :A(M)GN, (71)

where

1
Gra) = [ Kl = 3)Fisal)dv. (7.2)
Taking the discrete Fourier transform (DFT) of (7.1), we have
£Zmo::ﬁ(ﬂ1X§Nz

where A(M) is a diagonal N x N matrix with M unit entries and zeros elsewhere.
Following Wahba [25] and Mair [15], we may minimize the predictive mean square signal error
with respect to M. This means we can minimize

_ (YN)Gy(I — AM))G,,

V(M) = 55
[(1/N)Trace({ — A(M))]

(7.3)

1e.,

(NS0 16, P

VM) = (1 — M/N)?

(7.4)

Since we are dealing with FFTs, it is natural to consider M = %N, %N, éN, etc., where N is a power
of 2. In particular, we have

4 N1
VAN =5 3 (Gl
q:%N
. (7.5)
V(N =5 3 1GuaP
q=iN

when the decay of |CA¥N,,1\2 with increasing ¢ is sufficiently large; in particular,
2 N—1 . 16 N—1 .
= 2 G <o 2 1Gn ™
N 21: 1 9N 21: 1
qg=7N g=y4N
From (7.5) we have

VGN)<V(GEN)<--- .
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Table 1
Problem a T h a A IF — Flloo Figures
1 10.0 12.50 0.1952 0.0085 0.3499 - 10~ 12 0.003 1
2 5.0 11.50 0.1828 0.0074 0.362-107° 0.004 2
3 10.0 12.20 0.1906 0.0027 0.11-107° 0.07 3
If the successive ratios between the means
2 N—1 4 N—1 8 N—1
N > v 12 N 12
Ly Ly 1
2 4 8
are each sufficiently small, we have
1 -
VGN)<V(27'N). (7.6)

It requires only a modest rate of decay for (7.6) to be satisfied. Therefore, the choice M = %N is

optimal out of the set M =27"N.

8. Numerical result

In this section we tabulate the results of the above method applied to the test problems taken from
the literature. All data functions have the property g(p)=0(p~!) and no noise is added apart from
the matchine rounding error; only optimal results have been quoted in the table and demonstrated
in the diagrams. In each of the test problems N = 64, the sample points to calculate the Fourier

coefficients.

Problem 1 This problem has been taken from Cristina [6].

1
(p+ 1572

(1) =te” "

The optimal results are shown in Table 1 and Fig. 1.

g(p) =

Problem 2 This problem has been taken from Gabuti [10].

B
(p+a)P+p>

¢(t) = e *sin fit,
where o =5.0 and ff =2.2.

g(p) =

The optimal results are shown in Table 1 and Fig. 2.
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(1)

0.250+

0.200+

0.150+

0.100+

Bayesian Method

= Num.Soln.for g=10.0

~— True Soln.

0.160+

C.140+

0.120+

0.100

0.080+

0.0604

0.040+

0.0204

0.000+

Bayesian Method

s Num.soln for 0=5.0

—— True soln.
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6—

54 Bayesian Method

4

3 » Num.Soln.for a=10.0

-~ True Soln.

—~
= 2o
Rt

1+

>~
-
0 T T T T I T T 1
.00 .20 .40 .80 .80 1.00 1.20 1.40 1.60
Fig. 3.

Problem 3. This problem has been taken from Chauveau [5].

A
g(p)= m,

d(t)= e ™ for L=5.0.

The optimal results are shown in Table 1 and Fig. 3.

In our numerical calculations we need to choose the two numbers X, and x.., as the smallest
and largest solutions of the nonlinear equation |G(x)| <& where ¢ = 107*. We may then pose
deconvolution (2.3) on the interval [0, 7], where 7= Xax —Xmin- Since the size of the essential support
of G(x) depends upon ‘a’, we have for a fixed number N of equidistant data points {x,}, A= T/N
and a > 1. We found the minimum value of 4 from (5.12) and compared the L., error norm of the
resulting solution with the values of the true solutions.

9. Concluding remarks

Our method worked very well over all the three test problems and results obtained are shown in
Figs. 1-3 and Table 1.
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