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Abstract

In this paper we discuss a two-dimensional adaptive grid method that is based on a tensor-product approach.
Adaptive grids are a commonly used tool for increasing the accuracy and reducing computational costs when
solving both partial di-erential equations (PDEs) and ordinary di-erential equations. A traditional and widely
used form of adaptivity is the concept of equidistribution, which is well-de2ned and well-understood in one
space dimension. The extension of the equidistribution principle to two or three space dimensions, however, is
far from trivial and has been the subject of investigation of many researchers during the last decade. Besides
the nonsingularity of the transformation that de2nes the nonuniform adaptive grid, the smoothness of the
grid (or transformation) plays an important role as well. We will analyse these properties and illustrate their
importance with numerical experiments for a set of time-dependent PDE models with steep moving pulses,
fronts, and boundary layers.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Over the years a large number of adaptive grid methods have been proposed for time-dependent
partial di-erential equations (PDE) models. Three main strategies of adaptive grid methods can be
distinguished, namely, static-regridding methods, moving-grid or dynamic-regridding methods, and
p-re2nement methods. In static-regridding methods (denoted by h-re2nement) the location of nodes
is 2xed. A method of this type adapts the grid by adding nodes where they are necessary and
removing them when they are no longer needed. The re2nement or de-re2nement is controlled by
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error estimates or error monitor values (which have no resemblance with the true numerical error). In
dynamic-regridding methods (denoted by r-re2nement) nodes are moving continuously in the space–
time domain, like in classical Lagrangian methods, and the discretization of the PDE is coupled
with the motion of the grid. A third approach, often combined with h-re2nement in 2nite element
methods or implemented in ordinary di-erential equations (ODE) solvers, is characterized by the
term p-re2nement, which indicates the possibility of a variable order of approximation during the
calculations.

In this paper, we follow the second approach on a structured grid. One of the most popular
techniques in one space dimension is the so-called ‘equidistribution principle’. This method aims
at ‘equally’ distributing a relevant quantity, called the ‘weight function’, in order to cluster grid
points nonuniformly and to reduce the numerical errors. In two space dimensions this technique
is not very well-developed, see however [11,17,1] for some interesting extensions to higher space
dimensions. Here, we let the grid be adapted in a tensor-like manner in the two spatial directions.
The advantage is that nice properties of the method, such as nonsingularity and smoothness, are
preserved in each direction. The adaptive tensor-grid method is based on a semi-discretization of a
system of two fourth-order PDEs for the grid variables and is coupled to the physical PDE model
re-written in a new co-ordinate system. We use the method-of-lines technique: 2rst we discretize
the PDEs in the space direction using a 2nite-di-erence approximation, so as to convert the PDE
problem into a system of sti-, ordinary di-erential equations (ODEs) with time as independent vari-
able. The discretization in time of this sti- ODE system then yields the required fully discretized
scheme.

Several arguments can be given in favour of adaptive tensor-grids. First, in many problems
with boundary layers or models with splitting pulses or rotating peaks there is need for adapta-
tion of the grid, but less need for full-adaptivity, which would complicate the numerical procedure.
Second, the proposed tensor-grids are both orthogonal and smooth, which has a huge positive e-ect
on the local truncation errors in the nonuniform grid approximations. Note that the smoothness of
fully-adaptive meshes may be improved by imposing an additional 2lter on the mesh, but no theoret-
ical guarantees can be given for success. Moreover, the nonuniform grid remains always undistorted,
because the Jacobian of the underlying transformation is positive. Furthermore, tensor-grids are
computationally cheaper than fully-adaptive meshes, since the structure of the systems is much sim-
pler. Finally, the ‘topological’ structure of tensor-grids is very natural and well-suited for so-called
h–r-re2nement methods, i.e. adaptive methods that combine grid movement and local grid re2nement
(adding/deleting grid points).

The layout of the paper is as follows. Section 2 is devoted to a description of the equidistribution
principle in one space dimension. In Section 3, we present the PDE model, the coordinate transfor-
mation and the adaptive grid equations. The tensor-grid approach is enhanced with smoothing in both
space and time direction and is de2ned as the solution of adaptive grid PDEs. Section 4 illustrates
the importance of smoothness in terms of the local truncation error and gives a numerical example
for a one-dimensional advection equation. Numerical experiments for the two-dimensional tensor-grid
are shown in Section 5 for a series of test cases, among others, a ‘whirlpool’ model from meteo-
rology, a parabolic PDE problem describing a rotating cone, and the so-called Gray–Scott model, a
reaction–di-usion system from pattern formation. Furthermore, a ‘counterexample’ shows the main
drawback of the proposed method. Finally, Section 6 lists the conclusions and presents an outlook
to future work.
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2. The equidistribution principle

The general objective in structured r-re2nement techniques is to 2nd transformations (grids) that
map steep solutions in the physical coordinates (waves, pulses, etc.) into milder objects in the com-
putational coordinates which can be treated ‘more easily’ with numerical methods. The advantage is
then that we may have good cause to hope to prevent or reduce numerical oscillations near steep
fronts or improve the local accuracy without increasing the number of spatial grid points too much.
For special PDE models with well-known solution properties explicit transformations may be avail-
able to meet this goal. However, for general PDE systems with complicated time-dependent solution
behaviour this is hardly possible to accomplish. To overcome this problem in one space dimen-
sion, a well-known principle that may be used to de2ne the transformation implicitly is described
by the so-called equidistribution principle. Equidistribution aims at ‘equally’ distributing a positive
‘weight’, ‘grading’ or ‘monitor’ function W on a spatial grid. Ideally, this W represents some mea-
sure of the numerical error in the discretization (but this is diKcult for general situations, and, if
already feasible, not computationally eKcient). In other words, we would like to choose or compute a
nonuniform adaptive grid {xi: xl=x0 ¡x1 ¡ · · ·¡xN−1 ¡xN =xr} such that the contributions to the
‘error’ or some related quantity from each subinterval (xk ; xk+1) are the same. This idea can be
worked out in the formula (2rst, we suppress the time-dependence):

NxiWi = c; i = 0; : : : ; N − 1; x0 = xl; xN = xr; Nxi := xi+1 − xi: (1)

Eq. (1) can also be recognized as a discrete version (using, for instance, the midpoint rule) of∫ xi+1

xi

W (x) dx = c; i = 0; : : : ; N − 1; x0 = xl; xN = xr:

The constant c is then determined from∫ xr

xl

W dx =
∫ x1

x0

W dx +
∫ x2

x1

W dx + · · ·+
∫ xN

xN−1

W dx = c + c + · · ·+ c︸ ︷︷ ︸
N times

;

giving c = (1=N )
∫ xr
xl
W dx. The equidistribution principle becomes∫ xi+1

xi

W dx =
1
N

∫ xr

xl

W dx; i = 0; : : : ; N − 1;

which means that the monitor function W is equally distributed over all subintervals. The simplest
way of describing equidistribution is to note that from (1) it follows that grid cells Nxi are small
where Wi is large, and vice versa, since their product is kept constant. Moreover, Eq. (1) can be
interpreted as a discrete (2nite di-erence) approximation of the problem

dx
d�

W (x(�)) = c; 0¡�¡ 1; x(0) = xl; x(1) = xr: (2)

Since dx=d�= 1=d�=dx, this is equivalent to

d�
dx

= cW (x); xl ¡ x¡xr; �(xl) = 0; �(xr) = 1:
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From this expression we can 2nd an explicit formula for the (inverse) transformation �(x). Note
that

1 = �(xr)− �(xl) =
∫ xr

xl

d�
dx

dx = c
∫ xr

xl

W d Ox

from which follows c = 1=(
∫ xr
xl
W d Ox) and thus d�=dx =W (x)=(

∫ xr
xl
W d Ox). Integrating once gives

�(x) =
∫ x

xl

W (s)∫ xr
xl
W ( Ox) d Ox

ds=

∫ x
xl
W ( Ox) d Ox∫ xr

xl
W ( Ox) d Ox

:

Taking the derivative w.r.t. � of (2) yields the two-point boundary value problem for x(�):
d
d�

[
dx
d�

W (x(�)
]
= 0; x(0) = xl; x(1) = xr: (3)

An important issue is the choice of the weight function W . It may be obvious that there is no general
rule for all cases. In literature many di-erent functions have been used for all kinds of situations.
For example, in [2,9,12] the popular arc-length monitor W =

√
1 + u2x is used. Pereyra and Sewell

[19] derived estimates for the local truncation error to de2ne the weight function. Already in 1913,
Sundman [22] (recently improved in [15]) realized the usefulness of a transformation with W = up=q

for the three-body ODE system. The curvature monitor W = (1 + u2pxx )1=2p places the grid points
in regions of large second-derivatives and is investigated in [4]. As an extension of the arc-length
function for the gas dynamics equations in [21] a weight function is proposed that depends on
the entropy s := p�=�. Finally, Budd and Piggott [6] derive simple but extremely e-ective monitor
functions, such as W =up−1; W = |u|2, or W =x�|u|�|ux|� for PDE models in which scaling, blow up,
or similarity properties should be preserved by the adaptive grid. In [8] it is shown that optimal grids
with respect to interpolation errors may be obtained by choosing weight functions that depend on
certain powers of the second derivative of the solution. Weight functions within this last class have
been discussed and intensively tested in [4]. Their conclusions indicate that, in terms of computational
eKciency, the time-stepping process is much more expensive than for methods that use 2rst-order
derivatives in the monitor (enhanced with smoothing). This (incomplete) short overview of di-erent
weight functions in one-dimension indicates that the choice of the weight function W depends on
the properties of the PDE model and also on the computational aspects of the underlying numerical
procedure.

In two space dimensions, however, the situation is even more complicated. Although several
authors [11,17,1] have described new interesting ideas that all lead in some sense to equidistri-
bution, when restricting the respective method to one space dimension, the theory behind these
higher-dimensional versions is far from understood. In the following section, a simpli2ed tensor-grid
approach is proposed that yields equidistribution in each spatial direction with additional smoothness
properties. This method can be used for models with sharp transitions in the solution, for example
in boundary layers or rotating pulses.

3. Tensor-product adaptive grids

Consider now the two-dimensional time-dependent PDE model

9tu= �Nu− �(u; x; y; t) · ∇u+ s(u; x; y; t); (4)
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where (x; y)∈ [xl; xr] × [yl; yu]; t ∈ [0; T ]; 06 � is the di-usion coeKcient, � the velocity vector
and s a nonlinear sourceterm.
It is common and useful in structured r-re2nement methods to 2rst apply a coordinate transforma-

tion to the physical PDE model (4). The adaptive grid can then be seen as a uniform discretization
of this mapping in the new variables. In this paper we make use of a transformation of variables
[26,14] in a dimensionally split approach

�= �(x; t); �= �(y; t); �= t; (5)

in which (x; y) and (�; �)∈ [0; 1]× [0; 1] denote the physical and computational coordinates, respec-
tively. Applying this transformation to Eq. (4) gives (a similar derivation can be made for a system
of PDEs)

J9�u− 9�u9�y9�x − 9�u9�x9�y = �
[
9�
(
9�y9�u
9�x

)
+ 9�

(
9�x9�u
9�y

)]
−�19�y9�u− �29�x9�u+ Js(u; x(�; �); y(�; �); �); (6)

where J := 9�x9�y is the Jacobian of the inverse transformation. Note that 9x� = [9�x]−1 and
9y�= [9�y]−1 measure the grid densities in each separate direction.

The adaptive grid in terms of the mapping is determined as a solution of two fourth-order PDEs
in � and � with an additional time-dependent component. We set

9�[(S1(J1) + �9�J1)W1] = 0; 9�[(S2(J2) + �9�J2)W2] = 0 (�¿ 0); (7)

with suitable boundary conditions for x (similar conditions hold for y):

x(0; �) = xl; x(1; �) = xr; 9nx(0; �) = 9nx(1; �) = 0:

The operators S1 and S2 are direction-speci2c versions of the operator S de2ned as

S = I − "(" + 1)(N�)292�� ("¿ 0); (8)

where J1 := 9�x and J2 := 9�y are the ‘one-dimensional’ Jacobians, respectively. As mentioned
before, several choices for the weight functions in (7) can be made. Here, we simply take

W1 =
√

1 + �max
y

[9xu]2; W2 =
√

1 + �max
x

[9yu]2 (�¿ 0): (9)

The parameter � is an adaptivity parameter: � = 0 yields W1 = W2 = 1 and thus a uniform grid
distribution (this can easily be derived from (7) and (8)); for increasing values of � the derivatives
9xu and 9yu are stressed more and more with the e-ect of higher spatial grid adaptation. It can be
shown that transformation (5) as a solution of Eqs. (7)–(9) satis2es the ‘grid-consistency’ condition

J ¿ 0; ∀�¿ 0 and ∀(�; �)∈ [0; 1]× [0; 1];

and also the ‘local quasi-uniformity’ property∣∣∣∣∣9
2
��x

9�x

∣∣∣∣∣6 1=
√

"(" + 1)N�;

∣∣∣∣∣9
2
��y

9�y

∣∣∣∣∣6 1=
√
"(" + 1)N�: (10)
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To prove these theoretical properties of the grid, the results from [12] have proved to be very useful.
The 2rst property is equivalent to nonsingularity of the mapping, which is, of course, a minimum
demand. The second property concerns the smoothness of the mapping (see below for more details).
Note that for " = �= 0 (i.e. without smoothing operators) grid equations (7) reduce to

9�[J1W1] = 0; 9�[J2W2] = 0; (11)

which can be easily solved, just as in the one-dimensional case, to obtain an explicit expression for
the (inverse) coordinate transformation

�(x; t) =
∫ x

xl

W1 d Ox
/∫ xr

xl

W1 d Ox; �(y; t) =
∫ y

yl

W2 d Oy
/∫ yu

yl

W2 d Oy: (12)

Moreover, Eqs. (11) can be seen as the Euler–Lagrange equations of the quadratic ‘grid-energy’
functionals

E1(�) =
∫ xr

xl

1
W1

(9x�)2 dx and E2(�) =
∫ yu

yl

1
W2

(9y�)2 dy: (13)

Formulae (13) can be taken to represent the energy of a system of springs with spring constants
W1 and W2 spanning each subinterval (grid points can then be seen as the mass points of the spring
system). The grid point distribution resulting from ‘equidistribution’ thus represents the equilibrium
state of the spring system, i.e., the state of minimum ‘energy’. Note that, from (11), i.e. without
any kind of smoothing, it follows directly that, as W1; W2 ¿ 1: J1; J2 ¿ 0, and therefore J = J1J2
¿ 0. Using the fact that N� and N� are constant, the continuous property J ¿ 0 both for Eqs. (11)
and for Eqs. (7) can be translated in semi-discrete terms as

Nxi; j(�)¿ 0; Nyi; j(�)¿ 0; ∀�∈ [0; T ]; ∀i; j: (14)

In other words, these relations state that the grid points can never cross one another. Property (10)
can be read in semi-discrete terms as

1
1 + 1="

6
Nxi+1; j(�)
Nxi; j(�)

6 1 + 1="; ∀�∈ [0; T ]; ∀i; j (15)

and similar relations for the y-direction. Relation (15) means that the variation in successive grid
cells in both directions can be controlled by the parameter " at every point of time. The importance of
this property will be discussed in the next section. Finally, the parameter � in (7) has a smoothing
e-ect in the time-direction to prevent the grid from adjusting too quickly to new values of the
weightfunctions W1 and W2. It can be seen as a small delay factor for the grid movement.

4. A numerical experiment in one space dimension

In the previous section, we have shown that the adaptive grid in terms of a coordinate transforma-
tion as de2ned by the solution of PDEs (7) possesses nice properties, such as grid consistency and
grid smoothness. In the following, we discuss the backgrounds and e-ects of the (non)smoothness of
the grid and give a numerical illustration in one space dimension to support the theory. An important
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quantity in this respect is the so-called ‘grid size ratio’, sometimes also denoted by ‘local stretching
factor’. It is de2ned by

r :=
xi − xi−1

xi+1 − xi
=

Nxi−1

Nxi
:=

q
p
:

For the numerical treatment of the physical PDE model we need to approximate spatial derivatives.
For instance, the 2rst-order derivatives can be approximated using central-2nite-di-erences:

9xu|i = ui+1 − ui−1

p+ q
+ T:

The local truncation error T can be expressed in several di-erent, but mathematically equivalent,
ways as follows:

T =−9
2
xxu
2

(1− r)Nxi − 93xxxu
6

(1− r + r2)Nx2i + · · ·

=
N�2

6
(392��x92xxu+ [9�x]293xxxu) + O(N�4)

=
Nx2i
6

(
3
92��x
[9�x]2

92xxu+ 93xxxu
)

+ H:O:T:

In the case of a uniform grid we have r=1, and the relation for T reduces to the standard second-order
expression

T =−N�2

6
93xxxu+O(N�4):

On the other hand, for r ¿ 1, i.e. a nonuniform grid, we can derive that the local truncation error
will only be of second order

⇔ r = 1 + O(Nxi); (16)

(which is called ‘quasi-uniformity’)

⇔ 92��x
[9�x]2

= O(1):

A local version of this property is named ‘local quasi-uniformity’ (see also the previous section)
and can be expressed as

O(1) =
1
K
6 r6K =O(1): (17)

It is easy to make the link between (16) and (17). If we choose "=O(1) in the smoothed adaptive
transformation, then we automatically obtain with K := 1+1=" : K=O(1). In this sense, the additional
smoothing operator gives us the desired property for second-order approximation of the 2rst spatial
derivative (note that similar derivations can be made for 92xxu|i and other spatial derivatives appearing
in the physical PDE).
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Table 1
The maximum error ‖e‖∞ at t = 0:4 for the one-dimensional-advection model

N � = 0 � = 1; " = 0 � = 1; " = 2

50 0.721312 0.624699 0.387192
100 0.577044 0.432729 0.116723
200 0.509914 0.274196 0.033135
400 0.327693 0.142711 0.025296
800 0.109807 0.072737 0.017410
1600 0.027250 no solution 0.011549

As a numerical illustration we apply a one-dimensional-version of the adaptive grid method de2ned
by (7), where we have frozen the y-direction, to the following advection model:

9tu+ 4 cos(4*t)9xu= 0:

An exact solution for this problem is given by u∗(x; t)=sin1000(*(x−(1=*) sin(4*t))) and describes an
extremely sharp pulse that moves periodically in the time direction from left to right and backwards
again through the domain. For the weight function we take the one-dimensional-restriction of (9)

W =
√

1 + �[9xu]2:

Table 1 con2rms the theoretical considerations: if we add the smoothing operator (" = 2) to the
adaptation procedure, the convergence of the method, when doubling the number of spatial grid
points, is improved dramatically compared with the uniform grid case (� = 0) and with the pure
equidistribution case (" = 0). In these runs at t = 0:4 the parameters � and tol (the tolerance in the
time-integrator DASSL [20]) were deliberately chosen very small to see the e-ect of the spatial part
of the smoothing: � = 10−6 and tol = 10−8. It is observed that the nonsmooth case experiences a
severe degradation of performance, even resulting in a breakdown of the method for N =1600. The
solutions and the grid history for N = 100 are displayed in Figs. 1 and 2. Note the much bigger
error in the solution and the ‘unsmooth’ trajectories for "= 0 compared with the plots for "= 2. It
is also clear that the uniform grid solution is far too inaccurate.

5. Numerical experiments in two space dimensions

In this section, we will demonstrate the usefulness of the adaptive tensor-grid method in a
two-dimensional setting. The method is applied to a set of PDE models from di-erent application
areas. In the numerical tests, unless speci2ed otherwise, the default choices in the experiments are the
following: a uniform starting grid, a time-tolerance of 10−3, and grid parameters �="=1; �=10−3.
For this value of " the grid cell ratios always remain bounded between 1

2 and 3
2 . We have dis-

cretized the spatial derivatives both in the physical and the adaptive grid PDEs with central 2nite
di-erences. It is, of course, clear that more suitable approximations, w.r.t. accuracy and eKciency,
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Fig. 1. Numerical solutions for the one-dimensional-advection model for N = 100 at t = 4 for di-erent choices of � and
" (zoomed in several times around x = 0:2).

Fig. 2. Numerical results for the one-dimensional-advection model: an irregular adaptive grid for "=0 (left) vs. a smooth
adaptive grid for " = 2 (right).

can be made depending on each separate PDE model. The sti- time-integrator DASSL [20] takes
care of the resulting ODE system. This code makes use of h–p-re2nement in the time-direction,
which means variable timestep and a variable order (less than or equal 5) of approximation in the
backward-di-erentiation formulas (BDF) integrator.
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Fig. 3. Tensor-grid solutions for the whirlpool model at t = 0:0; 1:6; 2:8; 4:0 and contourplots at t = 4: uniform grid vs.
adaptive grid (right).

5.1. A whirlpool model

An interesting test model from meteorology is described by the hyperbolic PDE

9tu=− vt
vt;max

y
r
9xu+

vt
vt;max

x
r
9yu; (18)

where

r =
√

x2 + y2; vt =
tanh(r)
cosh2(r)

; vt;max = 0:385; (19)

with initial and boundary conditions: u|t=0 =−tanh
(y
2

)
, 9nu|9Q = 0, on the domain (x; y)∈ [−4; 4]×

[−4; 4]; t ∈ [0; 4]. This model describes the formation of cold and warm fronts in a two-dimensional
setting. Beginning with a narrow region of high gradients (a front), a 2xed (in time) rotational
velocity 2eld will act to twist the front in a manner similar to that observed on daily-weather maps
(positive solution values correspond to a warm front and negative values to a cold front). Details
on this model can be found in [23]. A complicated structure with high spatial activity, similar to a
whirlpool, develops in the centre of the domain. Fig. 3 shows the grids and numerical solutions on a
49×49 grid at t=0:0; 1:6; 2:8 and 4:0. Also contour plots are given for comparison with the uniform



P.A. Zegeling / Journal of Computational and Applied Mathematics 166 (2004) 343–360 353

Table 2
The maximum error ‖e‖∞ at t = 4:0 for the whirlpool model

Grid size � = 0 � = 1; " = 0 � = 1; " = 1 � = 10; " = 1

19× 19 0.99983 0.57177 0.62015 0.50516
29× 29 0.74773 0.27647 0.25053 0.24930
39× 39 0.52421 0.15113 0.15087 0.13512
49× 49 0.29419 0.10606 0.09828 0.09244
59× 59 0.19357 0.08476 0.08387 0.07491

grid and the adaptive grid case for t = 4:0 at which point of time the whirlpool has developed. The
adaptive solution compares favourably to the uniform solution in which the inner-layer structure of
the whirlpool is not resolved very well at all. Note that we haven taken here the re-scaled value
�=10 instead of �=1, since the domain and the solution have larger scales. In Table 2 the maximum
error is displayed at the 2nal time for di-erent values of � and ". We see that for �= "=1, which
would be a ‘standard’ choice for a unit-square domain and solution values of O(1), the method
performs not as good as for the re-scaled � = 10 case. The di-erence between the smooth (" = 2)
and the nonsmooth (" = 0) case is not so profound for this model, because the steep parts of the
solution remain concentrated in the centre of the domain for all time.

5.2. A combustion model

A reaction–di-usion system (see [13] for more details) of a so-called single one-step reaction
of a mixture of two chemicals that stems from combustion theory often gives rise to moving and
stationary layers in the solution. A simpli2ed scalar version of this model is de2ned by

9tu= �Nu+ D(1 + � − u)e−-=u; (20)

where D= Re-=�- denotes the Damkohler number, R the reaction rate, - the activation energy, and
� the heat release, respectively. As an initial condition we take a sharp nonsymmetric hump

u|t=0 = 1 + sin50(*x) sin10(*y):

Note that smaller values of the di-usion coeKcient � yield steeper fronts in the model: we choose
� = 0:1 which gives rise to very sharp transitions. At the boundary the Dirichlet condition u|9Q = 1
is imposed. Due to the interaction between di-usion and reaction a moving steep layer is observed
that moves quickly to the boundaries and then settles down in a steady state. The other chemical
parameters are typical for a standard test model: R=5, �=1 and -=20. In Fig. 4 the adaptive-grid
solutions and the grids are depicted at di-erent points of time on a 39 × 39 tensor-grid. It can be
observed that the adaptive grid is nicely situated around the steep moving Rame front, from the
initial phase up to the boundary layer steady state.

5.3. The Gray–Scott model

From pattern formation the following reaction–di-usion system [9,18] exhibits complicated
solution behaviour:

9tu= 8× 10−5Nu− uv2 + 0:02(1− u); (21)
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Fig. 4. Tensor-grid solutions for the combustion model at t = 0:01; 0:02; 0:04; 0:08.

9tv= 4× 10−5Nv+ uv2 − 0:086v: (22)

In this model self-replicating spots have been observed. These are regions in which the (chemical)
concentrations of some of the species exhibit large amplitude perturbations from a surrounding
homogeneous state. Depending on system parameters, these regions can enlarge and split so that
the spots replicate in a complex, and as yet incompletely understood, manner. Starting with a pulse,
spot, or a small block in the middle of the domain as an initial condition, we see at some point of
time that splitting may occur due to a complicated interaction between di-usion and reaction terms,
resulting in four spots, later on in eight spots, etcetera. The initial conditions are

u(x; y; 0) =

{
0:5 if 0:456 x6 0:55 and 0:456y6 0:55;

1 elsewhere;

v(x; y; 0) =

{
0:25 if 0:456 x6 0:55 and 0:456y6 0:55;

0 elsewhere;

on the spatial domain [0; 1] × [0; 1]. Note that it would hardly be possible for a uniform grid of
moderate size to deal with this tiny initial block. Such a uniform-grid solution could only reproduce
the splitting process, which highly depends on derivatives of the solution during the whole time
evolution, with a strong delay in time and 2nally also with loosing the symmetry in the solution.
This could be repaired by using many uniform-grid points to represent the ‘tiny-block’, but this
would be rather ineKcient. The adaptive-grid solutions and grids in Fig. 5 demonstrate clearly the
capability of the tensor-grid to follow the splitting of the spots. For this experiment, we have used
a 39× 39 grid with endpoint of time t = 500.
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Fig. 5. Tensor-grid solutions for the Gray–Scott model: from initial tiny block at t = 0 (upper-left), via four spots, to
eight spots at t = 500.

5.4. A ‘counterexample’

As we have seen, the proposed tensor-product grid method can be applied successfully to a set
of di-erent PDE models in two space dimensions. However, it is also obvious that this method may
fail dramatically for a large class of other important models. A relatively simple model that can be
used as a ‘counterexample’ (see [25] for details) is given by

9tu= �Nu− u9xu−
(
3
2 − u

)
9yu; 0¡��1: (23)

The exact solution for this problem reads

u∗(x; y; t) =
3
4
− 1

4
1

1 + e(−4x+4y−t+2)=32� :

This is a scalar version of the two-dimensional system of Burgers’ equations. The solution describes
a wave front with a steep transition area of thickness O(�) that moves under an angle of 135◦
with the positive x-axis. With the adaptive tensor-product grid, the grid points 2nd an ‘optimal’
position at t = 2 as shown in Fig. 6: a uniform grid distribution. Any other choice for the weight
function or method parameters yields a preference direction which de2nitely will not improve the
grid distribution, since the solution is a skew wave. It is clear that a skew wave (and many other
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Fig. 6. Tensor-grids with exact contour lines of the solution (upper) compared with fully two-dimensional adaptive grids
(lower) for the scalar two-dimensional Burgers’ equation at t = 0:5 and t = 2.

types of more complicated layers than this one) can not be resolved with a tensor-product grid. In
this 2gure, we show fully-two-dimensional adaptive grids for this model as well, which are based on
the more general transformation x(�; �; �) and y(�; �; �). A description of such a method will appear
in a subsequent paper [27]. This example shows clearly that two-dimensional grid adaptation based
on the ‘full’ transformation is needed to cope with general solution structures, such as waves and
moving layers.
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Table 3
The maximum error ‖e‖∞ at t = 2:0 for the rotating cone model

Grid size � = 0 � = 1; " = 0:2 � = 1; " = 1 �̃ = 1; " = 0 �̃ = 10; " = 0

19× 19 0.43590 0.71109 0.11618 0.43998 0.18423
29× 29 0.25521 0.48283 0.16219 0.26116 0.03766
39× 39 0.14363 0.21347 0.10206 0.15026 0.02522
49× 49 0.08629 0.20423 0.08304 0.09600 0.01725
59× 59 0.05636 0.09953 0.06081 0.06624 0.01147

5.5. A rotating cone

To show the e-ects of the adaptivity parameter � and the weight function W it is of interest to
examine the linear parabolic equation described by

9tu=Nu+ f(x; y; t); (x; y)∈ [−1; 2]× [−1; 2]: (24)

The source term f is chosen so that the exact solution is

u∗(x; y; t) = e−80[(x−r(t))2+(y−s(t))2];

where

r(t) = 1
4(2 + sin(*t)); s(t) = 1

4(2 + cos(*t)):

This solution is a rotating cone with initial condition e−80((x−0:5)2+(y−0:75)2) that moves around in
circles with a constant speed. During the movement, the shape of the cone does not change. Another
option for the weight functions, especially for this example, could be of the form

W̃ 1 = W̃ 2 :=
√

1 + �̃u2;

to stress the solution values at the peak itself instead of the gradients. In Table 3 and Fig. 7, numerical
results are displayed for di-erent choices of the weight function and the adaptivity parameters � and
�̃. A few observations can be made from these simulations. First, we see again, that decreasing the
smoothness, i.e., taking the rather small value "= 0:2, negatively inRuences the maximum error for
the case of an arc-length weight function. Second, the alternative choice W̃ 1; W̃ 2 where the solution
value is emphasized, and not the gradient of the solution, gives much better numerical results,
although the adaptive grids themselves, perhaps surprisingly, look not too di-erent. Note that, if the
value of �̃ is increased, the error in the numerical solution is reduced signi2cantly. The solutions
for �= 1 exhibit a strange decrease in amplitude both at the top of the pulse and at the foot of the
pulse, although for "=1 this behaviour is less pronounced than for the unsmooth run with "=0:2.
For the alternative weight function with �̃ = 10, this e-ect is almost annihilated. This experiment
indicates that an optimal choice for the weight function and an optimal value of the adaptivity
parameter cannot be given beforehand. This issue needs further attention and will be investigated in
a subsequent report.
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Fig. 7. Tensor-grid solutions for the rotating cone model: solutions and grids after one rotation for, respectively,
(�; ") = (1; 0:2), (�; ") = (1; 1), and (�̃; ") = (10; 0).

6. Conclusions and comments

In this study we have used an adaptive tensor-grid approach for the numerical solution of time-
dependent PDE models with steep fronts, rotating or splitting pulses from pattern formation, and
boundary layers. The adaptive moving grid used in the experiments is based on the equidistribu-
tion principle in two directions enhanced with smoothing operators in the space- as well as in
the time-direction. Both theory and experiments in a one-dimensional situation indicated the impor-
tance of these additional features of the method. We have shown the e-ectiveness of the adaptive
tensor-grid in two-dimension to deal with regions of high spatial activity in the PDE solution. The
main advantage of the proposed method is the fact that nonsingularity and smoothness of the under-
lying transformation can always be guaranteed, which is one of the known bottlenecks in the theory
behind existing structured r-re2nement methods. The method is very useful for solutions with ‘rect-
angular’ or ‘pulse-like’ steep components moving through the spatial domain. A ‘counterexample’
with a ‘nonrectangular’ wave showed the main handicap of the tensor-grid approach, and indicates
the need for full two-dimensional grid-adaptation for these situations (see for example [27]). Another
point of discussion is the choice of the weight function. Results were shown for which the tradi-
tional choice such as the arc-length weight function is inferior to much simpler functions in which
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the solution itself is emphasized instead of the gradients. Further theoretical research is needed to get
a deeper understanding of this important issue. Moreover, it is necessary to increase the robustness
of the adaptivity parameter in the weight functions. Interesting new developments in this respect
can be found in [2], where the parameter is de2ned as a time-varying constant depending on the
volume under the two-dimensional solution surface. Furthermore, in [10] it is claimed that under
certain conditions of the nonuniform tensor-grid so-called ‘supra-convergence’ should occur. This
higher-order convergence behaviour was not observed in our experiments, however. It could, there-
fore, be of interest to investigate whether the grid de2ned by our transformation does or does not
satisfy the, rather untransparent, conditions for ‘supra-convergence’. The computational eKciency,
especially for more complicated models in two-dimension and three-dimension, can be improved by
switching from a direct solver to iterative solvers [5,24] used for the linear systems in the implicit
time-integrator. Finally, we note that an eKcient combination of the adaptive tensor-grid with a
local-uniform grid (h-)re2nement, such as [3], could be of importance for general applications. The
e-ectiveness of h–r-re2nement techniques is demonstrated in [7,16].
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